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Electrostatic repulsion-driven crystallization model arising from filament networks
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The crystallization of bundles in filament networks interacting via long-range repulsions in confinement is
described by a phenomenological model. The model demonstrates the formation of the hexagonal crystalline order
via the interplay of the confinement potential and the filament-filament repulsion. Two distinct crystallization
mechanisms in the short- and large- screening length regimes are discussed, and the phase diagram is obtained.
Simulation of large bundles predicts the existence of topological defects within the bundled filaments. This
electrostatic repulsion-driven crystallization model arising from studying filament networks can even find a more
general context extending to charged colloidal systems.
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I. INTRODUCTION

Pattern formation from mutually repelling units in confined
geometries has inspired various experimental [1,2] and theo-
retical [3–6] studies. These patterns provide a route to directed
self-assembly [7]. Moreover, fascinating physics emerges in
confined geometries that influence the physical properties of
purely repulsive particle systems. For example, topological
defects in two-dimensional (2D) crystalline order on curved
geometries, resulting from the repulsion of confining particles,
can influence the melting of 2D crystals [8] and the mechanical
properties of materials [9]. Recent experiments show the
crystallization of like-charge synthetic supramolecular peptide
filaments into lattices with very large spacings [10]. Bundles of
crystallized filaments are observed to be randomly distributed
forming a network of bundles. The observed, unexpectedly
large crystalline lattice spacing between crystallized filaments
in the bundle excludes the possibility of short-range attractions
associated with counterion correlations that occur between
close rods or filaments [11]. The underlying crystallization
mechanism is therefore fundamentally distinct from those
reported for cytoskeleton filaments and ds-DNA strands in
the presence of short-range attractions, such as those induced
by multivalent counterions that lead to the formation of
compact bundles [12–16]. Without any attractive interaction,
the confinement effect due to the observed network of bundles
seems to be the only force to counter the repulsion among
filaments.

In this work, we analyze the interplay between the repulsive
interaction and network confinement in the crystallization of
filaments. We develop a particle model to understand how the
long-range repulsions induce hexagonal crystalline order in-
side bundles of filaments, where the bundles form networks or
gels. The electrostatic repulsion-driven crystallization model
arising from filament networks can even be discussed in a more
general context; in particular the introduced spatially varying
confinement potential can be employed to manipulate charged
particles in general colloidal systems [17].

II. MODEL

The filaments in bundles are observed to be straight up to the
scale of one micron, while their cross sectional radius is only
a few nanometers [18]; their deformation is neglected in our

model. By projecting these filaments to the plane perpendicular
to them, the three-dimensional problem of the disorder-order
transition of bundled filaments is reduced to the crystallization
of particles in a confined flat disk; the thicknesses of filaments
are neglected given the large lattice spacing. In what follows,
we discuss the energetics of these particles. Experimental
work suggests that the Poisson-Boltzmann (PB) equation
provides a reasonably accurate description of even highly
charged polyelectrolytes in 1:1 solutions despite its mean
field nature, which is the case of interest in experiment
[11]. The extraordinarily large lattice spacing of crystallized
filaments (in comparison with the screening length) validates
the application of the Debye-Hückel solution to the PB
equation for the interaction energy between filaments; the
possible counterion correlations on polyelectrolyte surfaces
are significantly diminished beyond a very short distance
[19,20]. The screened Coulomb interaction energy between
two parallel polyelectrolyte cylinders is [21]

Vint(�ri − �rj ) = AK0(κ‖�ri − �rj‖), (1)

where A is a constant related to charge densities on filaments,
K0(x) is the zeroth-order modified Bessel function of the
second kind, and κ−1 is the Debye screening length. Note
that the full cylindrical solution to the Poisson-Boltzmann
equation includes terms of T r(K) = K0(x) and T r(Kj ) =
O(e−jx) (j = 3,5,7, . . .) as x → ∞ [22]. Therefore, the
linearized approximation to the filament-filament interaction
Vint essentially neglects terms that decay faster than e−κr ;
the contributions from these terms are trivial for large
distances between filaments [23,24]. For sufficiently large
screening length, the interaction energy between particles takes
the form of the two-dimensional Coulomb interaction that
can be derived from the two-dimensional Poisson equation
[25]: VCoulomb(�ri − �rj ) = λ2

2πε
ln( a

||�ri−�rj || ), where λ is the line
density of charges on filaments, and a is a constant. Note
that, for x ≡ κr � 1, K0(x) = − ln(x) + ln 2 − γ + O(x2),
where the Euler constant γ ≈ 0.5772. The neglect of the
constant terms in the expansion for K0(x) also leads to
the expression for the 2D Coulomb interaction. It is in-
teresting to note that the interaction energy of two vortex
lines in superconductors is also proportional to the zeroth-
order modified Bessel function of the second kind as in
Eq. (1) [26].
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FIG. 1. (Color online) (a) A schematic plot of crystallized bundles
in a network, as excerpted from Ref. [10]. Reprinted with permission
from AAAS. (b) A schematic plot of the geometric constraint
surrounding a filament represented by the middle blue rod.

We model the interaction between a bundle and its
surrounding filaments by a geometric constraint and a con-
finement potential. In experiment, the bundles are randomly
oriented and their interlocking in the network limits the
mobility of any bundle within some channel around them,
as schematically shown in Fig. 1(a) [18]. The shape of
the channel is assumed to be circular here. This geometric
constraint is represented by a hard-wall potential. Furthermore,
filaments in a bundle are subject to a confinement potential
arising from the electrostatic repulsion between the filaments
and the wall. To obtain the expression for the confinement
potential, we first calculate the Coulomb interaction energy of
a single filament in an arbitrary bundle in a filament network.
Filaments in neighboring bundles are represented by the two
green lines at z = 0 and z0 in Fig. 1(b). For filament length
20 μm, z0 = 100 nm, and θ = π/4, numerical calculations
show that the potential energy of a charged filament between
two perpendicular ones versus its position z3 can be well
fitted by a quadratic curve. The collective interactions from
all filaments in neighboring bundles enhance the potential
energy of the charged filament (the blue one at z = z3) without
modifying the quadratic law; the sum of quadratic polynomials
is also a quadratic polynomial. Based on the above heuristic
calculation, the confinement potential is assumed to conform
to a quadratic law in the nonscreening regime. Considering
the screening effect of solutions, we model the influence
of the wall on a filament as decaying exponentially. The
expression for the confinement potential must reduce to a
quadratic form as the screening length approaches infinity.
We therefore propose the expression for the confinement
potential as

Vconf(r) = β

(
r

R

)2

exp [−κ(R − r)] , (2)

where r is the distance from the center of the channel to a fil-
ament. Here we introduce the phenomenological parameter β

to characterize the strength of the confinement potential. It has
a complicated dependence on the charge density of filaments
as well as their orientations and positions in the network. It is
interesting to compare Eq. (2) with the confinement potential
between two quarks that can be approximated by Brebr (both
B and b are constants) [27]. Note that the optimal angle θ

defined in Fig. 1(a) is calculated to be always π/4 with the
position z3 of the blue line varying between 0.1z0 and 0.5z0.

This result supports the hypothesized templating effect in the
formation of networks, which states that long filaments formed
at early stages act as templates for the formation of bundles as
the growth of short filaments continues [18].

To summarize the above discussion, the energetics of
N particles in a disk of radius R representing N filaments
in a bundle is

f [{�ri}] = α

N∑
i=1

H (‖�ri‖ − R) +
N∑

i=1

Vconf(‖�ri‖)

+
∑
i 	=j

Vint(‖�ri − �rj‖), (3)

where �r is the two-dimensional position vector of a particle in
a disk. The first two terms are the hard-wall potential and the
confinement potential, respectively. H (x) is the Heaviside step
function; it is zero for x < 0 and 1 for x � 0. The parameter α

is a large number characterizing the hard-wall potential. The
last term in Eq. (3) describes the interaction between filaments.
Note that, in the limit of large screening length, Eq. (3)
is recognized as the constrained two-dimensional Coulomb
gas model [25]. For an electrically neutral network, only the
geometric constraint term in Eq. (3) survives. The confinement
potential term tends to push particles towards the center of the
disk, while the particle-particle repulsion term prevents their
approach.

We perform annealing Monte Carlo (MC) simulation
for identifying the lowest-energy configuration of particles
confined in a disk [28]. About 106 MC sweeps are carried
out for each run; each MC sweep consists of trial attempts
to randomly move each particle. The acceptance or rejection
of a MC trial is determined by the standard Metropolis
algorithm. The hard-wall potential is treated as a geometric
constraint, i.e., the particles are not allowed to move beyond
the disk boundary. In the simulation, the functional to
be minimized is f̃ [{�ri}] = 


∑
i(

‖�ri‖
R

)2 exp[−κ(R − ‖�ri‖)] +∑
i 	=j K0(κ‖�ri − �rj‖), which reduces to f̃Coulomb[{�ri}] =



∑

i(
‖�ri‖
R

)2 − ∑
i 	=j ln(‖�ri − �rj‖) + const in the limit of large

screening length. The phenomenological dimensionless pa-
rameter 
 controls the relative importance of the confinement
potential and the interaction between particles. In simulation,
we set R = 1 which defines a unit length. Other length scales
are measured in terms of the radius of the disk.

In order to characterize the hexagonal crystalline order,
we construct bonds between particles via the Delaunay
triangulation [29] and introduce a bond order parameter |�6|2
on the constructed triangular lattice [30],

�6 = 1

N

N∑
m=1

1

Nb

Nb∑
n=1

exp (6iθmn) , (4)

where θmn describes the orientation of the bond connecting
the two neighboring particles m and n relative to some fixed
reference axis. Nb is the number of bonds associated with the
particle m. The modulus of �6 is independent of a global
rotation of the system. |�6|2 = 1 for a perfect hexagonal
crystal and |�6|2 = 0 for a liquid state. To eliminate the edge
effect in a finite system, the exterior particles are excluded in
the calculation of the order parameter |�6|2.
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FIG. 2. (Color online) The order parameter |�6|2 vs the number of
filaments N . The stars correspond to centered hexagonal numbers (19,
37, 61, and 91). Measured in terms of the disk radius R, κ−1 = 0.1.

 = 5. R = 1.

III. RESULTS AND DISCUSSION

In experiments, the hexagonal crystalline order emerges
in bundles of filaments with the increase of charges on
filaments [10,31]. In this process, the parameter 
, which
characterizes the relative strength of the confinement potential
to the interaction between particles, varies correspondingly.
The bundle size is rather polydispersed; the number of
filaments N in a bundle is in the magnitude of 10–100. We
systematically study bundles of varying sizes. Figure 2 shows
that the dependence of |�6|2 on N is highly non-monotonous.
For example, |�6|2 = 0.95 for N = 19, and it suddenly drops
to 0.02 or 0.4 by decreasing or increasing one particle in the
system. This phenomenon can be attributed to the geometric
specialty of the number 19. It is a centered hexagonal number.
A centered hexagonal number Nhex is the number of a hexagon
with a dot at the center and all other dots surrounding the
central dot in a hexagonal lattice. Adding or removing a point
from a perfect hexagonal lattice composed of Nhex would
destroy the perfect crystalline structure. This phenomenon is
shown in Figs. 3(a)–3(c); N = 18, 19, and 20 from (a) to (c). In
Fig. 2, the points above the red (dashed) line may be regarded

(a) (b) (c)

(d) (e) (f)

FIG. 3. (Color online) The low-energy configurations of N

filaments represented by red dots that are confined in a bundle subject
to the confinement potential Vconf . The particles are connected via the
Delaunay triangulation. The blue (outer) circle represents the hard
wall. N = 18 (a), 19 (b), 20 (c), 61 (d), 91 (e), and 150 (f). Measured
in terms of the disk radius R, κ−1 = 0.1. 
 = 5. R = 1.

(a) (b) (c)

(d) (e) (f )

FIG. 4. (Color online) The low-energy configurations of 19 fil-
aments represented by red dots that are confined in a bundle
subject to the confinement potential Vconf . The blue (outer) circle
represents the hard wall. With the increase of the screening length
κ−1, the crystalline order emerges. The Delaunay triangulations are
constructed on the hexagonal lattices. Measured in terms of the disk
radius R, κ−1 = 0.03 [(a), (d)], 0.04 [(b), (e)], and 0.05 [(c), (f)].

 = 0 for the first row and 
 = 1.0 for the second row. R = 1.

as being in a crystallized state; the configuration of N = 19
is shown in Fig. 3(b). Those below the red line may be in
partially crystallized states. For example, the interior particles
in the configurations of N = 61, 91, and 150 are perfectly
crystallized, as shown in Figs. 3(d)–3(f). Their low values of
|�6|2 are due to the topological defects near the boundary.

In what follows, we will present typical results for small
(N = 19) and large (N = 50) bundles. Figure 4 shows the
low-energy configurations of 19 filaments confined in a
bundle subject to the confinement potential Vconf with the
increase of the screening length (from left to right) that are
generated via the MC simulation. The comparison of the upper
row (
 = 0) and the lower row (
 = 1) indicates that the
confinement potential significantly facilitates the formation of
crystalline order; a hexagonal crystalline order has been well
established at κR = 25 for 
 = 1, as shown in Fig. 4(e). In
the regime of short screening length (κR 
 1), since the con-
finement potential decays exponentially away from the wall,
the particles can only feel a strong repulsion from the wall if
they are within about one screening length from it. On the other
hand, the particles at a distance exceeding κ−1 are invisible to
one other. Therefore, the system is essentially composed of N

soft disks of effective radius κ−1 confined in a disk of effective
radius R − κ−1. With the increase of the screening length, the
available area a particle can explore is consequently reduced,
and either a crystalline order or a glass state will finally be
formed at some critical value for the screening length. This sce-
nario is substantiated in the simulation. Figures 4(d) and 4(f)
show that the hexagonal crystalline order starts to appear only
if the screening length exceeds some critical value κ−1 = 0.04
as read from the red (upper) curve in Fig. 5(a), which
corresponds to 4 nm for the typical value of R = 100 nm [10].

We proceed to discuss the crystallization mechanism in the
large screening length limit, where the filaments in a bundle
behave like a 2D Coulomb gas in a disk, and the confinement

042605-3



ZHENWEI YAO AND MONICA OLVERA DE LA CRUZ PHYSICAL REVIEW E 87, 042605 (2013)

2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0

Κ 1 10 2

6
2

(a)

2 4 6 8 10
0.0
0.2
0.4
0.6
0.8
1.0

6
2

(b)

FIG. 5. (Color online) (a) The order parameter |�6|2 vs the
screening length κ−1. 
 = 0 (the lower blue curve) and 1 (the upper
red curve). (b) |�6|2 vs the parameter 
 in the large screening length
limit. The dots correspond to the configurations in Fig. 6. N = 19.
R = 1.

potential conforms to a square law. Without considering the
confinement potential, the particles in the zero-temperature
2D Coulomb gas are always uniformly distributed along the
circumference of the disk [32]. This remarkable feature is
specific to the logarithm potential. A confinement potential is
therefore required to push particles away from the boundary
and form some ordered structure in the interior of the disk.
Figure 6 shows the low-energy configurations of 19 filaments
confined in a bundle with 
 increasing from 2 (a) to 10 (j),
where two transitions are identified. The first one occurs
at 
 = 2 where a particle is pushed from the boundary to
the center of the disk. In this jump, the reduction of the
confinement potential exceeds the energy barrier by moving a
particle from the boundary to the center of the disk. With the
further increase of 
, more and more particles are pushed to
the interior of the disk, forming a series of symmetric patterns,
as shown in Figs. 6(b)–6(f). These discrete structures break
rotational symmetry, despite the existing rotational symmetry
in the potential. As the total number of particles in the interior
of the disk exceeds 6, the hexagonal crystalline structure
emerges that is highlighted by the Delaunay triangulation. The
effect of further increase of 
 is to compress the system; the
particles originally on the boundary start to migrate towards
the interior of the disk [see Figs. 6(g)–6(j)]. Figure 5(b) shows
a rather sharp disorder-order phase transition at 
 = 7 that
corresponds to the configuration in Fig. 6(g).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 6. (Color online) The low-energy configuration of 19 fila-
ments confined in a bundle. With the increase of 
, the crystalline
order emerges. The Delaunay triangulations are constructed in (c),
(e), and (f). 
 = 2 (a), 3 (b), 4 (c), 4.5 (d), 5 (e), 6 (f), 7 (g), 8 (h), 9
(i), 10 (j). R = 1.

FIG. 7. (Color online) The phase diagram of filaments in a bundle
in terms of the screening length κ−1 and the phenomenological
parameter 
. The blue squares represent the crystalline zone and
the purple dots are disordered states. N = 19. R = 1.

Figure 7 shows the phase diagram of the system in the
parameter space of κ−1 and 
. The two crystalline zones
are represented by blue squares. The interesting reentrance
effect for 
 � 8 is found in simulation. This agrees with
general observations that confinement effects yield reentrance
[33–35]. The formation of the left crystalline zone in Fig. 7
is understood in terms of the soft-disk picture, while the
upper right one is attributed to the confinement potential that
pushes particles away from the disk boundary, as has been
discussed in the preceding paragraphs. As κ−1 exceeds some
critical value (about 0.14 for 
 ∈ [2,9] and 0.18 for 
 = 1),
the crystalline order is destroyed. These critical values are
very close to half of the lattice spacings in the corresponding
crystallized filaments at κ−1 = 0.14 for 
 ∈ [2,9] (d = 0.33)
and at κ−1 = 0.18 for 
 = 1 (d = 0.39), respectively. The
melting of the crystals is therefore driven by increasing the
effective radius of the soft disks; the melting starts when
the repulsion between particles becomes strong enough so
that the confinement potential fails to hold the particles to-
gether. The simulation also indicates that the crystalline order
can be destroyed for 
 exceeding about 50 and 100 in the short-
and large-screening length regimes, respectively. The under-
lying physics is the overcompression-induced breakage of a
crystal; the compression originates from the confinement po-
tential that tends to push particles towards the center of the disk.

As the number of particles increases, the value of the
order parameter |�6|2 is generally reduced, as shown in
Table I for a bundle of 50 filaments in the parameter space
of 
 and 1/κ . The maximum value for the order parameter
in the region considered in Table I does not exceed 0.5,

(a) (b)

FIG. 8. (Color online) The Delaunay triangulation of the low-
energy configurations of 50 filaments. 
 = 1 (a) and 10 (b). κ−1 =
0.1. The five-fold and seven-fold disclinations are represented by blue
triangles and yellow squares, respectively. R = 1.
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TABLE I. The distribution of the order parameter |�6|2 for a bundle of N = 50 filaments in the parameter space of 
 and 1/κ . R = 1.

�
��


1/κ
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 2 5 10 15 20 25

9 0.00 0.12 0.13 0.15 0.08 0.36 0.37 0.36 0.36 0.35 0.02 0.02 0.00 0.01 0.08 0.09
8 0.04 0.09 0.12 0.06 0.09 0.37 0.39 0.37 0.37 0.33 0.00 0.00 0.05 0.00 0.05 0.06
7 0.00 0.23 0.03 0.11 0.07 0.39 0.39 0.37 0.37 0.39 0.09 0.00 0.14 0.00 0.00 0.14
6 0.00 0.13 0.04 0.12 0.11 0.05 0.38 0.37 0.39 0.36 0.16 0.00 0.01 0.00 0.00 0.00
5 0.00 0.08 0.03 0.14 0.11 0.41 0.39 0.37 0.37 0.36 0.00 0.00 0.00 0.00 0.00 0.00
4 0.02 0.12 0.14 0.09 0.40 0.07 0.38 0.39 0.38 0.30 0.00 0.00 0.00 0.00 0.00 0.00
3 0.02 0.12 0.34 0.19 0.11 0.41 0.37 0.39 0.36 0.36 0.01 0.00 0.00 0.00 0.00 0.00
2 0.00 0.22 0.09 0.11 0.11 0.39 0.37 0.39 0.37 0.38 0.00 0.00 0.00 0.00 0.00 0.00
1 0.01 0.13 0.15 0.11 0.09 0.07 0.11 0.38 0.382 0.40 0.00 0.00 0.02 0.00 0.00 0.01
0 0.00 0.04 0.06 0.26 0.31 0.15 0.14 0.24 0.06 0.05 0.00 0.00 0.01 0.03 0.00 0.01

and the value of the order parameter for large screening
length is even lower. It implies that a large system tends to
be in a disordered state. The emerging topological defects
in large systems are responsible for the reduction of the
value of the order parameter; their proliferation destroys the
crystalline order. Figure 8 shows the five- and seven-fold
disclinations in a bundle of 50 filaments. It is important to
note that these defects are introduced via physical potentials
instead of either a non-Euclidean background geometry [36]
or geometrically induced stresses [37]. In simulation, we take
attempts to reduce the possibility of artificially introducing
defects, such as choosing various initial configurations and
carefully heating the lowest-energy states repeatedly to avoid
the metastable states. The irremovability of the topological
defects in simulation makes one to conjecture that defects
may exist intrinsically in large bundles that are subject to a
spatially varying potential.

IV. CONCLUSION

Our particle model shows that the interplay between the
repulsive interaction and network confinement leads to the
reentrance phenomenon in the phase diagram. In addition,

MC simulation suggests the emergence of topological defects
in large bundles via pure physical potentials. This may lead to
further study about the formation mechanism of topological
defects in two-dimensional systems. Our model provides
an example of controlling the separation of filaments and
their bundling that may find applications in the control of
cells in external filamentous matrices [38] and the design of
biomaterials. In addition, the electrostatic repulsion-driven
crystallization model arising from the study of filament
networks can even find a more general context. Crystallization,
melting and dynamics of confined two-dimensional charged
colloidal systems have been extensively studied, where the
particles are mutually repelled [17,39,40]. In our model, the
introduced spatially varying confinement potential that is
mimicking the charged environment of a bundle can find its
applications in a general colloidal system.
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[34] R. Messina and H. Löwen, Phys. Rev. Lett. 91, 146101

(2003).
[35] C. Royall, M. Leunissen, A. Hynninen, M. Dijkstra, and A. van

Blaaderen, J. Chem. Phys. 124, 244706 (2006).
[36] M. Bowick and L. Giomi, Adv. Phys. 58, 449 (2009).
[37] G. M. Grason, Phys. Rev. Lett. 105, 045502 (2010).
[38] J. Meredith, Jr., B. Fazeli, and M. Schwartz, Mol. Biol. Cell 4,

953 (1993).
[39] L. Assoud, R. Messina, and H. Löwen, J. Chem. Phys. 129,
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