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Abstract – If an inextensible thin sheet adheres to a substrate with a negative Gaussian
curvature, it will experience stress due to geometric frustration. We analyze the consequences of
such geometric frustration using analytic arguments and numerical simulations. Both concentric
wrinkles and eye-like folds are shown to be compatible with negative curvatures. Which pattern
will be realized depends on the curvature of the substrate. We discuss both types of folding patterns
and determine the phase diagram governing their appearance.

Copyright c© EPLA, 2013

Geometric frustration occurs in wrapping a spherical
Mozartkugel (“Mozart sphere”) with planar foil [1–3].
The extra circumference at the edge of the planar sheet
compared to the spherical substrate to which it is conform-
ing gives rise to ridges, narrow deformed regions that
occupy a small fraction of the total available volume and
along which the energy is focused [4]. Recently the frustra-
tion of a thin circular elastic sheet of ≈1mm size covering
the cap of a spherical droplet has been studied [5]. At first
fine radial wrinkles appear at the edge of the sheet and
then become unstable to localized folds as the size of the
droplet decreases. One expects the situation to be quite
different for a sheet conforming to a negative-curvature
surface —in this case the edge of the sheet is stretched
tangentially as opposed to being compressed on spherical
geometry. A completely different frustration pattern on
the planar sheet is thus expected. In this paper, we study
the wrinkle/fold structure in an elasto-capillary system on
a flat sheet conforming to a negatively curved substrate.
The system we treat has two parts: an inextensible thin

elastic hydrophilic sheet and a saddle-like fluid interface
with negative curvature. The size of the elastic sheet
is taken to be much bigger than the elasto-capillary
length

√
κ/σ, so that surface tension σ dominates over

the bending rigidity κ [6]. Note that a standard sheet
of paper can be regarded as inextensible and be used
to demonstrate the bending of a thin elastic sheet [7].
When such an inextensible elastic sheet is placed on a

(a)Present address: Deparment of Materials Science and Engineer-
ing, Northwestern University - Evanston, IL 60208, USA.

negative-curvature liquid interface the capillary force pulls
the planar sheet into full contact with the liquid interface.
Complete contact between a planar sheet and a

curved fluid substrate by capillary forces introduces a
wrinkle/fold pattern, which redefines the metric of the
planar sheet according to the curvature of the back-
ground geometry. The modification of the metric leads
to the change of shape. This concept has been utilized
to design responsive buckled surfaces [8]. The curved
surface endows its metric to the flat sheet via their full
contact. The inherited metric on the flat sheet as well
as its elasticity determines the wrinkle/fold structure.
Which wrinkle/fold patterns are compatible with negative
curvatures? The art of origami provides some inspiration.
It is shown in origami that regular concentric or square
wrinkles with alternating peaks and valleys on a piece of
paper can induce a negative curvature, as demonstrated
in fig. 1.
In what follows we will prove that the effect of concentric

wrinkles is equivalent to inserting an angular wedge
in the sense of redefining the metric. The wavelength
and amplitude of the concentric wrinkles determine the
angle of the wedge. The wrinkled sheet is parameterized
as �x (r, θ) = {r cos θ, r sin θ, ak cos (kr)}, where ak is the
amplitude of the wrinkles and k is the wave number
k= 2π/λ. The nonzero components of the metric tensor
are g11 = 1+x

2 sin2 (kr) and g22 = r
2, where x= akk. The

imposed wrinkles transform the original wrinkled shell into
a new surface denoted by Σ that we take coincident with
the curved substrate. On this new surface the metric is
redefined such that the geodesic distance (denoted as r)

44007-p1



Zhenwei Yao et al.

Fig. 1: (Color online) Wrinkles of alternating peaks and valleys
on a piece of paper redefine the metric, automatically bringing
the flat paper to a saddle-like shape. It is shown in the text
that the effect of concentric wrinkles is equivalent to inserting
a wedge of some angle in the sense of redefining the metric.
Panel (a) is excerpted from ref. [9], and panel (b) is from
ref. [10] where the method to make it is described in detail.

from the center of the disk to the first peak is r0 = λ. The
corresponding real distance on the original sheet is l0 =∫ λ
0

√
g11dr=

1
k
E (x), where E (x) =

∫ 2π
0
dy
√
1+x2 sin2 y.

As ak→ 0, l0→ λ, as expected. Due to the inextensibility
of the paper model, the mapping from the originally flat
sheet to a wrinkled shape is isometric and thus length-
preserving. The perimeter of the circle with radius r in
the new surface Σ is thus C (r) = 2πl (r)≡ 2πr+ rα, where
l(r) = l0kr/ (2π). Here α is interpreted as the angle of the
inserted wedge:

α= 2π

(
l0

λ
− 1
)
> 0 . (1)

The positive sign of α indicates that concentric wrinkles
are equivalent to inserting a wedge in redefining the
metric. The inserted wedge buckles a flat disk to a saddle-
like shape with negative curvature in three-dimensional
Euclidean space [11], as do concentric wrinkles. These
two ways of introducing negative curvature —either
inserting material or imposing concentric wrinkles— are
related via the expression for C(r). The first method
changes the perimeter without changing the radius, while
it is the opposite for the second method. By expanding
the expression for l0 in terms of small x, one finds
C(r) = 2πr+ π3 k

2x2r3+O (x). By inserting this into
KG = limr→0 3 [2πr−C (r)] /(πr3) [12], the curvature at
the center of the surface Σ is found to be

KG =−a2kk4. (2)

Equation (2) shows that increasing the amplitude or the
frequency of the concentric wrinkles results in greater
curvature of the surface, with greater sensitivity to the
frequency. The curvature of the background geometry
determines the amplitude and wavelength of the concen-
tric wrinkles according to the product a2kk

4.
It is worth mentioning that by increasing (“growing”)

the radius of a flat disk while keeping the perimeter invari-
ant, we get a positive curvature surface, which may buckle

Fig. 2: (Color online) A branch-like fold pattern appears on a
flat paper disk by wrapping it on a negative-curvature surface
(left figures). The folds in the red rectangles are equivalent
to removing eye-like areas as shown in the upper right figure.
The buckled shape (the lower right figure; the leaf-like object
therein is the removed material) of a flat disk due to an isolated
fold is obtained by “closing the eye”.

to various patterns depending on its elasticity. This elas-
ticity paradigm has been used to explain the phyllotactic
patterns of Fibonacci-like sequences on plants [13]. Wrin-
kles of concentric squares can buckle a square piece of
paper to a beautiful hyperbolic parabola with negative
curvature as shown in fig. 1(b). Prescribed metrics via the
design of wrinkles can even transform a flat piece of paper
into a rich variety of structures, including the DNA double
helix [14].
In addition to wrinkles, localized folds can also change

the metric [15]. By attaching a paper disk to a negative-
curvature surface one finds typical branch-like fold
patterns as shown in fig. 2 (the left two photos are the
same deformed paper disk from different perspectives).
A light beam directly illuminates the paper disk from
above, so the folds are seen clearly as black curves. The
folds on the sheet can be roughly classified as principal
ones (in red rectangles) and fine ones (barely seen above
the red rectangle in the left lower figure). Their role in
“screening” curvature is similar to topological defects in
crystalline order on a curved surface [16]. The feature
of the observed folds is that the amount of the folded
material decreases towards their ends. Similar folds are
also found in the interior side of a bent tube where the
curvature is negative [17]. We analyze an isolated fold to
illustrate that it is compatible with negative-curvature
geometry, which is analogous to the compatibility of a
seven-fold disclination with negative-curvature geometry.
The effect of such folds is to remove an eye-like area from
a flat disk. The buckled shape (see the lower right figure
in fig. 2) due to the fold, or equivalently the removal of
an eye-like area, is obtained by “closing the eye”. The
curvature of the buckled shape is negative; the disk curves
up along the fold and curves down along the orthogonal
direction. The removal of an eye-like area is equivalent to
inserting a wedge, because more material is removed at
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the center than on the edge. The profile of the eye-like fold
can be determined by the curvature of the background
geometry. The perimeter of a circle with geodesic radius
r on a disk with an eye-like area removed is estimated as
C(r)≈ 2πr+4 (h (0)−h (r)), where 2h (r) is the width
of a fold. For a small-sized fold (in comparison with√
1/ |KG|), one finds h (r) = h (0)+ π

12KGr
3 by inserting

C (r) into the expression for the Gaussian curvature.
From h (r=L/2) = 0, we see that the length of the fold is

controlled by the curvature according to L= 2(12h(0)
π|KG| )

1/3.

In contrast, it is interesting to note that reversed eye-like
folds are found in one’s palms. It seems that the two main
lines —head line and heart line following the terminology
of palmistry— are compatible with positive curvatures as
the width of these lines increases from the center to the
edge of a palm.
We now examine the transition between wrinkle and

fold patterns. In the regime of large surface tension,
the ground state of an elasto-capillary system is domi-
nated by the surface energy difference before and
after a planar sheet is attached to the liquid inter-
face: ∆F = σLAAsheet+σLSAcoverage−σLAAsubstrate =
−σLSAcoverage+const. σIJ is the surface tension between
phases I and J with L, A, and S standing for liquid, air,
and elastic sheet, respectively. Acoverage is the area of
the liquid substrate occupied by the elastic sheet, which
is smaller than the area of the sheet Asheet due to its
deformation. Asubstrate is the sum of the occupied and
unoccupied substrate areas, which is a constant. The
surface energy turns out to depend only on Acoverage;
the larger it is, the smaller the energy is. Unlike a planar
sheet on a positive curvature surface, the deformation
at the edge of a planar sheet on a negative-curvature
surface may be ignored. Therefore, the optimal contour
shape of a deformed sheet on the liquid substrate is the
one that maximizes the coverage area while keeping the
perimeter fixed. This is exactly the classical isoperimetric
problem, in this case on a negative-curvature surface. For
constant-curvature surfaces, the classical isoperimetric
solution in the Euclidean plane is also valid with the
circle in E2 being replaced by a geodesic circle [18]. On
a general surface with varying negative curvature, there
is no exact mathematical result available. The physical
picture, however, is rather interesting: a deformed sheet
fully attached to a curved liquid substrate will migrate
to the region where it can extend as far as possible to
maximize the contact area; the driving forces are the
capillary force and the release of the bending energy in
this curvature-driven migration process.
In order to further explore the deformation patterns

we have performed numerical simulations of a thin elastic
sheet adhering to a substrate with negative curvature. For
an isotropic material the stretching and bending energies
are given as [19]

Es =
t

2

∫
dA

E

1+ ν

(
ν

1− ν u
α
αu
β
β +u

β
αu
α
β

)
, (3)

Eb =
t3

24

∫
dA

E

1+ ν

(
ν

1− ν b
α
αb
β
β + b

β
αb
α
β

)
. (4)

Here α, β ∈ {x, y}, E is the three-dimensional Young’s
modulus and Y =Et with t being the sheet thickness;
uαβ =

1
2

(
gαβ − gαβ

)
is the strain tensor with gαβ(gαβ)

being the metric tensor of the reference (deformed) state.
The reference metric is assumed to be flat, i.e., gαβ = δαβ .

bαβ is the second fundamental form [20], dA=
√|ḡ|dxdy

is the area element and ν is Poisson’s ratio. Finally,
uβα = g

βγuαγ and b
β
α = g

βγbαγ . With the mean curva-
ture H ≡ 12bαα and the Gaussian curvature KG ≡ det

(
bβα
)
,

Eb =
∫
dAκ

(
2H2− (1− ν)KG

)
, where the bending rigid-

ity is κ= t3

12
E

(1−ν2) . Since the deformations of the sheet do
not change its topology, the Gauss-Bonnet theorem [20]
ensures that

∫
dAKG is constant and the Gaussian curva-

ture term can be omitted.
We find the relaxed shapes of the sheet by performing

simulated annealing Monte Carlo (MC) simulations of
a discrete triangular mesh. The discrete form of the
stretching energy, eq. (3), is [21,22]

Edis.s =
Y

8 (1+ ν)

∑
T

(
ν

1− ν
(
TrF̂
)2
+TrF̂ 2

)
AT , (5)

where F̂ = ĝ
−1
ĝ− Î, AT is a mesh triangle area, and

the sum is carried out over all triangles. ĝ and ĝ are
the discrete counterparts of the reference and actual
metric tensors, respectively, whose elements are the scalar
products of the two vectors spanning each triangle before
and after the deformation. By assuming that the sheet has
no spontaneous curvature, the bending energy (eq. (4)) of
the discrete mesh is [23,24]

Edis.b = 2κ
∑
i

(
(∇riAi) ·Ni
Ni ·Ni

)2
Ai, (6)

where ∇ri is the gradient with respect to the position of
vertex i and the sum is over all vertices. Ai =

1
3

∑
T∈Ωi AT

is the vertex area, with Ωi being the vertex “star”,
i.e., the set of all triangles that share vertex i. AT =
1
2 |(r(T )j − ri)× (r(T )k − ri)|, where ri, r(T )j and r

(T )
k are the

coordinate vectors of the vertices of T . We omitted (T ) in
the superscript of vector ri since it is shared by all T ∈Ωi.
Ni =∇riVi is a volume gradient, with the volume [25] Vi =
1
6 |ri ·

∑
T (r

(T )
j × r(T )k )|. The sheet is assumed to adhere to

the substrate via a potential, Eadh. =
1
2γ
∑
i d
2
iAi, where

di is the shortest Euclidean distance between the vertex i
and the adhering surface.
The surface mesh with ≈ 2× 104 triangles was gener-

ated by constructing a Delaunay triangulation [26] of
≈104 randomly but evenly distributed points on a disk of
radiusR≈ 100a0, where a0 is the average distance between
two neighboring points. The initial state for each simu-
lation was constructed by deforming the planar mesh to
perfectly comply with a prescribed shape of the substrate,
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Fig. 3: (Color online) The phase diagram of a deformed sheet
on a negative-curvature surface, z (x, y) = αx2−βy2. Wrinkles
(squares) on the sheet occur near the isotropic region (α/β ≈ 1)
while folds (triangles) are found in the highly anisotropic
regions (α/β far from unity). For very small α and β the sheet is
compliant with the adhering surface. This region is designated
as smooth (circles). Filled symbols indicate parameters for
which simulations were performed. The phase diagram is
symmetric with respect to the α= β line. Mirror images of
the simulated points are represented as open symbols.

modeled as a hyperbolic paraboloid and parametrized
as z (x, y) = αx2−βy2. A deformation pattern typically
emerged within the first 5 · 104 MC sweeps and was further
relaxed for an additional 2.5× 105 sweeps. In all simu-
lations the energy scale is set by the bending rigidity κ
and we set Y = 103κ/a20 (corresponding to the thickness
t≈ 0.03a0), γ = 10κ/a20, and ν = 1/3.
In fig. 3 we show a phase diagram of the wrin-

kle and fold patterns for α, β ∈ [0, 0.5], measured in
units of a−10 . We note that the Gaussian curvature
of a hyperbolic paraboloid surface is KG (x, y) =

−4αβ/ (1+4x2α2+4y2β2)2 and has a maximally nega-
tive KmaxG =−4αβ at x= y= 0. For small values of
α, β � 0.2a−10 the Gaussian curvature is very small,
|KG|� 0.15a−20 and the strong adhesion forces prevent
the sheet from deforming; instead it remains smooth
and perfectly compliant with the substrate. As α and
β increase two distinct deformed states form, folds and
wrinkles. These can be distinguished by the isometry
condition as follows. The inextensibility of a sheet sets
an upper limit 2R, the diameter of the planar sheet, as
the maximal geodesic distance between two arbitrary
points on a sheet contour. If the determined sheet contour
has the maximum geodesic diameter equal to (smaller
than) 2R, then the sheet is recognized as having folds
(wrinkles). An isotropic Gaussian curvature (α= β,

-4 4 -7 7

(a) (b)

HH

Fig. 4: (Color online) Snapshots of the relaxed conformation
of a sheet adhering to a negative-curvature substrate modeled
as a hyperbolic paraboloid surface, z (x, y) = αx2−βy2. For
a substrate with a highly anisotropic shape (α= 0.1a−10 , β =
0.5a−10 ) one observes folds (a); sheets adhering to an isotropic
substrate (α= β = 0.5a−10 ) develop wrinkles (b). The mean
curvature, H, is measured in units of a−10 .

since KG = f
(
α2x2+β2y2

)
[12]) imposes either isotropic

tangential stretching or isotropic radial compression on
the sheet, which is expected to result in wrinkles. As the
Gaussian curvature grows increasingly anisotropic (the
ratio α/β deviates from unity), the imposed anisotropic
stretching and compression on the sheet are expected to
generate folds which are themselves anisotropic objects.
This shows that wrinkles occur near the isotropic region
while folds arise in the highly anisotropic regions. A typi-
cal configuration with folds is shown in fig. 4(a), while a
typical wrinkle pattern is shown in fig. 4(b). Finally, in the
highly anisotropic case, α� β, KG ≈ 0 and the substrate
is nearly cylindrical; in this case the deformation of the
sheet is nearly isometric and no wrinkles or folds form.
In conclusion, using geometric arguments and numer-

ical simulations of a thin-sheet elastic model we study
the curvature-driven wrinkle/fold patterns of a flat sheet
adhering to a negative-curvature substrate. We analyze
two types of structure, concentric wrinkles and eye-like
folds, that are compatible with negative-curvature liquid
substrates and discuss the transition between these two
states driven by the anisotropy of the background geom-
etry. The ability of wrinkles/folds to deform a plane to a
curved surface may find potential applications. Consider
a flat sheet with a pre-designed wrinkle/fold pattern like
the lines on a palm. By controlling the on/off status of
the wrinkles/folds, a planar sheet can be programmed to
buckle to a desired shape. This may lead to potential appli-
cations in maximizing sunshine harvest by designing the
shape of ultra-thin flexible solar cells [27]. Our study also
sheds light on the reverse problem of attaching a curved
shell to a flat substrate, e.g., the adhesion of a cell on a
flat substrate [28].
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