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Dressed active particles in spherical crystals

Zhenwei Yao

We investigate the dynamics of an active particle in two-dimensional spherical crystals, which provide

an ideal environment to illustrate the interplay between active particles and crystallographic defects.

A moving active particle is observed to be surrounded by localized topological defects, becoming a

dressed active particle. Such a physical picture characterizes both the lattice distortion around the

moving particle and the healing of the distorted lattice in its trajectory. We find that the dynamical

behaviors of an active particle in both random and ballistic motions uniformly conform to this featured

scenario, whether the particle is initially a defect or not. We further observe that the defect pattern

around a dressed ballistic active particle randomly oscillates between two well-defined wing-like defect

motifs regardless of its speed. The established physical picture of dressed active particles in this work

partially deciphers the complexity of the intriguing nonequilibrium behaviors in active crystals, and opens

the promising possibility of introducing the activity to engineer defects, which has strong connections

with the design of materials.

1 Introduction
Ubiquitous nonequilibrium condensed matter systems exhibit
a wealth of intriguing properties not found in the equilibrium
zone.1–4 From highly coherent collective motions in moving
animals,5,6 bacterial suspensions,7,8 living cells,9–11 and living
liquid crystals12 to emergent ordered structures developed in
granular matter in vibration,13,14 colloids,7,15 nanoparticles,16

soft particles,17 and active spinners,18,19 these seemingly distinct
systems have a unifying characteristic that they are composed
of self-driven active units and have been known as active matter
or living matter.1,3,20 A large variety of these nonequilibrium
properties can be well rationalized in a unified physical model
by endowing interacting constituent particles with activity.3,20,21

Through various mechanisms such as external electric or magnetic
field,22 light,23–25 mechanical vibration,13 chemical reaction,16,26

and biological activity,27 etc., the energy input through individual
active particles drives the system out of equilibrium and produces
various ordered dynamic states and even biomimetic behaviors.3

Recent studies in both polar28–30 and apolar31 active systems,
depending on whether the constituent particles have a head and
a tail, have shown the crucial role of singular points known as
topological defects32 in organizing active particles to move in a
highly coherent fashion. Remarkably, the combination of topolo-
gical defects and activity can produce a myriad of dynamical states
as demonstrated in a recent experiment, where tunable periodic
oscillation of the defects in the active nematic vesicle has been

directly observed.33 These studies suggest that the complexity in
the intriguing nonequilibrium behaviors arising from the activity
may be characterized by the dynamics of a few topological defects.
It is therefore of interest to study the interplay between active
particles and topological defects to enhance our understanding of
the activity induced complex dynamics in active matter.

A spherical crystal is an ideal model system to study
the physics of topological defects.34–36 In a spherical crystal,
particles are confined on the surface of a sphere to constitute a
two-dimensional crystal lattice. Topological defects are inevitable
in the two-dimensional crystalline order confined on spherical
geometry due to the topological constraint.37 These defects
provide a unique opportunity to investigate the interplay between
activity and topological defects. Disclinations are the elementary
topological defects in two-dimensional hexagonal lattices.38 An
n-fold disclination is a vertex whose coordination number n a 6.
A topological charge of q = 6 ! n can be assigned to an n-fold
disclination. Note that one should distinguish between topo-
logical charge and electric charge associated with a particle. All
the particles in a spherical crystal are electrically charged, while a
particle is topologically charged if its coordination number is
deviated from six. According to the elasticity theory of topological
defects, disclinations of the same sign repel and unlike signs
attract.36 Euler’s theorem states that the total topological charge
in any spherical crystal is 12.37 It is important to note that a
particle in the spherical crystal can be assigned an active force,
becoming an active particle. A particle can also be a disclination
if its coordination number is deviated from 6. The double role of
a particle in the spherical crystal opens the possibility of moving
a disclination by assigning the activity on it.
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In this work, we introduce an active particle in the spherical
crystal, where topological defects are inevitable. A spherical
crystal can be experimentally realized by confining electrically
charged particles on a sphere, which can spontaneously form
a hexagonal lattice with scattered disclinations under the
Coulomb potential.35 We consider dynamics of the particles
in the overdamped regime described by the Langevin equation.
The objective of this work is to understand the activity induced
nonequilibrium physics in terms of the elements of topological
defects. We prepare the initial state of the spherical crystal with
the simplest configuration of evenly distributed 12 isolated
5-fold disclinations. We first numerically observe the inter-
mediate hexatic phase in the noise driven melting of the spherical
crystal. It is comparable with the scenario of the dislocation-
mediated melting theory of two-dimensional crystals proposed
by Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY
theory), suggesting the reliability of our simulations.39–43

At a low level of noise below the melting point, we impose an
active force on a particle in the spherical crystal and track its
dynamics and the resulting adjacent lattice distortion. Such a
lattice distortion is well represented by the underlying topo-
logical defect structure via the triangulation of the particles on
a sphere. Extensive simulations show that an active particle
always carries disclinations around it in both random and
ballistic motions, whether the particle is initially a disclination
or not. We call such a compound structure of active particles
and surrounding disclinations a dressed active particle. For an
initially disclinational active particle, we numerically observe
its splitting into an isolated disclination and a dressed active
particle with zero topological charge. The topological charge of
the active particle remains in the original site in the form of an
isolated disclination, avoiding a global structural transformation
to move a topological charge in the crystal. The distorted lattice
in the trajectory of a self-propelled active particle is observed to
restore the hexagonal configuration. Few neutral quadrupoles
may be excited in the trajectory of a moving particle to release the
slight local residue stress. Notably, simulations show that when
an active particle switches from the random to the ballistic
motion, the originally swelled surrounding defect cluster shrinks
in the direction of the motion, leading to two types of wing-like
defect motifs. We further observe the random oscillation of a
dressed active particle between these two defect motifs regardless
of the speed of the motion. The revealed uniform physical picture
of dressed active particles in this work has implications for the
engineering of defects in the design of materials, and it also
provides the basis for further investigation of the statistical
behaviors of active particles.

2 Model
We construct the initial state of a spherical crystal composed of
point particles from a regular icosahedron with 12 vertices and
20 triangles. In each triangle, we first introduce n ! 1 particles
on each bond to equally divide the bond into n segments. The
original triangle is divided by connecting any two particles at

the same height relative to their opposite side. Extra particles
are placed at the intersect of these connecting lines. The total
number of particles in the triangulated icosahedron is
N = 10(n2 ! 1) + 12. For a spherical crystal of N particles and

area A0, the lattice spacing a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A0

" ffiffiffi
3
p

N
# $q

. By mapping the

vertices to a sphere whose center coincides with the center of
the icosahedron, we obtain a spherical crystal with 12 evenly
distributed 5-fold disclinations. Such a spherical crystal has
a minimum number of defects allowed by the topological
constraint, and provides an ideal environment to study the
interplay between active particles and isolated defects. Note
that in terms of the Caspar–Klug construction for hexagonal
and triangular lattices on a sphere, the lattice of our constructed
spherical crystal has the coordinates (p, q) with q = 0.44 p and q
are the numbers of steps between successive pentagons on a
spherical crystal. We will show later that the physical picture of
dressed active particles does not rely on the specific value of
p and q.

We work in the regime of overdamped dynamics. In the
hydrodynamics of small size particles where the Reynolds
number is sufficiently small, the inertial effect can be ignored.
The motion of the particles conforms to the overdamped
Langevin equation which reads:45

Z _~ri ¼ ~PT ~riðtÞ; f ûiðtÞ þ
X

j

~Fij þ A~xiðtÞ

" #

; (1)

where -ri is the position of the particle labeled i (i = 1, 2, 3. . ., N).
The projection operator

-

PT[-ri(t),
-a] = -a ! (r̂i(t)&

-a)r̂i(t). Z-ri is the
viscous force on the particle i. The three terms in the second
expression in the square bracket in eqn (1) represent three
contributions to the forces on the particles. fûi(t) is the self-
propulsion force of magnitude f and temporally varying direc-
tion ûi(t). About the orientation ûi(t) of the active force, we
consider the following cases: (1) the orientation of ûi(t) is
generated from the uniform distribution in the interval of
[0,2p]; (2) ballistic motion, where ûi(t) is a constant; (3) the
orientation of ûi(t) changes by angle y in each time step, which
conforms to the Gaussian distribution with mean zero and
variance Dy2. For simplicity, here we do not include the time-
correlation in the evolution of ûi(t). The time-correlation of noise
is important in understanding glassy dynamics.46 -

Fij = !rVij is

the Coulomb force on particle i exerted by particle j. Vij ¼ b
1

~ri !~rj
%% %%.

The last term A~xi(t) models the random force on particle i. A

is the amplitude of the force, and ~xi(t) is a delta-correlated

Gaussian noise. h~xi(t)i = 0. hxi,a(t)&xj,b(t)i = dijdab, where a and b

denote the components of the vector ~xi(t) in the associated

tangent plane at -ri. ~xi is in the tangent plane at -ri on a sphere.
Note that the noise term x(t)dt in eqn (1) is interpreted in
the frame of stochastic calculus.47,48 Specifically, the integration
is over the standard Wiener process {W(t),t Z 0}, where DW =
W(t + Dt) ! W(t) constitutes independent increments of the
random variable W(t). Note that the electrostatic interaction between
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two charged particles whose size is much smaller than their
separation dominates over their hydrodynamic interaction.49

We therefore do not consider the hydrodynamic interaction
between particles in the model. We measure length in the unit
of the lattice spacing a, energy in the unit of e0 = b/a, time in the
unit of t = Za3/b, and force in the unit of e0/a.

From eqn (1), we can construct the trajectory of the
particles from

~ri tþ Dtð Þ ¼~ri tð Þ þ _~riDt: (2)

In numerically solving the Langevin equation, we choose the
time step Dt = 10!3t. For convenience in simulations, the
magnitude A of the noise is expressed in terms of Ga, where

G is a fraction of unity, Z
Ga
Dt
¼ A. In terms of the units of energy

(e0) and time (t), A = Ge0t/(aDt). From eqn (1) and (2), we obtain
the dimensionless discretized Langevin equation

~~ri ~tþ D~tð Þ ! ~~ri ~tð Þ
D~t

¼ ~PT
~~ri ~tð Þ;

~f

D~t
ûi ~tð Þ þ

X

j

~~Fij þ
G
D~t
~xi ~tð Þ

" #

;

(3)

where all the quantities are dimensionless, t̃ = t/t, ~~r ¼~r=a,
~~F ¼ ~Fa

.
e0. The activity of the particles is controlled by f̃a,

which is a fraction of the lattice spacing a during a time step Dt.
f̃ = fDt/(Za). It is important to point out that the strength of
noise and active force is characterized by Ga and f̃a, respec-
tively, which are fractions of the lattice spacing a. The resulting

factor of
ffiffiffiffiffi
Dt
p

appearing in the integration of the standard
Wiener process is absorbed in these two dimensionless
quantities.47 In this way, the strength of both noise and active
force is well controlled in simulations. The theoretical model in
this work may be realized experimentally in curved colloidal
crystals formed at the spherical interfaces of water and oil;35

active forces may be introduced by making use of the coupling
of magnetic colloids and controllable external magnetic field.35

3 Results and discussion
We first study the effect of the Gaussian noise in eqn (3) whose
strength is characterized by the parameter G. The expected
melting of the spherical crystal at a high level of noise provides
a qualitative criterion to check the reliability of our simula-
tions. Fig. 1 shows the typical snapshots of the spherical crystal
with the increase of the noise strength G. Simulations capture
the splitting of quadrupoles into isolated dislocations [see
Fig. 1(b)] and their further fission into isolated 5- and 7-fold
disclinations [from Fig. 1(c)]. Therefore, the simulated spherical
crystal system experiences the intermediate hexatic phase charac-
terized by the proliferation of dislocations in the noise driven
crystal-to-liquid phase transition. This hexatic phase has been
predicted by the KTHNY theory for the melting of infinitely large
two-dimensional planar crystals.39–43 Note that MD simulations
of two-dimensional melting on a sphere with a repulsive r!12

potential also return results that are consistent with the

KTHNY theory.50 In our system, the parameter G that controls the
step size in the random motion of the particles plays a similar role to
temperature in the KTHNY theory. The appearance sequence of
quadrupoles, dislocations, and disclinations with the increase of G is
also observed in smaller spherical crystals. In the spherical crystal
of 252 particles, isolated dislocations and disclinations appear at
Gc1

= 0.04 and Gc2
= 0.05, respectively. Gc1

is the critical melting
condition from the crystal to the hexatic phase, and Gc2

is that from
the hexatic to the liquid phase. Both these critical values for G are
smaller than those in the larger system of 1002 particles.

The size-dependence of the critical melting conditions is
related to the compactness of the spherical crystal. By confining
more mutually repulsive particles in a compact surface without
a boundary like a sphere or a torus, the system becomes stiffer.
Specifically, for N electrically charged particles with the
1/r-Coulomb potential confined on a sphere, the energy of the
system increases with N in the form of E(N) p N2/2! 0.5510N3/2.51

It leads to an enhanced Young’s modulus of the elastic medium
composed of the equilibrium hexagonal lattice. The binding energy
of a dislocation pair and a disclination pair is proportional to the
Youngs modulus.38 Consequently, the binding energy of the defect
clusters like quadrupoles and dislocations is increased with the
increase of the number of particles. We therefore require a larger
G to activate the proliferation of isolated dislocations and disclina-
tions to realize the respective phase transitions.

3.1 Random active force

Now we tune the noise G to a low level below the melting point
in order to highlight the dynamic features of an active particle.
We introduce an active particle in the spherical crystal by
imposing a random active force f̃ in eqn (3), and study its
dynamics and interplay with the pre-existent disclinations.
With the increase of the magnitude of the active force, we
observe that the active particle finally escapes from the initially
trapped state and gains mobility when f̃ exceeds some critical
value f̃critical. The value for f̃critical is unaffected by the noise
strength G. For a spherical crystal of 1002 particles, f̃critical E
0.03 for G ranging from 0.001 to 0.04. For an arbitrarily chosen
trapped active particle at low G, whether it is a disclination or
not, increasing the noise strength only induces a localized

Fig. 1 Particle configurations at enhanced noise levels from G = 0.04 (a),
G = 0.05 (b), to G = 0.07 (c) without imposing any active force. Quadru-
poles [in the box in (a)], isolated dislocations [in the box in (b)] and isolated
disclinations [in the box in (c)] appear in sequence with the increase of the
noise strength G. The positions of the initial 12 5-fold disclinations are
indicated by the large green dots. The red and blue dots represent 5- and
7-fold disclinations. N = 1002.
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slight distortion of the crystal lattice near the trapped active
particle; the maximum amount of the movement of the active
particle does not exceed even one lattice spacing over up to a
million time steps. Therefore, it is the active force instead of the
noise that provides the driving force to propel a particle.

Fig. 2(a)–(d) show the interaction of the active particle (the
large purple dot) initially near an isolated 5-fold disclination
(the large green dot) [see Fig. 2(a)]. We numerically observe
that the active particle induces topological charges when it
approaches the isolated disclination, creating a defect cluster
with a total topological charge of +1 [see Fig. 2(b)]. This
phenomenon can be understood in the following way. According
to the elasticity theory of topological defects, disclinations of
the same sign repel and unlike signs attract. A pair of positive
and negative disclinations constitute a dislocation which is
analogous to an electric dipole. An isolated disclination can
induce the formation of dislocations around it. The total
topological charge in this process must be invariant as a
topological constraint.38 On the other hand, it costs energy to
create defects in the crystal. Around an isolated disclination,
when the reduction of the energy due to the attraction of the
disclination and dislocation(s) exceeds the energy required to
create dislocation(s), the isolated disclination becomes a cluster
of defects. The transformation of an isolated disclination into a
linear defect structure called scar has been experimentally
observed in a spherical crystal with the increase of the sphere
radius.36 A scar is a defect string of alternating 5-fold and 7-fold
disclinations, but with one more 5-fold disclination. Here, we
observe that an active particle can induce such a transformation
without any change in the sphere size.

As shown in Fig. 2(c) and (d), the random active force later
pulls the active particle away from the defect cluster. When the
active particle moves in the crystalline zone among the isolated

disclinations, the distorted crystalline lattice behind it is healed.
While few neutral quadrupoles appear in the smaller system of
N = 252, the trajectory of a moving particle in the larger system of
N = 1002 is free of defects. This can be attributed to the larger
Young’s modulus in larger systems, which increases the energy
barrier for the formation of defects.38 No isolated dislocations in
the trajectory of a moving particle are observed; more energy is
required to create a dislocation than a quadrupole according to
the elasticity theory of topological defects.38

The restoration of the distorted crystal lattice in the trajectory
behind the motion of an active particle can be attributed to the
long-range repulsive interaction potential between particles. The
extra free space created by a moving particle is filled up by
surrounding particles under the long-range repulsive force. In
order to confirm that a defect-free trajectory does not rely on the
specific form of the long-range force, we perform further simula-
tions using another long-range force in the form of F(r) B 1/r.
It turns out that such a force can also support defect-free
trajectories. In contrast, in the two-dimensional Lennard-Jones
(L-J) crystal, where particles interact via the L-J potential, the
emergent stable vacancies may impede the complete healing of
the trajectory of a moving particle.52 Simulations show that when
we remove the attractive part in the L-J potential, the repulsive
potential in the form of 1/r12 decays so fast that it cannot support
the initially prepared crystalline order on a sphere with the
proliferation of defects.

To further exclude the possible influence of the dynamics
of the active force on the healing of the crystalline order in the
trajectory of a moving particle, we simulate cases where the
reorientation of ûi(t) (the direction of the active force) is subject
to a finite noise instead of being completely random. Specifi-
cally, ûi(t) rotates by angle y in each time step, which conforms
to the Gaussian distribution with mean zero and variance Dy2.
In both cases of Dy = p/12 and p/6, we numerically observe the
restoration of the distorted lattice in the trajectory of the active
particle; defects are accumulated around the moving particle.
It is of interest to note that the aggregation phenomenon of
defects is also observed in our recently studied size-polydispersity
driven distortion of the crystal lattice.53 It is found that an impurity
particle of a wrong size in a perfect crystal induces localized defect
patterns to screen the effect of the impurity particle.

Fig. 2(d) shows that the crystalline order very near the active
particle (in the region of a few lattice spacings) is disrupted.
The active particle carries a topologically neutral defect cluster
when it moves around without any contact with the pre-existent
disclinations. It is essentially through this defect cluster that an
active particle interacts with the isolated disclinations. Simula-
tions show that an active particle also carries a neutral defect
cluster when moving in the lattice sufficiently away from any of
the isolated disclinations. Therefore, the surrounding defect
cluster dressing the active particle is not caused by contact with
a disclination. Such a companion defect structure reflects the
intrinsic local lattice distortion near the active particle. This
basic scenario of dressed active particles with surrounding
topological defects is also observed in systems where the active
particle is initially also an isolated disclination.

Fig. 2 Typical particle configurations to show the dynamic behaviors of
active particles represented by large purple dots in (a)–(d) and large green
dots in (e)–(h), respectively. The red and blue dots represent 5- and 7-fold
disclinations. f̃ = 0.05, G = 0.001 (a–d) and 0.002 (e–h), N = 1002,
t/Dt = 1100, 2100, 4100, 8100 from (a)–(d), t/Dt = 22 000, 24 000,
28 000, 44 000 from (e)–(h).
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Moving an isolated disclination in crystalline order requires
a global transformation of the crystal lattice due to the topo-
logical property of the disclination.38 Take an n-fold disclination
in a two-dimensional hexagonal crystal for example, it can be
created by removing (for n o 6) or adding (for n 4 6) a |6! n|p/3
wedge.38 Therefore, unlike dislocations that can freely glide
across a crystalline medium, the motion of isolated disclinations
is usually realized through interactions with other defects or by
evolving into a scar to extend itself in space.35 It is of interest to
endow an isolated disclination with activity and to observe the
dynamics of the active disclination. For its dual role as an active
particle and also as a disclination, here such a particle is called a
disclinational active particle. We impose sufficiently large active
forces on the 12 isolated disclinations to mobilize them [see
Fig. 2(e)]. We observe the proliferation of topological defects
around the active particle and the ultimate split of the defect
cluster into a scar [the 5-7-5 configuration in the left of the blue
box in Fig. 2(f)] and a dressed active particle [the large green dot
in the blue box in Fig. 2(f)]. This fractionalization event clearly
shows that the topological feature and the activity of a particle
are separable. This phenomenon is also demonstrated in Fig. 2(g),
where the originally active disclination evolves into an isolated
disclination (the red dot in the center) and an active particle with
zero topological charge (the large green dot).

The resulting free-standing topologically charged scar [see
Fig. 2(f)] from the split of the defect cluster inherits the
topological charge from the original disclinational active particle.
Both theoretical and experimental studies on the ground state of
spherical crystals show that when R/a exceeds about 5, an isolated
disclination becomes a scar to lower the energy.34–36 For the
system in Fig. 2 with N = 1002, R/a = 8.3, which exceeds the
critical value for the appearance of scars. Isolated disclinations
are therefore metastable. Once touched by a dressed active
particle, a disclination becomes a scar as shown in Fig. 2(d) and
(f). This observation shows that active particles can facilitate
the system to conquer the energy barrier to reach a new low-
energy state. In this process, the source of the required energy
is from the energy input through the active particle. Once
formed, a scar is observed to be anchored in the spherical
crystal. The arrows in Fig. 2(h) indicate the locations of the
scars or topologically charged defect clusters, all of which are
close to the original sites of the isolated disclinations in Fig. 2(e).
Therefore, the migration of the active particle, whether it is
initially a disclination or not, can only take away a topologically
neutral defect cluster. The net topological charge remains in its
initial position. The origin of this phenomenon can be traced
down to the topological property of the disclination that requires a
global transformation of the crystal lattice to change its position.

The conversion of regularly distributed isolated disclinations
into scars of distinct orientations lowers the symmetry of the
system. Numerical observation of moving particles in the result-
ing scarred spherical crystal indicates that the basic physical
picture of dressed active particles does not rely on the specific
position and orientation of the pre-existent defects. It can be
attributed to the fact that these defects influence the state of an
active particle only when they are as close as few lattice spacings.

The defect pattern around the active particle is unaffected by
pre-existent defects a few lattice spacings away. Consequently,
the scenario of dressed active particles is also expected in the
less symmetric lattices with nonzero q or p a q in comparison
with those of q = 0; these less symmetric lattices essentially
change the relative orientations and positions of the disclinations.

3.2 Ballistic active force

In the preceding discussions, we have established that an active
particle, whether it is a disclination or not, always carries a
collection of defects in its random motion. These defects
essentially reflect the localized lattice distortion near the active
particle. One may wonder if such a scenario of a randomly
wandering dressed active particle is also true in its ballistic
motion especially when it reaches a high speed. In crystalline
materials, fast moving defects can use their kinetic energy to
create new defect structures.54 A defect at high speed is also
able to overcome obstacles such as precipitated particles or
other defects lying across its path.55 However, it is a challenge
to accelerate a disclination or dislocation whose speed is
limited by the sound speed in the medium in a way similar
to a relativistic particle.55 Fast speed of defects may be achieved
under large stress. Nevertheless, the maximum magnitude of
the imposed stress is limited by the yield stress of the material.

Our model system provides a convenient playground to inspect
the idea of employing a ballistic active particle to accelerate
defects. We regulate the motion of an active particle to be along
a uniform direction at constant speed by letting ûi(t) to be a
constant vector and f̃ a constant in eqn (3). The selected particle
subject to such a constant active force is in ballistic motion; the
very low level of the noise does not change the ballistic nature of
the motion. The speed of the active particle can be controlled by
the value for f̃ in eqn (3). We first consider the case where the
active particle is not a disclination and investigate the particle
speed ranging from f̃ = 0.05 to as high as f̃ = 0.5. The previously
discussed various defect patterns formed around a randomly
moving active particle are observed to uniformly converge to
either of the two well-defined topologically neutral defect struc-
tures shown in Fig. 3(a) and (b), where the active particle is
represented by the large purple dot in the box. For convenience,
in the following discussions, the defect patterns around the active
particle in Fig. 3(a) and (b) are called state 0 and state 1,
respectively. In state 0, the disclinations are organized in the
form of 7-4-7, i.e., a string of 7-, 4-, and 7-fold disclinations. State 1
is in the form of 7-(5-5)-7, where the two 5-fold disclinations can
be very close and are perpendicular to the line of the two 7-fold
disclinations. The active particle moves perpendicular to these
linear defects. Notably, the originally swelled defect cluster
dressing a randomly moving active particle shrinks in the
direction of the motion, leading to the wing-like structures.

Simulations show that in the ballistic motion of the active
particle the associated defect pattern oscillates between the
two states: state 0 (7-4-7) in Fig. 3(a) and state 1 [7-(5-5)-7] in
Fig. 3(b). To quantify the oscillation between these two states,
we plot Fig. 4 to track the dynamics of the defect pattern around
the active particle in time. In the case in Fig. 4 where G = 0.002
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and f̃ = 0.1, and also in the cases of fast ( f̃ = 0.5) and slow
( f̃ = 0.05) active particles, the defect pattern does not prefer
either of these two states. Analysis of simulation data suggests
that the transition between these two states is random.

These wing-like defect motifs may become unstable with the
increase of R/a, where R is the radius of the sphere and a is the
lattice spacing. R/a - N in the continuum limit. It has been
established theoretically and experimentally that an isolated
disclination becomes a linear scar when R/a exceeds about
5.34–36 The topological charge of the defect in this transforma-
tion is preserved. For the topologically neutral wing-like defect,
it is speculated based on the case of disclination that it may
become a neutral linear defect composed of connecting dis-
locations. Such a defect called pleat has been experimentally
observed in curved crystals confined on capillary bridges.56

Here we estimate the energies of state 0 and state 1 of the
defect pattern around the ballistic active particle using the
elasticity theory of topological defects.34–36 The interaction
energy between two disclinations of topological charges qi

and qj in the spherical crystal is34

wðbÞ / qiqj 1þ
ð1!cosb

2

0
dz

ln z

1! z

0

@

1

A; (4)

where b is the angular distance between the two disclinations.
The integral in eqn (4) can be expressed in terms of the

polylogarithm function LinðzÞ ¼
P1

k¼1
zk
"
kn:

ð1!cosb
2

0
dz

ln z

1! z
¼ !p

2

6
þ Li2

1þ cos b
2

' (
; (5)

For small separation b,

wðbÞ / qiqj 1! 1

4
b2 ln

4e

b2

' (
þ O b3

# $' (
; (6)

where e is Euler’s number. Fig. 5 shows the ratio of E0 to E1 vs.
d. E0 and E1 are the energies of state 0 and state 1, respectively.
d is the separation of the two 5-fold disclinations in state 1 as
shown in the second inset in Fig. 5, measured in the unit of the
lattice spacing. We see from Fig. 5 that the value for E0/E1 is
about 3/2, and it is almost independent of d. Despite the
appreciable energy difference of these two states, their quasi-
equal appearance frequency suggests that the energy input to
maintain a constant speed of the active particle is much larger
than their energy difference.

For a disclinational active particle in its ballistic motion, we
also observe that it leaves a net topological charge of +1 in its
original site in the form of a 5-7-5 scar [see the defect in the
right smaller box in Fig. 3(c)] just like that for a randomly
moving disclinational active particle. The defect pattern around
the active particle in its ballistic motion also oscillates between
state 0 [where the defects are arranged in the form of 7-4-7 as in
the large purple dot in the large box in Fig. 3(c)] and state 1
(7-(5-5)-7) as shown in Fig. 3(c) and (d), respectively. We vary the
speed of the active particle by adjusting the value for f̃ from 0.01
to 0.5. The basic physical picture of dressed active particles and
the oscillation between the two states remain over such a broad
spectrum for the particle speed.

It is of interest to note that periodic oscillation of defects has
been experimentally observed in spherical active nematics,
arising from the collective motion of all the active microtubules
composing the liquid crystal vesicle.33 The conformations of
the defects are preserved in this process. In contrast, in our

Fig. 3 Typical defect patterns around a ballistic active particle (the large
purple dots). An active particle in ballistic motion, either a disclination
(c and d) or not (a and b), oscillates between two types of defect patterns
as shown in the boxes. The red and blue dots represent 5- and 7-fold
disclinations. G = 0.002. f̃ = 0.1 (a and b) and 0.2 (c and d). t/Dt = 95 000 (a),
145 000 (b), 55 000 (c), and 65 000 (d). N = 1002.

Fig. 4 The defect pattern surrounding an active particle in ballistic motion
oscillates between two states: state 0 and state 1 in the boxes in Fig. 3(a)
and (b), respectively. G = 0.002, f̃ = 0.1. t is measured in the unit of 5000Dt.
N = 1002.

Fig. 5 The ratio of the energies of the two defect patterns around a
ballistic active particle. E0 and E1 are the energies of state 0 and state 1,
respectively, as shown in the inset figures (blue dot: 7-fold disclination;
green dot: 4-fold disclination; red dot: 5-fold disclination). In these two
defect configurations, disclinations of different types are separated by a
lattice spacing.
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spherical crystal system the defect structures are excited by an
arbitrarily chosen individual particle. And we observe featured
phenomena that are absent in the collective motion in spherical
active nematics, including the healing of the defects in the
trajectory of the active particle, the scenario of dressed active
particles, and the random two-state oscillation of the surrounding
defect pattern.

In our system of electrically charged particles confined on
a sphere, the emergent defect structures are induced by the
motion of a self-propelled active particle in the crystalline
order. Similar phenomena also occur in other physical and
biological systems, where the motion of an object in an ordered
medium can excite emergent structures therein. The specific form
of the resulting structures reflects the nature of the ordered
medium. For example, a sufficiently fast moving cylinder in fluid
can excite the formation of vortices.57 In crystalline materials, fast
moving defects can create new defect structures.54 A recent study
on the collective migration of deformable biological cells shows
that individual eukaryotic cells caged in the hexagonal arrange-
ment of cells can deform themselves and exhibit a wiggling
motion to escape from the cell cluster. In this process, cells
compete for the emergent structure of voids which are formed
in the deformation of cells.58

4 Conclusion
In summary, simulations show that a moving active particle in
a spherical crystal is surrounded by localized topological
defects, becoming a dressed active particle. As a consequence
of the long-range repulsion between particles, the trajectory of
the active particle is free of defects. We further observe the
random oscillation of a ballistic active particle between two
defect states. The nonequilibrium behaviors of the spherical
crystal excited by a moving active particle involve dynamics of
all the particles. We demonstrate that focusing on the structure
of topological defects significantly reduces the degree of freedom
of the system, and the physical picture of dressed active particles
emerges. This work opens the promising possibility of introdu-
cing the activity to efficiently engineer crystallographic defects for
desired material properties.
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