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Topological defects are found in particles confined to planar disks interacting via the 1=r Coulomb

potential. The total interior topological charge is found to monotonically converge to a negative value as

the energy decreases during the relaxation process regardless of initial configurations; it is more negative

in a larger cluster. The comparison with a uniform hyperbolic tessellation reveals an underlying hyper-

bolic structure in a low-energy configuration where the particle density increases from the center of the

disk to its boundary. An elliptic structure is identified in an opposite particle distribution where the particle

density decreases from the center to the edge of the disk. The novel mechanism of density inhomogeneity

driven topological defects as well as the underlying geometric structure may shed light in understanding a

wide variety of relevant systems.
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Much has been learned in the last decade about the
packing of particles on typical two-dimensional curved
surfaces as a generalized Thomson problem, including
spheres [1,2], tori [3–5], paraboloids [6], catenoid minimal
surfaces [7,8], and other constant mean curvature surfaces
[9]. The concept of the topological defect is a key in
understanding the resulting patterns that are applicable to
various systems, like the packing of virus capsids [10], cell
division in bacteria [11], propagation of cracks [12], melt-
ing of two-dimensional materials [13–15], and frustration
of colloidal crystals [1]. Most previous studies focused on
the uniform distribution of particles. However, the distri-
bution of mutually repelling particles confined on surfaces
with boundaries via a long-range potential is generically
inhomogeneous. Numerical simulations on nonuniform 2D
Wigner crystals have been carried out for several interac-
tion potentials using various simulation techniques
[16–19]. These studies were mostly focused on the low-
energy states of the system with less emphasis on the
relaxation processes leading to the low-energy configura-
tions. Robust behaviors of the system in relaxation pro-
cesses may allow us to explore characteristic features of
the true ground state. In addition, the understanding of the
relation between density inhomogeneity and Gaussian cur-
vature, whose role in frustrating crystalline order has been
well established, is lacking.

To address these problems, we employ the simplest
model system where like-charged particles are confined
in a planar disk interacting via the 1=r Coulomb potential.
The charge neutrality condition requires the existence of
opposite charges; in our model, they are treated as frozen
continuum background charges that do not influence the
particle configurations. Experimental realizations of such
a system could include electrons trapped in the surface
of liquid helium, colloidal particles in organic solvents
with large screening lengths, and charged nanoparticles
adsorbed at oil-water interfaces [20–22]. We perform

simulations to track the evolutions of 2D Coulomb clusters
towards low-energy configurations due to the interplay of
topological defects and density inhomogeneity. Our simu-
lations show that although the resulting lattice is still
locally triangular a twisted 2D hexagonal Wigner crystal-
line lattice fails to capture the inhomogeneous density
distribution; topological defects inevitably emerge in the
interior of the system, but with some regulation.
Specifically, we identify a quantity, the total interior

topological charge Qint, which converges monotonically to
a negative constant accompanied energy reduction regard-
less of initial configurations in elusive evolutions of 2D
Coulomb clusters. Furthermore, the negative sign of Qint

leads to a hyperbolic structure hidden in inhomogeneous
low-energy particle configurations via a geometric map-
ping. And in opposite particle distributions where the
particle density decreases from the center to the edge of
the disk, an elliptic structure is identified. These structures
in inhomogeneous systems can be attributed to the
modification of length scales in comparison with the
corresponding homogeneous systems. These metric modi-
fication induced topological defects are analogous to the
introduction of topological defects by Gaussian curvature,
which solely depends on the metric of the system accord-
ing to the Gauss’s Theorema Egregium [23]. The novel
mechanism of inhomogeneity driven topological defects
as well as the underlying hyperbolic and elliptic structures
revealed in this work may shed light in understanding a
wide variety of systems where entities with long-range
interactions are confined to finite surfaces with fixed
boundaries.
In our model the like-charged particles are confined in a

planar disk interacting via the 1=r Coulomb potential.
Given an initial configuration of particles labeled from 1
to N, we move the particle i by s along the direction of the
force on it by all other particles. And we move a boundary
particle according to the projection of the force on the
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boundary. This procedure applies on all particles sequen-
tially from i ¼ 1 to N, and a new configuration of the
particles is generated by a sweep over the whole system.
Note that during a sweep only the movements that can
reduce the energy of the system are accepted. The system is
continuously updated by consecutive sweeps until the
energy of the system cannot be reduced any more. In this
force-driving protocol, the system evolves towards a low-
energy state. We perform simulations with different initial
conditions to obtain properties that are independent of
initial conditions.

For a collection of particles scattered in a planar disk,
bonds among them can be uniquely defined via the
Delaunay triangulation. The topological charge of a vertex
i (i.e., the particle i) is qi ¼ 6� zi for an interior particle
and qi ¼ 4� zi for a particle at the boundary, where zi is
the coordination number of the particle i. The total topo-
logical charge of a topologically planar triangulated cluster
is always 6, a topological invariant derived from the Euler
characteristic of a disk [24]. We treat the topological
defects as degrees of freedom rather than all the interacting
particles so the number of degrees of freedom in the system
is greatly reduced.

Figures 1(a) and 1(b) are two snapshots in the relaxation
process of a Coulomb cluster where particles are initially
randomly distributed within a disk of unit radius. The
topological charges of vertices with five (red dots) and
seven (blue dots) neighboring vertices are þ1 and �1;
they are the fivefold and sevenfold disclinations, respec-
tively. A bounded pair of fivefold and sevenfold disclina-
tions constitutes a dislocation. In the low-energy
configuration in Fig. 1(b), the particles are more concen-
trated near the edge of the disk, and we find very rich defect
structures. It is remarkable that isolated disclinations are
also found in inhomogeneous particle distributions; they
usually appear among particle arrays on curved substrates
to topologically compensate the prevailing Gaussian cur-
vature. In addition, the system abounds with isolated dis-
locations, linear scars (a charged chain of alternating
fivefold and sevenfold disclinations), pleats (a neutral
chain of dislocations), and compound defect clusters. The

comparison of the state at ns ¼ 25 in Fig. 1(a) and the low-
energy state in Fig. 1(b) shows the evolution of defects in
the relaxation process, including the wiggle of the pleat in
the left oval, the annihilation of defects in the lower circle
and the approach of two dislocations via the glide of the
upper dislocation in the right circle. The simulations show
that these events facilitate the reduction of the energy.
The evolution of individual topological defects in the

whole relaxation process seems elusive. In order to find a
pattern in this complicated process, we track the change of
the total interior topological charge Qint. Note that the
planar topology of the system dictates a conserved total
topological chargeQtot ¼ Qint þQboundary ¼ 6. Figure 2(a)

summarizes the changes of different types of topological
charges in the relaxation process starting from a random
initial state. The total interior topological charge Qint ¼
N5 � N7 þ 2N4 � 2N8 þ 3N3 � 3N9, where Ni is the
number of i-fold disclinations among interior particles.
Figure 2(a) shows that the amount of all types of topological
charges approaches some saturation value in the relaxation
process. In particular, the value of the total interior topo-
logical charge Qint monotonically converges to a negative
constant �90, as read from the black dotted curves in
Fig. 2(a). In simulation, we notice that the reduction of
energy with the number of sweeps ns follows a profile
similar to that ofQint. And the critical values of ns at which
the profiles of energy and Qint become rather flat are also
very close. The synchronic variation of the energy and the
total interior topological charge implies a topological
defects-mediated relaxation mechanism.

FIG. 1 (color online). (a),(b) The evolution of topological
defects in the relaxation process of a two-dimensional
Coulomb cluster starting from a random initial configuration.
The number of sweeps is ns ¼ 25 (a) and ns ¼ 37 (b). (c) The
low-energy configuration in a hexagonal disk. The coordination
number z ¼ 3 (purple), 4 (green), 5 (red), 7 (blue), 8 (black), and
9 (orange). N ¼ 1000.

FIG. 2 (color online). (a) The topological charge vs the num-
ber of sweeps ns in the relaxation of a Coulomb cluster. The
diamonds, triangles, squares, and stars represent the number of
fourfold (N4), fivefold (N5), sevenfold (N7), and eightfold (N8)
disclinations in interior particles, respectively. The dotted black
curve is for the total interior topological charge Qint. (b) The
cumulative particle distribution NðrÞ vs r. KG ¼ �12:7 and
Rh ¼ 1:05. N ¼ 1000 (a),(b). (c) Qint vs the number of particles.
The error bars show the slight variation of Qint for ten indepen-
dent initial configurations. (d) Qint vs the step size s used in
simulation, for a common initial configuration. N ¼ 500.
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To exclude the possibility that the observation of a
negative Qint in confined Coulomb clusters only applies
to a particular initial configuration, we systematically
study several systems with N ¼ 200 to 1000, and for
each system we start from several independent initial
random configurations. It is found that the curves of Qint

vs ns alway decline and converge to negative values, which
is similar to the curve of Qint vs ns in Fig. 2(a). Figure 2(c)
shows a linear relation between the total interior topologi-
cal charge Qint of the low-energy configurations and the
number of particles, at least in the range of N from 200 to
1000. The value of Qint is found to be more negative for a
larger system. The error bars show the small standard
deviation of Qint for ten independent initial configurations,
which indicates the robustness of the topological defect
structure with constant Qint. We further study how the step
size s influences the value of Qint, as shown in Fig. 2(d).
The basic topological defect structure with negative Qint is
invariant using an alternative value for s, despite a fluctua-
tion of as high as 9% relative to the mean value of Qint

according to the data in Fig. 2(d).
Considering that the number of metastable states pro-

liferates exponentially with the number of particles, the
identification of the ground state of the system is a great
challenge. With high probability the low-energy configu-
rations found in our simulations are not the true ground
states. However, robust behaviors of the system like the
smallness of the error bar in Fig. 2(c) imply that these low-
energy configurations are at least close to the ground state.
And they serve as a window to explore some characteristic
features of the ground state.

It is natural to ask if the above observations rely on the
incompatibility between the particular circular boundary and
a perfect hexagonal lattice. In order to evaluate the influence
of the boundary shape on the topological defect structure of
the system, we adopt a hexagonal disk that is geometrically
compatible with a hexagonal lattice and investigate if a
deformed 2D hexagonal Wigner crystalline lattice can fit
the low-energy configuration in this alternative boundary
condition. Our simulations show that no qualitative change
occurs in the hexagonal disk. Figure 1(c) shows a low-energy
configuration in the hexagonal disk. The linear relation
between Qint and N still holds with only a slight change of
the proportional constant. It indicates that it is the long-range
interaction induced density inhomogeneity instead of a par-
ticular boundary shape that determines the basic topological
defect structure.

It is interesting to identify the quantity Qint from the
elusive movements of mutually repelling particles towards
a low-energy configuration; this quantity is always con-
verging to a negative value in the relaxation process regard-
less of initial conditions. Recall that in uniform particle
arrays on negatively curved surfaces negative topological
charges appear as the response to the negative Gaussian
curvature. We therefore expect a hyperbolic structure with

negative Gaussian curvature hidden in the low-energy
configuration of a Coulomb cluster. Note that the concept
of conformal crystals, that is based on the elegant mathe-
matical idea of conformal mapping from plane to plane,
has been proposed to understand the bending of lattice
lines towards the edge of the cluster as well as the density
inhomogeneity [19,25]. It is interesting to interpret the
topological defects observed in inhomogeneous systems
from the perspective of the Gaussian curvature, whose role
in inducing topological defects and frustrating crystalline
order has been well established [24,25].
To extract the underlying hyperbolic structure, we intro-

duce the Poincaré disk model, which is a conformal map-
ping from a hyperbolic plane to a finite planar disk. The
triangular lattice is preserved in conformal mappings. In
our case, the planar disk of radius R where the particles are
confined is inversely mapped to a finite hyperbolic disk of
radius Rh. The planar disk is therefore part of a complete
Poincaré disk. The metric tensor in the planar disk of radius
R is given in

ds2 ¼ 4

�
R

Rh

�
2 dx2 þ dy2

½1þ KGðx2 þ y2Þ�2 ; (1)

where x and y are the Cartesian coordinates, KG < 0 is the
Gaussian curvature of the hyperbolic disk with geodesic
radius Rh, and the prefactor ðR=RhÞ2 describes the uniform
shrinking of the system. Figure 3 shows a schematic plot of
the inhomogeneous particle configuration in a complete
Poincaré disk corresponding to a uniform distribution of
particles in an infinite hyperbolic plane; the particles away
from the center are more squeezed, which is similar to the
configuration in Fig. 1(b). By making use of the expression
AðrÞ ¼ 4�ð1=jKGjÞsinh2ðð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffi�KG

p
rÞ for the area of a

hyperbolic circle of geodesic radius r, we derive the num-
ber of particles within the circle of radius r in the planar
disk:

FIG. 3 (color online). A f3; 7g uniform hyperbolic tessellation
shown in the Poincaré disk. Seven regular ‘‘three gons’’surround
each vertex. The dashed part schematically corresponds to the
planar disk where particles sit in our system. Courtesy Don
Hatch [31].
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Nhyperbolicðr;Rh; KGÞ ¼ N
sinh2ð12 xr

RÞ
sinh2ð12 xÞ

; (2)

where x ¼ ffiffiffiffiffiffiffiffiffiffiffi�KG

p
Rh. It will be shown later that, as a first

order approximation, it is sufficient to treat the Gaussian
curvature as a constant in order to reach an agreement
between the analytical result and the simulation data.

The parameter KG in Eq. (2) can be determined by the
total interior topological charge Qint of the corresponding
low-energy configuration in simulations. From the balance
of the topological charges and the total Gaussian curvature
[8], i.e., KGAðRhÞ ¼ �ð�=3ÞQint, we obtain KG ¼
��Qint=ð3AðRhÞÞ. Since AðRhÞ depends on KG, we nu-
merically solve for KG to feed the expression for
Nhyperbolicðr;Rh; KGÞ. Figure 2(b) shows the cumulative

particle distribution Nhyperbolic (dashed curves) and that of

the corresponding low-energy configuration in Fig. 1(b)
(solid curves). Their agreement suggests a hyperbolic
structure in the low-energy configuration in Coulomb clus-
ters; a certain amount of negative topological charge is
required to compensate the underlying negative Gaussian
curvature. The slightly faster increase of the solid curve in
Fig. 2(b) in comparison with the dashed one indicates a
more negative Gaussian curvature in the small region near
the edge of the disk; this slight modification of the
Gaussian curvature does not alter the hyperbolic nature
of the underlying geometric structure. The idea of mapping
an inhomogeneous particle configuration to a homogene-
ous copy behind Eq. (2) can be generalized to deal with
other relevant inhomogeneous systems. Therefore, one is
able to use sophisticated methods that have already been
developed for homogeneous systems.

We further investigate if there is an elliptic structure with
constant Gaussian curvature in a configuration where the
particle density decreases towards the boundary. In order to
generate such a density profile, we apply a constant centripe-
tal force on each particle so the whole cluster is uniformly
compressed; i.e., the whole system is placed in a conelike
external potential. Figures 4(a) and 4(b) are two low-energy

states in the compression process starting from the initial
configuration where a perfect hexagonal lattice is inscribed
by the circular boundary of the disk. The compression of the
cluster reverses the particle distributions, as shown in
Fig. 4(c). The lower solid curve (in green) in Fig. 4(c)
corresponds to the configuration in Fig. 4(a) and the upper
solid curve (in black) to Fig. 4(b). For a uniform distribution
of particles, NðrÞ � r2. With the reversal of the particle
density distribution, the value of Qint switches from a nega-
tive value [Qint ¼ �60 in Fig. 4(a)] to a positive value
[Qint ¼ þ20 in Fig. 4(b)]. Note that positive Qint is also
observed in Coulomb clusters where the particles are more
concentrated near the center of the cluster due to a circular
parabolic external potential using minima hopping simula-
tions [26] and the Metropolis simulated annealing algorithm
[19]. These external physical potentials are corresponding to
a positive Gaussian curvature; both tend to induce positive
topological defects. In this sense, a physical potential gains a
geometric interpretation.
The strong coupling between density inhomogeneity

and topological defect structure is therefore disclosed.
This coupling is mediated by the Gaussian curvature. The
Gaussian curvature solely depends on the metric of the
system according to Gauss’s Theorema Egregium [23].
Consequently, the change of the metric, i.e., the change
of the distance between particles in deforming homoge-
neous particle arrays on a flat geometry to an inhomoge-
neous configuration leads to the change of the Gaussian
curvature from zero (for homogeneous density in flat ge-
ometry) to a nonzero value. It is the nonvanishing under-
lying Gaussian curvature that impairs the crystalline order
in inhomogeneous particle arrays, which is similar to the
frustration of crystalline order by the explicit Gaussian
curvature of the curved surface where the particles are
embedded. In relaxation processes, as a response to the
metric modification, topological defects can be squeezed
out by the rearrangement of bonds even if the particles are
in a planar disk with vanishing Gaussian curvature.
Because of the interplay of topological defects and density
inhomogeneity, the system evolves towards a low-energy
configuration.
In summary, we identify the total interior topological

charge Qint that converges to some constant in the elusive
relaxation of a Coulomb cluster. The negative sign of Qint

leads to a hyperbolic structure underlying in the Coulomb
cluster model; it originates from the modification of local
length scales by either the long-range potential between
particles or external potentials. The coupling between to-
pological defect structures and inhomogeneous particle
density as studied in this work can shed light in under-
standing intriguing behaviors in a wide variety of
long-range interacting systems [27]. It includes the open
question of the melting scenario in systems with long-
range potentials, and the recently observed highly coupled
dynamics of topological defects and the fluctuation of local

FIG. 4 (color online). (a),(b) The low-energy configurations of
a Coulomb cluster under compression. A larger centripetal force
is applied in (b) than in (a). N ¼ 331. R ¼ 1. (c) The cumulative
particle distribution NðrÞ in the compressed low-energy configu-
rations for the configuration in (a) (squared, green) and in
(b) (dotted, black). The dashed quadratic curves represent uni-
form distribution of particles. The flat part of the dotted black
curve is indicative of the separation of the cluster from the
circular boundary in the compression process.
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densities [28] in a wide variety of collectively moving
particles like flocks of birds [29] and bacteria [30].

This work was funded by grants from the Office of the
Director of Defense Research and Engineering (DDR&E)
and the Air Force Office of Scientific Research (AFOSR)
under Award No. FA9550-10-1-0167. Z. Y. would like to
thank Rui Zhang and Rastko Sknepnek for many stimulat-
ing discussions on the Coulomb cluster system.

[1] A. Bausch, M. Bowick, A. Cacciuto, A. Dinsmore, M.
Hsu, D. Nelson, M. Nikolaides, A. Travesset, and D.
Weitz, Science 299, 1716 (2003).

[2] M. Bowick, H. Shin, and A. Travesset, Phys. Rev. E 75,
021404 (2007).

[3] L. Giomi and M. J. Bowick, Phys. Rev. E 78, 010601
(2008).

[4] E. Pairam and A. Fernandez-Nieves, Phys. Rev. Lett. 102,
234501 (2009).

[5] Z. Yao and M. J. Bowick, Eur. Phys. J. E 34, 1 (2011).
[6] L. Giomi and M. Bowick, Phys. Rev. B 76, 054106 (2007).
[7] W. Irvine, V. Vitelli, and P. Chaikin, Nature (London) 468,

947 (2010).
[8] M. Bowick and Z. Yao, Europhys. Lett. 93, 36 001 (2011).
[9] H. Kusumaatmaja and D. J. Wales, Phys. Rev. Lett. 110,

165502 (2013).
[10] D. Caspar and A. Klug, in Cold Spring Harbor Symposia

on Quantitative Biology (Cold Spring Harbor Laboratory
Press, New York, 1962), Vol. 27, p. 1.

[11] D. Pum, P. Messner, and U. Sleytr, J. Bacteriol. 173, 6865
(1991).

[12] M. J. Buehler, Atomistic Modeling of Materials Failure
(Springer, New York, 2008).

[13] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457
(1979).

[14] J. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973).
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