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We derive a formally simple approximate analytical solution to the Poisson-Boltzmann equation for
the spherical system via a geometric mapping. Its regime of applicability in the parameter space of
the spherical radius and the surface potential is determined, and its superiority over the linearized
solution is demonstrated. © 2012 American Institute of Physics. [doi:10.1063/1.3681147]

Charged objects in electrolyte solutions are surrounded
by electric double layers (EDL).1 One ionic layer is due
to a host of chemical interactions, and the second layer is
formed by the excess of oppositely charged ions in the so-
lution, screening the charged objects. The EDL structure is
responsible for the stability of colloidal dispersions2 and vari-
ous electrostatic phenomena in biophysical systems.3 The dis-
tribution of the screening potential in EDL is characterized
by the Poisson-Boltzmann (PB) equation. In this paper, we
will study the EDL structure around charged spherical in-
terfaces, which are ubiquitous in colloidal and biophysical
systems.4, 5

Largely due to its nonlinear nature, analytical solu-
tions to the PB equation are available only for planar6 and
cylindrical7 systems. For a spherical system, the analytical
solution to the linearized PB equation is available.2 Despite
a recently proposed analytical series solution,8 a formally
simple approximate solution is still in demand for studying
analytical problems that are based on the screening potential
in EDL. Numerical techniques9 and the Debye-Huckel
linearized approximations have long been the only available
basic methods to solve the PB equation. Various perturbative
solutions have been proposed based on the planar solution,10

or the linearized solution,11 as the zeroth order approxima-
tion. Perturbative methods that start with the planar solution
are limited to the regime of large spherical radius, while those
which start with the linearized solution work in the weak
potential regime. The geometric construction of a formally
simple approximate analytical solution that can match both
the planar and the linearized solutions is one concern of this
paper.

In q:−q symmetric electrolytes, the dimensionless
Poisson-Boltzmann equation is2

�ψ = sinh ψ (1)

in the natural units kBT/q and the Debye length κ−1

=
√

εkBT /(8πnq2). q is the absolute value of the charge
of ions. We propose an analytic scheme to yield an ap-
proximate solution to the Poisson-Boltzmann equation in a
spherical system from the known analytical solution to the

a)Author to whom correspondence should be addressed. Electronic mail:
zyao@syr.edu.

planar problem. The planar and spherical systems are con-
nected by a geometric mapping defined in Fig. 1. Both the pla-
nar and spherical systems are schematically plotted in Fig. 1.
The planar system is composed of a charged plate locating
on the x-y plane with the solution in the z > 0 bulk space,
and the corresponding spherical system consists of a charged
sphere of radius a centered at the origin, which is immersed
in the solution in the r > a bulk space. The surface poten-
tial in both systems is denoted as ψ0. The potential in the
planar system is known as ψ(z), while that around the cor-
responding spherical system is ψ(r). These two potentials
can be related by a geometric mapping which is defined as
follows. By moving an arbitrary equipotential plane at z in
the planar system by d(z) followed by a stereographic pro-
jection as shown in Fig. 1, the equipotential plane ψ(z) in
the plate system is geometrically mapped to the equipotential
spherical shell ψ(r(z)) in the corresponding spherical system.
The charged plate on the x-y plane is mapped to the spher-
ical interface at r = a, so d(z = 0) = 0. The whole z > 0
bulk space in the planar system can be mapped to the bulk
space outside the spherical interface by repeating the map-
ping defined above for all equipotential planes below the x-y
plane.

The displacement field d(z) is introduced to guarantee
that

ψ(z) = ψ(r) (2)

with r = a + z − d(z). d(z) encodes all information of the
potential about the spherical interface. Geometrically d(z) de-
scribes how the equipotential planes in the planar system
squeeze to form the equipotential spherical shells in the cor-
responding spherical system. The problem for solving the
PB equation in a spherical system is now converted to solv-
ing for the geometric deviation d(z). The form of d(z) can
be found in the weak potential regime where both ψL(z)
of a planar system and ψL(r) of a spherical system are
known,

ψL(z) = ψ0e
−z, (3)

ψL(r) = ψ0
a

r
ea−r , (4)

where a is the radius of the spherical interface and
the subscript L stands for linearized solution. Inserting
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FIG. 1. The mapping from the z > 0 bulk space to the space outside a sphere
with radius a (represented by the blue circle) via consecutive stereographic
projections from a plane to a sphere. A deviation d(z) is introduced to guar-
antee the equality of the potential on the blue spherical shell and the potential
at the plane located at z.

Eqs. (3) and (4) into Eq. (2) leads to a/(a + z − d(z))
= exp (−d(z)), from which we have

d(z) = a + z − W (aea+z), (5)

where W(x) is the Lambert’s W function defined by
x = W(x)exp (W(x)).12 It is checked that d(z → 0) = 0 and
d(z) → 0 as a → ∞. d(z → ∞) ∼ ln (z/a), since asymp-
totically W(x → ∞) ∼ ln x − ln (ln x) (Ref. 12). Lambert’s
W function is also found in other physical systems, such
as the fringe field of a capacitor and Wiens displacement
law in black body radiation.13 Equation (5) shows that d(z)
is independent of ψ0 in the weak potential limit, since ψ0

appears as a prefactor in both ψ(z) and ψ(r) in the weak
potential limit as shown in Eqs. (3) and (4).

The plot of d(z) for various spherical radii is given in
Fig. 2(a). The squeezing of equipotential surfaces near a
spherical interface with smaller radius is seen to be larger. It is
expected that the displacement vanishes for an infinitely large
spherical interface that approaches a plate. Figure 2(a) also
shows the behaviors of d(z) in two regions – steep slope for
small z and much smaller slope for large z where d(z → ∞)
∼ ln (z/a). It gives the qualitative picture of forming equipo-
tential spherical shells from the corresponding equipotential
planar slices. Near the charged spherical interface, each slice
moves more than the slice ahead of it that is closer to the inter-
face. In the region far away from the interface, the squeezing
is much more uniform. The relative squeezing of equipoten-
tial surfaces is better demonstrated in terms of the “strain”
field d′(z). The strain field plotted in Fig. 2(b) shows that
the strain is concentrated near the spherical interface, and the
strain concentration is more significant near spherical inter-
faces of smaller radii.

We suggest that the form of d(z) for arbitrary ψ0 be ap-
proximated by Eq. (5) under the assumption of weak depen-
dence of d(z) on ψ0. This assumption is to be substantiated
later. We can then construct the analytical approximate solu-
tion to the PB equation for a spherical system from the known
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FIG. 2. (a) The plot of the displacement field d(z) for various spherical radii:
a = 0.1 (green), a = 1 (red), a = 10 (blue), a = 100 (black). As a → ∞, d(z) is
expected to vanish. (b) The plot of the strain fields d′(z) for the corresponding
displacement fields d(z) in (a).

analytical solution to a planar system, which is

ψ = 2 ln
1 + γ e−z

1 − γ e−z
, (6)

where γ = (exp (ψ0/2) − 1)/(exp (ψ0/2) + 1). On the other
hand, r(z) = W(a exp (a + z)) and W(a exp (a + z)) exp (W(a
exp (a + z))) = a exp (a + z) yield

z(r) = r − a + ln(r/a). (7)

The approximate solution denoted as ψG(r) for the spherical
system is thus derived as

ψG(r) = 2 ln

[
1 + γ exp(−(r − a + ln(r/a)))

1 − γ exp(−(r − a + ln(r/a)))

]
, (8)

where the RHS is the potential in the corresponding plate
system with z replaced by z(r). Near a spherical interface of
large radius, i.e., (r − a)/a � 1 and a � 1, the ψG solu-
tion approaches the planar solution, as required. In the region
far away from the interface (r � a), Eq. (8) becomes ψG(r)
= 4γ a exp (−(r − a))/r, which reduces to the linear spheri-
cal solution Eq. (4) in the weak potential limit. Note that the
ψG solution may be derived algebraically by a variable sub-
stitution s = a/r exp (−(r − a)) in Eq. (1) and more accurate
results can be obtained by perturbation analysis.14, 15 In com-
parison to the algebraic method, the derivation of the ψG solu-
tion via the geometric mapping not only reduces the complex-
ity of algebraic calculations, but also shows how the spherical
geometry modifies the equipotential surfaces of a planar sys-
tem as encoded by the geometric deviation d(z). The relation
between the ψG solution and both the linearized and planar
solutions is also revealed in the geometric derivation.

Equation (8) is derived from the planar and the linearized
spherical solution, so at the very least it is expected to work
for either a � 1 or ψ0 � 1. It is, therefore, superior to the
linear solution, which only works in the weak potential limit.
The region of validity of the ψG solution can be derived al-
gebraically. By introducing x = 1/r, the PB equation for a
spherical system becomes16

C(x)
∂2

∂x2
ψ = sinh ψ, (9)

where C(x) = x4. Inspired by the functional form of the pla-
nar and the linearized spherical solutions Eqs. (3) and (4), we
use ψ(x) = 2ln ((1 + g(x))/(1 − g(x))) as a trial solution. De-
pending on the sign of ψ(x), g(x) = ±exp (−f(x)) and g(x)
∈ (−1,1) corresponding to ψ ∈ (−∞, ∞). Inserting the ansatz
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FIG. 3. The potential around a charged spherical interface of unit radius in a q:q solution. The surface potentials in (a)–(d) are, respectively, 0.1, 1, 5, and 10
measured by q/(kBT). The curves give the numerical solution to the Poisson-Boltzmann equation (black), analytical solution for weak ψ0 (green dashed), and
the solution constructed by our method (red dots).

into Eq. (9) yields

g(x)[C(x)(f ′2 − f ′′) − 1] + g3[C(x)(f ′2 + f ′′) − 1] = 0.

(10)
For |g| � 1, by dropping the g3 term, the solution to Eq.
(10) is f(x) = 1/x − ln x + c1, with an integration constant
c1. Inserting f(x) into the ansatz ψ yields the ψG solution.
An alternative condition for dropping the g3 term in Eq. (10)
is C(x)(f′2 + f′′) − 1 � 1, which is equivalent to x = 1/r
� 1 by inserting the expressions for f(x) and C(x). Therefore,
for either |g| � 1 or x = 1/r � 1, the solution to Eq. (10)
coincides with the ψG solution. Note that |g| � 1 is equiva-
lent to the weak potential limit, and x = 1/r � 1 holds for a
� 1 since r > a. An important case falls in this region of
validity of the ψG solution. Consider colloids of size R in
a solution of ion strength I (in mol/L). The Debye length is
κ−1(nm) = 0.304/

√
I (mol/L) which is at the order of nm for

I ∼ 1 mol/L.17 For R ∼ μm, a = R/κ−1 � 1. Therefore, the
approximate analytical ψG solution is suitable for typical col-
loidal dispersions. In comparison to the series solution,8 the
formal simplicity of the ψG solution enables further analytical
study of the electrostatics of colloidal systems.

The ψG solution turns out to have a larger region of valid-
ity. Figure 3 shows comparisons of the ψG solution (red dots),
the linearized solution (green dashed), and the numerical
solution (black) to the PB equation for a spherical system for
different potentials. For weak potential (ψ0 = 0.1(a), 1(b)),
the three solutions fall on the same curve. The linearized
solution works well at least up to ψ0 = 5 without qualitatively
deviating from the numerical solution. So, the linearized
theory applies for moderate values of surface potential.18 As
ψ0 exceeds 5, the linearized solution starts to deviate from
the numerical solution, while ψG conforms to the numerical
solution up to ψ0 = 10, where the linearized solution deviates

1 2 3 4 5 6
0

5

10

15

a

ψ
0

FIG. 4. The ψG solution is applicable below the red curve in the parameter
space {a, ψ0}. On the red curve, δ = ε = 10−3.

significantly the numerical solution. This indicates that the
dependence of d(z) on ψ0 is weak for a = 1 up to ψ0

= 10.
The quality of the ψG solution can be system-

atically studied by defining a ratio δ = maxr{|(�ψ

− sinh ψ)/sinh ψ |}. The smaller the ratio δ is, the better the
solution is. For a given precision ε = 10−3, the applicable re-
gion of the ψG solution is found to be below the red curve in
the parameter space {a, ψ0}, as shown in Fig. 4. For a � 7,
the ψG solution applies even for large potentials. There exists,
however, a cutoff value for the surface potential. High poten-
tial, or equivalently low temperature, may lead to correlation
of counter-ions near the charged interface that is ignored in
the mean field PB equation.3 In addition, high potential leads
to high concentration of ions so that the finite dimension of
ions must be taken into consideration.2 The advantage of the
ψG solution over the planar solution is shown explicitly in
Fig. 5. The ψG solution works better than the planar solution
even for large spherical radius.

In conclusion, we have studied the EDL structure around
charged spherical interfaces by analysis of the Poisson-
Boltzmann equation. Despite the point charge assumption of
electrolyte ions and the neglect of ion-ion corrections, the
PB equation generally works well, especially for problems
of electrostatic interaction of colloidal particles.1 In this pa-
per, we have derived an approximate analytical solution to
the Poisson-Boltzmann equation for the spherical system by
a geometric mapping. The formal simplicity of the ψG solu-
tion enables further analytical study of spherical systems. The
regime of applicability includes not only the weak potential
regime where the linearized solution also works well, but also
the regime of large spherical radius. Typical colloidal disper-
sions with the size of colloids much bigger than the Debye
length fall in the latter regime.
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FIG. 5. The comparison of the ψG solution (black) and the planar solution
(blue) in terms of the ratio of the LHS to RHS of Eq. (1). The radii of the
spherical interface are a = 5(a) and 20(b). ψ0 = 1.
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