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Harmonic field in knotted space
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Knotted fields enrich a variety of physical phenomena, ranging from fluid flows, electromagnetic fields, to
textures of ordered media. Maxwell’s electrostatic equations, whose vacuum solution is mathematically known
as a harmonic field, provide an ideal setting to explore the role of domain topology in determining physical fields
in confined space. In this work, we show the uniqueness of a harmonic field in knotted tubes, and reduce the
construction of a harmonic field to a Neumann boundary value problem. By analyzing the harmonic field in typical
knotted tubes, we identity the torsion driven transition from bipolar to vortex patterns. We also analogously extend
our discussion to the organization of liquid crystal textures in knotted tubes. These results further our understanding
about the general role of topology in shaping a physical field in confined space, and may find applications in the
control of physical fields by manipulation of surface topology.
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Understanding physical fields in confined space is a
common theme in a host of scientific problems, ranging from
the classical examples in hydrodynamics [1-3] and electro-
dynamics [4], to the fabrication of geometrically confined
liquid crystals for various applications [5-8]. The topology
of the domain can critically determine the configuration of
a physical field [9,10]. Of special interest is the structure
of a physical field filling knotted tubes. Knotted field con-
figurations, previously known in Lord Kelvin’s theoretical
proposal of the vertex atom hypothesis inspired by the work
of Helmholtz [11], have been experimentally accessible in
diverse physical and chemical systems [12], including vortex
loops in superconductors [13,14], defect loops in liquid crystals
[15-22], toroidal nematic textures [8,23-26], and knotted
beams of light [27-29]. Note that in these systems knotted
fields mostly occur either in vacuum space or in the free space
of viscous fluids and nematic liquid crystals. Past studies have
shown that Maxwell’s equations, despite their linearity, can
admit topologically nontrivial knotted solutions in free space
[27,29-35]. These results suggest that the system of Maxwell’s
equations provides an ideal setting to address the fundamental
question of how topology shapes behaviors of physical fields
in confined space.

The goal of this work is to construct vacuum solutions to
Maxwell’s electrostatic equations div E = 0 and curl E = 0
with tangential boundary condition in topologically nontrivial
domains of knotted tubes. Such a solution is mathematically
known as the harmonic field [10]. The existence of a nontrivial
smooth harmonic field in confined space depends on the
topology of the domain [10]. As an example, a smooth field is
forbidden in spherical closed space; a singularity in the field
is inevitable. However, toroidal space can admit a nontrivial
vacuum solution [9].

In this work, we first show the uniqueness of the harmonic
field as dictated by the topology of a knotted tube. By
introducing an irrotational field, we reduce the construction
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of the harmonic field to solving a Neumann boundary-value
problem. The harmonic field in the circular tube (a standard
torus) is analytically derived. For a torsion-free, elliptic torus
with spatially varying curvature along its core loop, we find that
the harmonic vector field becomes tilted, and its projection to
the cross section of the tube exhibits a bipolar configuration.
By further examining the projected harmonic field in the cross
sections of trefoil and cinquefoil torus knots, we identify the
torsion-driven transition from the bipolar to the vortex config-
urations. These results reflect the general feature of a knotted
harmonic field that is beyond the specific Maxwell’s equation
system. As an example, we finally extend our discussion to the
organization of nematic textures confined in knotted tubes.

Frenet-Serret parametrization of knotted tube. We construct
the domain of a filled knotted tube from a closed loop y; it is
named the core loop of the tube. A solid torus is a special
case of a filled knotted tube. The arc-length parametrization
of the loop y is y : S; — R3, where S; =[0,L], and L is
the length of the loop. The domain inside the tube is denoted
as T.(y). T.(y) = {x € R3 : dist(x,y) < €}, where dist(x,y)
is the distance between the point x and the loop y, and € is
the thickness of the tube. € is positive and sufficiently small to
avoid self-intersect of the knotted tube.

To represent any point within the tube, we introduce the
triple of {y(«),ej(x),ex(xr)} pointwise along the core loop,
which are the tangent, normal, and binormal unit vectors, as
shown in Fig. 1(a). These unit vectors form a moving frame of
reference named the Frenet-Serret frame along the core loop
[36,37]. The arc-length parameter « € [0,L). The pair of the
normal and binormal vectors define a two-dimensional unit
disk denoted by D? [see Fig. 1(b)]. Any point in T, can there-
fore be represented by the coordinates («,y;,y2) €Sy x D?
via the diffeomorphism («,y1,y2) —> y(a) + €yie(a) +
eyrex(a). y1,y2 € [0,1]. The Euclidean metric in the tube is

ds® = Ado® + 2’ T(yody) — yidyr)da + € (dy] + dy3),

where A = (1 — exy1)> + (e7)*(y} + ¥3), and k = k() and
T = t(x) are the curvature and torsion of the core
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FIG. 1. Illustration of a knotted tube constructed out of the red
core loop. (a) The tangent vector e,, normal vector e;, and binormal
vector e, form a moving frame of reference named the Frenet-Serret
frame along the core loop. (b) The pair of the normal and binormal
vectors define a two-dimensional unit disk.

loop y. The volume element dV = ezBdadyld V2, where
B =1—e€xy.

Construction of harmonic field. All the harmonic fields,
denoted as h in the filled knotted tube T, constitute a vector
space [10]: H(T.) = {h € C>®*(T.,R3) : divh=0, curlh=0
and h - v = 0}, where C*°(T.,R?) denotes an infinitely dif-
ferentiable functional space defined in 7., and v is the unit
outward normal vector on the surface of 7.

We first show the uniqueness of the harmonic field (up to
a multiplicative constant) as a fundamental consequence of
the topological structure of the space T.. The space H(T)
is isomorphic to the first cohomology group H'(T,) of the
filled knotted tube T, which is associated with the only
noncontractible loop along the curve y [10,36]. Furthermore,
H\(T.)= H'(S' x D*) = H'(S") = Z, where S' is a topo-
logical circle and D? is a topological disk [36]. Therefore,
the space H(T) is one-dimensional in the sense that if h is a
harmonic vector field, then all the other harmonic vector fields
are linear with h [10,36]. Here, we emphasize that the topology
of the filled knotted tube 7. determines the existence and
uniqueness of the harmonic field, which lays the foundation
for the following construction of the harmonic field.

To construct the harmonic field in 7., we consider the vector
field hg = B~2(d, + tdy), where B = 1 — €kYy1, and 6 is the
polar angle as shown in Fig. 1(b). One can show that hy is
irrotational and satisfies the tangential boundary condition (the
proof is given in Appendix A). Based on hy, we construct a
harmonic vector field by the Hodge decomposition [10,36]:

h=hy+ V. (D

The divergence-free condition requires that the scalar function
¥ in Eq. (1) must satisfy

Ay =0 2

in T, with the boundary condition 9, |37, = 0.0 = —divhy =
€B73r(tk sind — k’cosh), satisfying [0dV = 0. The solu-
tion v is unique up to a constant. Therefore, the search for the
harmonic vector field in 7 is nicely reduced to the Neumann
boundary value problem in Eq. (2).

The harmonic vector field can be derived analytically when
the core loop y is acircle, i.e., the tube is a standard solid torus.
Since T = 0 and « is a constant, the source term o in Eq. (2)

vanishes. Multiplying Eq. (2) by i, we have

/wmudv:/ wavwdS—/ V|2V
T. oT, Te

= _/ IV |?°dV = 0.
T.

Requiring V¢ = 0 leads to the expression for the harmonic
field:

1

h=B"e,= ——
1 —eky

€q, 3)
where e, is the unit tangent vector to the core loop y (see
Fig. 1). We recognize that Eq. (3) has the same functional
form as that of the magnetic field generated by electric current
in a straight wire.

For an elliptic core loop with spatially varying curvature
k(a), we numerically solve Eq. (2), and find that the har-
monic vector field becomes tilted with a nonzero transverse
component h; lying over the cross section of the tube, as
shown in Fig. 2(b). In contrast, hy = 0 for the case of a
standard solid torus. The triple numbers in the curly brackets
in Fig. 2 are the values for ¢, the curvature «(¢), and the
torsion 7(¢), respectively. ¢ is a parametrization of the core
loop. t € [0,2m), corresponding to o € [0, L). From Fig. 2(b),
we see that the tilted harmonic vector field h; exhibits a bipolar
configuration, and the entire field configuration rotates along
the core loop. The strength of the h, field approaching the
diametric poles becomes vanishingly small, which is consistent
with the tangential boundary condition.

To examine the effect of torsion on the field configuration,
we further consider knotted tubes constructed out of core
loops with torsion. In Figs. 2(c) and 2(e), we show the trefoil
and cinquefoil torus knots with crossing number three and
five, respectively [38]. Their names are from the three-leaf
clover plant and the five-petaled flowers of plants in the
genus Potentilla. The trefoil knot is the simplest example of
a nontrivial knot. From Figs. 2(d) and 2(f), we see that the
configuration of the h,; field becomes azimuthal, which is
distinct from that in Fig. 2(b) for the case of a torsion-free
core loop.

We further notice that, at the location of small torsion on
the core loop, as shown in the last plot of Fig. 2(d), the h
field is in an intermediate state between the bipolar and vortex
configurations. All these observations substantiate the physical
scenario of torsion-driven transition from the bipolar to the
vortex configurations. In all the torsion-driven vortex structures
in Figs. 2(d) and 2(f), the field strength near the center becomes
zero to avoid singularity. It is of interest to note that the
transformation of the h; field from the bipolar to the vortex
structure resembles the merge of a pair of +1/2 defects into a
single 41 defect in nematic textures over spherical disks [39].

Nematic texture in knotted tube. Now, we extend our
discussion to the system of nematic liquid crystal (LC) confined
in a knotted tube. Self-assembly of LC in various confined
environments especially within the cylindrical polymer sheath
represents a new trend in LC research for promising applica-
tions in the new generation of wearable technology devices
[8]. The experimentally accessible system of a LC-filled
knotted tube is an ideal model to address the inquiry into the
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FIG. 2. Visualization of the harmonic field projected to the cross section of typical knotted tubes. (a), (b) Solid ellipse
torus: (4.6 cost,1.6sinz,0). (c), (d) Trefoil knot: (10/9){[3 + cos(3¢)]cos(2¢),[3 + cos(3¢)]sin(2¢),sin(3¢)}. (e), (f) Cinquefoil torus knot:
{[3 + 1.1cos(5¢)]cos(2t),[3 + 1.1cos(5¢t)]sin(27),2sin(5¢)}. The triple numbers in the curly brackets are the values for ¢, the curvature «(¢),
and the torsion t(z), respectively. ¢ € [0,277). The thickness of all these knots is € = 1.

organization of matter by the topology of the domain. In
the following, we discuss how our preceding discussions on
harmonic field yield insights into this question. We consider
a planar boundary condition where LC molecules at the
boundary lie in the tangent plane [40].

In the continuum limit, the orientations of LC molecules
are characterized by a director field n(x). n is a unit vector and

= —n due to the apolar nature of LC molecules. According
to the Frank free-energy model for nematics, the free-energy
cost associated with the deformation of the director field from
the uniform state is [40]

Fln()] = / FdV - Ko / ds - g, 4

where f=1K(V-n)>+ 1K>(n-Vxn)’ + 1 K3(nxV xn)>.
K, K, and K3 are the splay, twist, and bending moduli, re-
spectively. In the surface term, K54 is the saddle-splay modulus,
and dS = vd S is the area element, where v is the outward unit
normal vector on the surface. g4y =nV -n+nx V x n.
Both the volume and surface terms in the expression for the
Frank free energy F in Eq. (4) vanish when n is a harmonic field
whose divergence and curl are zero. However, our preceding

discussion shows that the expression for the harmonic field
takes the form of h = B2(d, + 13y) + V¥, and it is not a
unit vector, which is in conflict with the condition of |n| = 1.
Consequently, in general, the Frank free energy of the ground-
state nematic texture in a knotted tube must be nonzero, as
dictated by the topology of the domain. It is of interest to study
the minimization of the Frank free energy via the interplay
of the director field and the geometry of the knotted tube. As
an analytically tractable case, we work in the constraint of an
untilted director field, and derive that a torsion-free tube tends
to take a circular shape to minimize the free energy. The details
are presented in Appendix B.

In summary, we study the problem of the harmonic field
confined in knotted space that is inspired by solving for
the vacuum solution to Maxwell’s electrostatic equations.
We show that the topology of a knotted tube determines the
existence and uniqueness of the harmonic field, and reduce the
construction of a harmonic field to a Neumann boundary value
problem. From the solved harmonic field in typical knotted
tubes, we identify the torsion-driven transition from bipolar
to vortex patterns. We also analogously extend our discussion
to the organization of liquid crystal textures in knotted tubes.
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These results further our understanding about how topology
shapes behaviors of physical fields in confined space, and
may find applications in the control of physical fields by the
manipulation of surface topology.
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APPENDIX A: PROOF OF THE IRROTATIONAL
NATURE OF h,

The coordinate-independent expression for the curl operator
is curln = (xdn”)*, where « is an operator called Hodge dual,
and » and ¢ are the musical isomorphisms [36,37,41]. We calcu-
late curl hy step by step. hy’ = AB 2do + (—€2tr)B~2d0 +
(—€*tr*)B2tda + €’r>tB2d6 = da, where the last equal-
ity is by inserting A and B, whose expressions are given in the
main text. So we have dh?) = dda = 0. Consequently, curl

hy = (xdhg)* = 0.

APPENDIX B: OPTIMAL GEOMETRY OF
TORSION-FREE, NEMATICS-FILLED TUBE

In this section, we will show that a torsion-free tube filled
with nematics tends to take a circular shape to minimize
the Frank free energy. We first represent the director n by
n=n(a,r,0)e,+n,(c,r,0)e.+n3(c,r,0)eg, where eazﬁaa,

e, = 19,, and ey = L3, are unit basis vectors.
€ €r

To make the minimization of Frank free energy analytically
tractable, our discussion is limited to the torsion-free tube
whose core loop is a planar curve. Furthermore, we work
in the constraint that the radial component of the director
field is zero and the nematic texture has axial symmetry [42].
That is, ny(e,7,6) = 0, and n is independent of 6. Therefore,
n = n(a,r)e, + nz(a,r)ey. Since n is a unit vector, the sim-
plest case is n = e,, i.e., all the lines of the director are along
the core loop of the tube.

Under these prescribed constraints, we derive for the
following Euler-Lagrange equation:

of L WJB O
an; on; .
The condition of n3 = 0 requires «’(«) to be 0. In other words,
the core loop of the elliptic tube must be a circle to satisfy the
Euler-Lagrange equation. Such a circular torus solution turns
out to be a minimum of the Frank free energy by the following
numerical analysis.
Consider an elliptic core loop; after some calculation, we
find that only the bending term in Eq. (4) is nonzero:

F = Ksyme? ” L(v a?sin’t + b2cos2tdt)
) 0 1+41—eXk()? ’
(BD

where « = ab/(a*sin’t + b*cos’t)*?. a and b are the
semimajor and semiminor axes. Numerical analysis of Eq. (B1)
shows that F monotonously decreases with b. Since b < a, the
optimal shape is therefore a circular torus. By inserting b = a

in Eq. (B1), we have Fpi,/(K3me?) = 2 /(a + v a? — €2).

i _

= —)\Jl,‘.
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