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One of the fundamental questions in system neuroscience is how
the brain encodes external stimuli in the early sensory cortex. It has
been found in experiments that even some simple sensory stimuli
can activate large populations of neurons. It is believed that infor-
mation can be encoded in the spatiotemporal profile of these
collective neuronal responses. Here, we use a large-scale computa-
tionalmodel of the primary visual cortex (V1) to study the population
responses in V1 as observed in experiments in which monkeys
performed visual detection tasks. We show that our model can
capture very well spatiotemporal activities measured by voltage-
sensitive-dye-based optical imaging in V1 of the awake state. In our
model, the properties of horizontal long-range connections with
NMDA conductance play an important role in the correlated pop-
ulation responses and have strong implications for spatiotemporal
coding of neuronal populations. Our computational modeling
approach allows us to reveal intrinsic cortical dynamics, separating
them from those statistical effects arising from averaging proce-
dures in experiment. For example, in experiments, it was shown
that there was a spatially antagonistic center-surround structure in
optimal weights in signal detection theory, which was believed to
underlie the efficiency of population coding. However, our study
shows that this feature is an artifact of data processing.
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Sensory processing, motor coordination, and higher brain
functions are carried out by elaborate networks that are made

up of a large pool of neurons. In some primary sensory areas, such
as the primary visual cortex (V1), there is a one-to-one mapping
of the external visual world onto the cortical sheet and it is rep-
resented by a pattern of neuronal population activity (1). Then,
visual signals contained in these patterns are decoded further
downstream, mediating behaviors (2). Population coding is very
common in the brain (3). To understand these early sensory
population encoding and decoding processes, it is important to
measure the spatiotemporal responses of neuronal populations.
Optical imaging techniques have been developed and successfully
applied to both anesthetized and awake animals during the last
few decades (4). For example, the voltage-sensitive dye (VSD)
technique allows for the measurement of target-evoked cortical
responses in V1 at high spatial and temporal resolutions (5, 6).
This real-time optical imaging tool, combined with single-unit
recordings, has opened up new opportunities for the exploration
of fundamental mechanisms that underlie cortical development,
function, and plasticity in the brain.
Using real-time optical imaging based on VSD, a series of

experiments has been carried out to measure the spatiotemporal
responses of V1 when monkeys performed visual detection tasks
(7–10), and signal detection theory has been applied to analyze
optimal neuronal decoding rules in comparison with monkeys’
behavioral detection sensitivity. It was found that (i) a small Gabor
target of different contrast can elicit a population response de-
scribed by a Gaussian profile in space, (ii) the statistics of re-
sponses at each pixel site are Gaussian, (iii) long-range (∼4 mm)

spatial correlation of responses is nearly independent of contrast,
(iv) the standard deviation (SD) of responses is nearly constant in
time and is also independent of contrast, (v) the response onset to
the Gabor stimulus is dependent on contrast and the responses
begin to rise approximately simultaneously over the entire evoked
V1 region but reach their peaks more rapidly at the center of the
evoked region, and (vi) when the Gabor stimulus is turned off, the
related offset dynamics are independent of contrast and they fall
simultaneously with the same rate at all locations of the evoked
region. In particular, surprisingly, it was found (7) that (vii) there
is a center-surround structure in the optimal set of weights and the
optimal whitening filter derived from the spatiotemporal activity
using signal detection theory. Some of the above phenomena, for
example the onset/offset dynamics, have been examined through
a population-gain control model (10).
However, there still remain some important questions. How

could all of the observed phenomena be related dynamically? How
do they reflect the underlying properties of V1 cortical dynamics?
What intrinsic synaptic and architectural mechanisms could be
responsible for these observed spatiotemporal activities? To an-
swer the above questions so as to deepen the understanding of
possible functions implied by these phenomena, such as the above
antagonistic center-surround structures proposed as properties of
an efficient population decoding strategy (7), we use a large-scale,
realistic computational neuronal networkmodel of V1 to study the
observed spatiotemporal V1 dynamics by VSD optical imaging in
awake monkeys. Our model cortical network (MCN) incorporates
many physiological facts (e.g., neural coupling architectures) de-
rived from experiments (Methods). Here, we model cortical dy-
namics of an awake state, which differs from the previous study for
the anesthetized state (11, 12) in that the cortical network here
tends to be more inhibited. (The current work uses neurophysio-
logical parameters for the monkey; see ref 11.) We demonstrate
that our model can capture very well all of the above-listed ex-
perimental observations in refs. 7–10. Then, using our computa-
tional model, we further show that the spatial and temporal scales
of NMDA conductance play an important role in the observed
highly correlated responses and in the onset–offset dynamical
asymmetry between the rising and falling time courses. Therefore,
our work suggests a possible functional role of NMDA conduc-
tance, that is, as the synaptic mechanism responsible for the spa-
tiotemporal activity of V1, this long-range, long-lasting synaptic
coupling may greatly impact population coding as embedded in
the spatiotemporal patterns of V1. We emphasize that our com-
putational approach allows us to address how to separate effects
mainly caused by experimental methods from those of intrinsic
cortical dynamics in the model. For example, as our study shows,
some observed phenomena (e.g., contrast independence of vari-
ance) could be a consequence of statistical averaging effects
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arising from data measured with a large bin size (7, 9). In addition,
the center-surround structures in the optimal weights and whit-
ening filter are consequences of processing experimental data
with such a large bin size, and they are likely not related to the
intrinsic functional organization of cortical dynamics.

Results
To understand possible decoding and encoding strategies em-
bedded in those properties of responses in V1 experiments, we
present the spatiotemporal dynamics of our MCN (the archi-
tecture is shown in Fig. 1A, and Methods gives details) in com-
parison with experimental observations by following precisely the
same data processing procedures as used in experiments.

Spatial Dynamics. We first discuss the spatial dynamics of voltage
responses in both our MCN and experiments. Because the am-
plitude and spatial spread of the responses characterize neuronal
populations that can contribute to the visual detection, we in-
vestigate this statistical property first by averaging the response in
each site across all target contrasts and over a time interval (∼200
ms) after the onset of a small Gabor target (Methods); “site” here
refers to an imaging pixel in the VSD experiment (7) and its
corresponding group of neurons in MCN. As shown in Fig.1B, the
size and the spatial structure of the target-evoked responses in our
MCN are similar to those in experiments as seen in Fig. 1C. Al-
though the retinotopic representation of the small Gabor stimulus
on our model cortex through the cortical magnification factor of
3 mm per degree is only ∼0.5mm (8, 10), the evoked responses in
both our MCN and V1 extend over an area of several square

millimeters, indicating that a large population of V1 neurons
carries target-related signals that could be used for visual detection
(7, 9, 10). In addition, as in the experiment (Fig. 1E), the spatial
distribution of our model responses can also be well fitted by a 2D
Gaussian, as shown in Fig.1D.
To investigate the signal-to-noise characteristics and the re-

liability of population responses, we measure the variability of re-
sponses at each site. As seen in Fig. 1F, our model displays the
following interesting phenomena similar to those found in ex-
periments as shown in figures 3 a and b in the supplementary text
of ref. 7 and figure 4b in ref. 9: For the SD at the site with the
maximum signal-to-noise ratio, (i) there is no significant differ-
ence in the SD between the target-present and target-absent cases
and (ii) the SD is nearly constant in time in both cases, namely, the
variability is largely stimulus-independent. This property of pop-
ulation responses is surprising, in contrast to the variance of the
spike count being proportional to the mean for single neurons (13,
14). However, we point out that the stimulus-independent prop-
erty of the SD in the responses (as shown in Fig. 1F) may be re-
lated to the choice of the pixel size, which determines the total
number of neurons for averaging in each pixel used in optical
imaging VSD experiments (7, 9). To see that, we use different
pixel sizes (note that smaller size contains fewer neurons and the
response is averaged over neurons within a pixel). Then we reex-
amine the time course of SD at the site with the maximal signal-to-
noise ratio. As shown in Fig. 1G, the SD of the response is largely
stimulus-independent if the pixel size is sufficiently large [e.g., ¼
mm as used in experiments (7)] whereas the SD of the response
increases with contrast if the pixel size is small (e.g., 1/32 mm).

Fig. 1. (A) Model cortical network architecture. The size of model cortex is ∼8 × 8 mm with ∼16 × 16 orientation hypercolumns (pinwheel structures). The
color at a spatial point labels the preferred orientation of a neuron at that location. The length scales for local isotropic excitatory and inhibitory couplings
are indicated by the white and black disks, respectively. The long-range orientation-specific connections to the centered neuron marked by a small white
circle are indicated by the rhombuses inside the large ellipse. (B–E) Spatial distribution of response amplitudes averaged over target-present trials and across
all contrasts (the mean response over target-absent trials was subtracted) in our MCN (B) and in experiments (C) [Adapted by permission from ref. 7
(Copyright 2006, Macmillan Publishers Ltd.)]. The spatial responses of B and C are fitted by a 2D Gaussian to obtain, respectively, D and E [adapted by
permission from ref. 7 (Copyright 2006, Macmillan Publishers Ltd.)]. Spatial scales are the same for B–E. (F) Time course of the SD for the site with the
maximum signal-to-noise ratio across trials to different contrast (solid lines with different colors). The red dashed line represents the time-averaged SD over
trials across different contrasts. (G) Time-averaged SD vs. different contrast for different size of the pixel (labeled by different colors) at which the signal-to-
noise ratio is maximal. (H) Distribution of the Z-transformed responses across the target-present trials (green squares) and the target-absent trials (red circles)
in our MCN. The solid blue line represents the standard Gaussian distribution. (I) Average spatial correlations between pairs of sites as a function of their
distance across all trials for target-present case (labeled by red color) and target-absent case (labeled by green color) in our MCN with long-range (solid lines)
and short-range (dashed lines) cortical couplings of NMDA-type. (J) One-dimensional whitening filter K obtained in our MCN with different discretetization in
the numerical integration in Eq. 1. N is the number of grid points used in the integration. N=∞ is the exact analytical result (solid black line). The x-axis is
drawn between −1 mm and 1 mm; the values of K far away are all zero. (K) Optimal set of weightsW in our MCN obtained by convolving the whitening filter
(dashed red line in J) twice with the 2D Gaussian fit (D) in our MCN. (L) Analytically exact optimal set of weights W obtained by convolving the exact analytical
whitening filter (solid black line in J) twice with the 2D Gaussian fit (D) in our MCN.
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When the pixel size is large (e.g., ¼mm), the response averaging is
taken over thousands of neurons containing both the stimulus-
evoked and spontaneous neuronal responses, as indicated in the
experiment (10, 15); the fluctuations of spontaneous activities of
neurons dominate in this case, giving rise to a nearly stimulus-
independent SD. However, when the pixel size is small (e.g.,
1/32 mm), the response is averaged over a small number (∼20)
of nearby neurons. In such a case, the neurons used in average
for each site tend to share similar properties and are strongly corre-
lated with stimulus, and thus the SD becomes stimulus-dependent.
This is also consistent with the previous experimental observation
that for single neurons the variance of the spike count during
a short interval is proportional to the mean (13, 14), which can be
viewed as the extreme limit of our small pixel size.
Following the experiment, we also investigate the distribution of

the Z-transformed responses across trials for all pixels. Fig. 1H
shows that the probability density distribution of the voltage
responses in our MCN is (i) approximately Gaussian and (ii)
stimulus-independent. These two features are also observed in
experiments as shown in figure 3 c and d in the supplementary text
of ref. 7. However, we point out that this Gaussianity may simply
arise from the central limit theorem because the response at each
site comes from a summation of voltage responses around thou-
sands of neurons, and is further averaged over a time interval
(∼200 ms). It seems to be the case because this Gaussianity can be
easily obtained in our MCN with no need of fine tuning at all.
Because the spatial correlation of responses could have a large

impact on the gain of population decoding (16, 17), we measured
the spatial correlation in our MCN, obtained by averaging over
trials between the voltage responses at pairs of sites as a function
of their distances. The correlation functions under target-present
and target-absent conditions are shown in Fig. 1I by solid lines,
which are in good agreement with the experimental results as
shown in figure 2f in ref 7 and figure 3e in the supplementary text
of ref. 7. Both our numerical results and experimental observation
possess the following features: (i) there is no significant difference
in the structures of spatial correlation between target-present and
target-absent cases and (ii) there is a kink in the correlation
structure, occurring at ∼500 μm, separating high correlations with
a cusp-like shape at the center and a slow decay over long dis-
tances. In our model, we demonstrate that these features in the
spatial correlation depend on the combined effect of local, iso-
tropic AMPA connections and horizontal long-range connections
with NMDA conductance. To show this, we reduce the long-range
spatial scale (originally ∼1.5 mm) to that of local AMPA, which is
∼250 μm in the spatial kernels (Methods) and find that the slow-
decay part in the correlation disappears and only the cusp-like part
remains as shown in Fig. 1I (dashed lines). Therefore, the slow-
decay part of the spatial correlation in our MCN indeed arises
from the long-range NMDA synaptic coupling. This result sug-
gests that NMDA horizontal connections may serve as a possible
underlying neurophysiological mechanism for the correlation
structures as observed in V1 (7, 15).
As seen in Fig. 1 B, F, H, and I, our MCN can well capture the

neuronal population responses as observed in experiments (7, 9)
whose distributions are Gaussian with long-range spatial correla-
tions. In the work of Chen et al. (7), monkeys’ performance of
detecting various Gabor stimuli with different contrasts was ex-
amined. It addressed how well the spatially correlated population
responses in V1 could be used for the detection of visual signals
and what is the optimal decoding rule that can take advantage of
these correlated structures to maximize detection accuracy (7).
Notice that the response in each site is a Gaussian distributed ran-
dom variable and the covariance matrix, Σ, of responses between
sites is stimulus-independent, as shown in Fig.1 F, H, and I. There-
fore, by using the maximum likelihood method as demonstrated in
ref. 7, we can also obtain the optimal pooling rule based on the
statistical structures of responses in our MCN as follows. First, we

can construct the prior probability density function (pdf) PðxjωiÞ
as a 2DGaussian: PðxjωiÞ= 1

2πjΣj1=2 exp
�
−1
2ðx− μiÞ⊤Σ−1ðx− μiÞ

�
; i =

1 or 2, where x corresponds to the observed response, ω1 and ω2
represent the target-absent and target-present class, respectively,
μ1 = 0 and μ2 = μ are the corresponding relative mean responses
across trials (the mean response in target-absent trials was sub-
tracted from the responses in target-present trials in our analysis).
Second, the decision rule in this two-alternative forced choice can
be determined by the relative value between Pðω1jxÞ and Pðω2jxÞ,
where PðωijxÞ corresponds to the posterior pdf. Finally, using
Bayes’ rule, one can define the standard discriminant function
giðxÞ= ln  PðxjωiÞ+ ln PðωiÞ− ln  PðxÞ. Then, the optimal decision
rule is equivalent to the determination of the sign of g2ðxÞ− g1ðxÞ=
W⊤x− 1

2 μ
⊤Σ−1μ+ ln Pðω2Þ

Pðω1Þ, where W is the optimal set of weights

(18), given by W=Σ−1μ. Here, the inverse of covariance Σ−1 can
be obtained byΣ−1 =K⊤K with the whitening filterK, which can be
computed from the power spectrum of the responses (18). We use
the averaged responses of neurons over the spatial scale around
0.25 mm in our MCN to represent the measured responses for
each site in experiments. The spatial size for data analysis in our
MCN is also chosen to be the same as that in experiments (7). Fig.
1 J and K display the 1D whitening filterKðjxjÞ (red dashed line in
Fig. 1J) and the optimal set of weights W as computed from the
responses in our MCN, respectively. It can be clearly seen that
there is a spatially antagonistic center-surround structure in
KðjxjÞ, leading to a corresponding “Mexican-hat”organization in
W. These features are in agreement with the experimental results
as shown in figure 3 c and d in ref. 7. Unlike commonly observed
center-surround structures in receptive fields, we would ask why
the optimal decision rule for decoding neuronal population
responses in the cortex would possess such antagonistic struc-
tures. If these structures were truly embedded in the dynamics of
the cortex, what would be their underlying functional signifi-
cance? However, it turns out that these antagonistic structures in
both K and W are data-processing artifacts. This can be shown
as follows.
Following exactly the same data-processing procedure as in

the experiments (7), the whitening kernel is computed by

KðxÞ=

Z
K̂ðqÞexpðiq · xÞdq
Z

K̂ðqÞdq
; [1]

where K̂ðqÞ is the whitening filter in frequency domain and is
obtained through the inverse of square root of spectrum SðqÞ. By
theWiener–Khinchin theorem, SðqÞ is the Fourier transform of the
correlation functionCðxÞ. As shown infigure 2f in ref. 7 andfigure 3e
in the supplementary text of ref. 7, the measured 1D spatial corre-
lation was smoothed to obtain the best fit to the form CorðjxjÞ=
exp½−ρ0jxj�;where ρ0 is a fitting parameter. Then, the 2D function
CðxÞ is constructed using this fitted exponential CorðjxjÞ under the
assumption of isotropy. Following the above procedure, we can cal-
culate KðxÞ analytically and obtain that KðxÞ= 1, if x= 0 and
KðxÞ= 0, if x≠ 0. Hence, KðjxjÞ= 1, if jxj= 0 and KðjxjÞ= 0, if
jxj≠ 0; that is, the analytically exact 1D whitening filter possesses
no center-surround structures and the solid black line in Fig. 1J
demonstrates this point. As a matter of fact, the appearance of the
center-surround feature in ref. 7 arises from the finite discretization
in the numerical computation of the integration in Eq. 1. Fig. 1J
shows the whitening filter computed using different grid sizes. As
can be clearly seen, the center-surround structure shrinks, as the grid
is refined, toward the correct limit, which has no center-surround
structure. Therefore, this center-surround structure is not an intrin-
sic physiological property in either our MCN or the V1 experiment.
It is simply caused by finite discretization in numerics. Using the
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analytically exactKðxÞ, we can obtain the corresponding analytically
exact optimal set of weightsW as shown in Fig. 1L. It can be clearly
seen that the Mexican-hat structure disappears in the form of the
exact W. Therefore, these antagonistic structures seen in numer-
ically computed whitening filter and optimal set of weights are
consequences of finite discretization used in data processing and
are not any features of intrinsic decoding mechanism of the V1
circuitry. Note that in ref. 7 the results ofKðxÞ andW are obtained
from the analytical form of the exponential function of CorðjxjÞ,
which was a fit to experimental data. This fitted CorðjxjÞ was the
starting point in their analysis to obtain KðxÞ andW and the orig-
inal experimental data were no longer used from this point on.
Therefore, our above analysis is precisely repeating what was car-
ried out in ref. 7 and our mathematical conclusion also holds for
their results: The exponential fitting procedure along with finite
discretization to handle data would always give rise to antagonistic
structures in KðxÞ andW. Finally, we point out that, as the pixel is
refined, the SD is no longer independent of contrast (Fig. 1G); as
a result, the linear pooling strategy is no longer optimal for signals
obtained by averaging over smaller pixels.

Temporal Dynamics. To further understand the architectural and
synaptic consequences of long-range horizontal connections, we
also investigate temporal properties of target-evoked responses in
our MCN. Here, the temporal dynamics are spatially averaged as
in refs. 9 and 10. We measure the mean and the SD of the pop-
ulation response in time across trials because they determine the
reliability of neural population coding. In ourmodel dynamics, just
as observed in experiments (7, 9), the mean response depends on
the target contrast, whereas the SD is relatively constant in time
and largely stimulus-independent, as seen in Fig. 1F.
Fig. 2A shows the time course of the normalized responses un-

der different contrast in the central annulus (a circle with a 0.5-mm
radius in the center of 2D Gaussian fit as in refs. 9 and 10) in our
MCN. Based on the methods in ref. 10, we divide the time course
of responses into two parts. The first part (i.e., the rising stage)
is the response in the first 200 ms after the stimulus onset; the
second part is the falling stage, which is the remaining time course
of responses. The response of each stage is fitted with a logistic
function as VQðtÞ=Pð1+ exp½−λQðt− tQhalfÞ�Þ−1, where Q= r  or  f
(r and f stand for the rising and falling stages, respectively), tQhalf

Fig. 2. (A) Time course of the normalized responses to different contrasts in an annulus region in our MCN. (B) Logistic fits of the responses in A. Square
symbols on each curve indicate the time when the response reaches half of the peak value in the rising and falling stages under each contrast, respectively. (C
and D) Latencies (C) and slopes (D) in the rising (blue) and falling (red) stages for the fitted responses as a function of stimulus contrast. (E and F) Logistic fits
of the time courses of the normalized responses at different locations for each stimulus contrast in our MCN (E) and in experiments (F) [adapted with
permission from ref. 10 (Copyright 2009, Elsevier)]. A horizontal top row within each space-time subplot is closest to the center and the bottom row is farthest.
Here, we follow the convention used in ref. 10 for the space–time plot under a given contrast that shows the fitted time course at one location within an
annulus with inner radius 0.5 mm and outer radius 3.0 mm around the center of the 2D Gaussian fit.
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corresponds to the timewhen the response reaches half of the peak
value, λQ describes the slope of the response, and P is the peak
value of response in each contrast. Fig. 2B shows logistic fits for the
dynamics of these two parts with square symbols indicating tQhalf .
Clearly, trhalf increases as stimulus contrast is reduced, whereas, tfhalf is
independent of stimulus contrast. Our numerical results qualita-
tively agree well with the experimental results (10). As in ref. 10, the
latency of the rising stage tr10 is defined as the time for the fitted
response to reach 10% of its peak amplitude. Similarly, the latency
of the falling stage tf10 is the time at which the response falls from
the peak by 10% after the stimulus offset. Fig. 2C andD display the
latencies and slopes, respectively, for both rising and falling stages
of responses in our MCN. It is clear that tf10 and λf are relatively
independent of contrast, whereas tr10 decreases and λr increases as
the stimulus contrast is enhanced. Again, our results are consistent
with experiments as shown in figures 2 c and d in ref. 10.
As will be discussed below, the dynamics in the falling stage in

our MCN are dominated by the long-range NMDA lateral inter-
actions because it is the only long-lived (∼80 ms) conductance type
after stimulus offset in our model. Therefore, we obtain the same
latency and slope in the falling stage of the dynamics for different
contrasts. In addition, in experiments (9), there is a large and long-
lasting temporal correlations (with a time scale of ∼50 to ∼120 ms)
in the VSD responses, and this correlation seems to be similar in
both target-absent and target-present trials. We note that this is
consistent with the time scale of NMDA conductance. However,
the dynamics in the rising stage are dominated by both the local
AMPA excitation and the long-range NMDA lateral connections
after the onset of stimulus. As the contrast increases, the reaction
time for the V1 network dynamics will be accelerated (Discussion)
similar to what was observed in single neuron studies (19, 20).
Therefore, the latency decreases and the slope increases accordingly.
Fig. 2E summarizes the spatiotemporal structures of the re-

sponses in our MCN, in which we follow exactly the same pro-
cedure as in ref. 10. The spatiotemporal response for each contrast
is shown as a separate subplot as a function of time; our results are
consistent with experimental observation as shown in Fig. 2F. These
intricate spatiotemporal patterns will be further discussed below.

Discussion
Now, we discuss the underlying mechanisms for the above spa-
tiotemporal dynamics in our MCN, which may explain the phe-
nomena observed in experiments (7, 9, 10). We first address the
temporal properties of dynamics in the rising and falling stages.
The governing equation (Eq. 2) for exponential integrate-and-fire
(EIF) neurons can be written as _V i = − gTi ðVi −VSÞ+ψðViÞ, where
gTi = gLi + gEi + gIi is the total conductance andVS = ðgLVL + gEi VE +
gIi VIÞ=gTi is an effective reversal potential. The initial driving force
that makes the neuron’s voltage increase is from the excitatory
input current as gEi VE, where gEi consists of both AMPA and
NMDA receptors, that is, gEi = gAi + gNi . Once the neuron’s voltage
has crossed the spike initiation threshold VT, it will proceed to
grow rapidly to produce an action potential due to the internal
spike-generating current ψðViÞ. Therefore, at the onset, the initial
rising time scale of voltage responses is determined by the con-
ductance gEi . This may underlie the experimental observation:
After the stimulus onset, the response latency in V1 neurons is
strongly dependent on stimulus contrast (21, 22), the response
latency being ∼50 ms when the stimulus contrast is relatively low
(below 15%) and decreasing to∼30 ms when the stimulus contrast
is high (above 25%) (21, 23), as shown in Fig. 2F. Clearly, the
spontaneous response before the onset of evoked cortical activity
should be independent of contrast, as indicated by the dark blue
color in the initial stage of each subplot in Fig. 2E. In addition, the
AMPA conductance will be larger when the drive from the lateral
geniculate nucleus (LGN) is stronger as the contrast increases.
However, the larger AMPA conductance will make more neurons

fire, which will also induce a strong shunting inhibition, as ob-
served in experiments (24). Therefore, gTi becomes larger under
the higher contrast. Although the AMPA and GABA conduc-
tances are spatially short-ranged, the long-range NMDA will also
be induced through the orientation-specific synaptic couplings from
the center region. This is consistent with the long-range spatial
correlation observed in both our MCN and experiments (7). All
these combined effects give rise to faster response for all locations
(due to long-range connections) in the rising stage under higher
contrast because the response time scale is inversely proportional to
the total conductance gTi (25), hence the observed shortened la-
tency and larger slope for higher contrast in the rising stage in Fig. 2
C andD. After the stimulus offset, the responses initially stay at the
peak value and will eventually decay to spontaneous level. Because
the time scales of AMPA and GABA conductances are very short
(∼10ms), they decay rapidly and only the long-lived and long-range
NMDA conductance is left to maintain the response of dynamics in
the falling stage. Therefore, the dynamics of the falling stages are
similar for all locations and for all contrasts, with the decay time
scale controlled by the time scale of the NMDA conductance. This
decay feature is observed in both our MCN and the experiments as
shown in Fig. 2 E and F.
Next, we address the mechanism underlying the spatial prop-

erties for the dynamics of rising and falling stages. The small
Gabor stimulus maps to only ∼0.5 mm on the cortex. Because the
spatial kernels of all conductance are Gaussian, the amplitude of
the conductance decreases as the distance from the center in-
creases, the amplitude of short-range AMPA conductance is higher
in the center region of cortex than that in regions far away from the
center (>1 mm). Meanwhile, the NMDA conductance persists in
both nearby and far away from center regions through the long-
range interactions. Taking into account that the response time scale
is inversely proportional to the total conductance gTi and spatial
decaying of NMDA conductance over long distances, the response
rises at a slower rate for larger distances away from the center, as
shown in Fig. 2 E and F (i.e., the rising front in each space-time
activity subplot is not perpendicular to the time axis). In contrast,
after the stimulus offset, the long-lived and long-range NMDA
conductance is the only component remaining to control the decay
of the normalized response, as discussed above; therefore, under
different contrast, there is a simultaneous onset of decay for all
target-evoked locations with the same decay rate as shown in Fig. 2
E and F (i.e., the falling edge is perpendicular to the time axis).
Therefore, it is clear that the long-range and long-lasting NMDA
synaptic coupling in our MCN plays a central role in controlling the
spatiotemporal responses.
Finally, we point out that (i) in the real V1, it is possible that the

effect of the NMDA conductance could coexist with some other
components that also give rise to similar long-range and long-
lasting dynamics; (ii) the structured feedback from higher cortical
regions or a correlated LGN background firing are not considered
in our model; and (iii) the background inputs to our network have
no spatial or temporal structures and are independent Poisson
spike inputs to each neuron with the same constant rate. In ad-
dition, our results are robust to the parameters used in our model.
For instance, (i) the spatial scale of local excitation or inhibition
can be chosen from 100 μm to 300 μm, (ii) the percentage of
NMDA receptor Λ in long-range interactions can be chosen from
40% to 100%, (iii) the background firing rate f can be from 2 to 15
spikes per second, and (iv) the orientation spread projected by the
long-range couplings θ can be chosen from π=32 to π=8.

Methods
Following ref. 12, we model a patch (∼8 × 8 mm) of V1 that reaches the same
size as the evoked population responses in cortical areas as observed in VSD
experiments (7–10). The patch is a 2D lattice that contains approximately
1 million coupled, conductance-based, EIF neurons. The model cortex consists
of 75% excitatory and 25% inhibitory neurons that are uniformly distributed
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over the lattice. The ith neuron with spatial coordinate xi has a preferred
orientation angle θi and the hypercolumn/pinwheel structure is established
by LGN projections (26, 27), as shown in Fig. 1A (see ref. 12 for details). The
dynamics of the ith EIF neuron is governed by

d
dt

Vi = −gLðVi −VLÞ−gE
i ðVi −VEÞ−gI

iðVi −VIÞ+ψðViÞ; [2]

where ψðViÞ=gLΔT   exp½ðVi −VTÞ=ΔT�, characterizing the spike-generating
current (28). For physiological values, we use normalized units as in ref. 11:
the leaky conductance gL = 0:05 and voltage VL = 0. The excitatory and in-
hibitory reversal potentials are VE =14=3and VI =−2=3, respectively. A spike is
recorded when Vi reaches the threshold Vth = 4:375, then Vi is reset to VR = 0
with a refractory period τref =2 ms. gE

i and gI
i are the excitatory and inhibitory

conductances, respectively. gI
i consists of GABAA type with a sparse connec-

tion and a spatial scale of ∼250 μm (27, 29). gE
i consists of both AMPA type gA

i
and NMDA type gN

i (30). The AMPA gA
i =gA;S

i + ð1−ΛÞgA;L
i +gD

i , where gA;S
i

comes from excitatory neurons with isotropic, short-range (≤ 250 μm) sparse
connections and gA;L

i from excitatory neurons with orientation-specific long-
range (∼1.5 mm) connections. Here Λ denotes the percentage of long-range
NMDA receptors (31). gD

i models the drive inputs from (i) LGN, which is driven
by a small Gabor target with size (0.1° to ∼0.3°) and spatial frequency (1.5 to
∼2.5 cycles per degree), as in experiments (7–10), and (ii) the background
noise in the V1 network. The NMDA conductance gN

i =ΛgN;L
i +gN;S

i is from
excitatory neurons with both orientation-specific long-range and isotropic
short-range connections. The long-range interactions from both AMPA
and NMDA receptors can be written as gλ;L

i = Sλi   Σxj   ΣlKLðdijÞHðθ− θijÞαλðt − Tj;lÞ
with λ=A;N, dij = jxi − xj j, H is a Heaviside function with θij = jθi − θj j
and θ≈ π=16 (i.e., range from −10° to +10°). The short-range inter-
actions from both AMPA and GABA receptors can be written as gλ;S

i =
Sλi   Σxj   ΣlKλ;SðdijÞαλðt − Tj;lÞ with λ=A;G. The spatial kernels are modeled by

Gaussian functions with a short-range scale σA = σG ≈ 250 μm for Kλ;S and
long-range scale σL ≈ 1; 500 μm for KL (29, 32). The temporal kernels
αλðt − Tj;lÞ are modeled by α functions with rising time constant τAr = 0:05 ms,
τGr =0:05 ms, and τNr = 0:6 ms and decay time constant τAd ≈ 5:0 ms, τGd ≈ 10 ms,
and τNd ≈ 80 ms (27, 33). The LGN input to the ith neuron is modeled as
a Poisson process with the input rate fLGNi = f + Iv⋆KLGN, where Iv is the visual
image and KLGN is a spatiotemporal convolution kernel as in ref. 34. f is the
constant rate of independent background Poisson spike trains to each neuron
to maintain a spontaneous firing rate (approximately three spikes per sec-
ond) per neuron in our MCN. We note that our network is an effective or
“lumped” model of V1 because we do not include the detailed laminar
structure of V1 in our modeling. This is sufficient for our modeling because
the signal of the real-time VSD optical imaging measures the sum of all po-
tential changes in an imaged area, which may reflect information of sub-
threshold synaptic potentials and dendritic action potentials in neuronal
arborizations originating from neurons in all cortical layers whose dendrites
reach the superficial layers (35). To obtain quantitative comparison for spa-
tiotemporal dynamics with experiments (7–10), we model the response at the
ith pixel using the synaptic input, which is proportional to gTV=gL averaged
over neurons within a bin of size ∼0.25 mm as used in refs. 7 and 9 and
smaller bin size (∼0.04 mm) to study the onset–offset dynamics as used in ref.
10. The sampling frequency (∼100 Hz) and the cortical area (8 × 8 mm) for
data analysis in our MCN are also chosen to be the same as those in the
experiments.
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