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We study the shapes of pored membranes within the framework of the Helfrich theory under the

constraints of fixed area and pore size. We show that the mean curvature term leads to a budding-like

structure, while the Gaussian curvature term tends to flatten the membrane near the pore; this is

corroborated by simulation. We propose a scheme to deduce the ratio of the Gaussian rigidity to the

bending rigidity simply by observing the shape of the pored membrane. This ratio is usually difficult to

measure experimentally. In addition, we briefly discuss the stability of a pore by relaxing the constraint

of a fixed pore size and adding the line tension. Finally, the flattening effect due to the Gaussian

curvature as found in studying pored membranes is extended to two-component membranes. We find

that sufficiently high contrast between the components’ Gaussian rigidities leads to budding which is

distinct from that due to the line tension.
1. Introduction

The cell membrane is a complex bilayer sheet consisting of

hundreds of lipid species embedded with numerous surface- and

trans-membrane proteins.1 Its main role is to separate the cell’s

interior from its surroundings and to act as a conduit for

exchanging matter and signaling between the cell and its envi-

ronment. The cell membrane is a dynamic object whose

conformational variations are associated with biological activi-

ties such as cell fission, fusion, and adsorption.2 Most biological

membranes exist in a liquid state where lipid molecules are rather

strongly confined to the bilayer plane but can easily diffuse

laterally within it. Fluidity allows the membrane to dynamically

rearrange its local composition, quickly heals holes, and enables

transmembrane transport besides allowing other metabolic

functions. A substantial portion of the transport through the cell

membrane takes place via pores.3,4 The presence of a pore

changes the topology of a membrane and can significantly

influence its conformations and functions.5 Characterizing the

conformations of closed membranes has been a subject of active

research over the past four decades with numerous experi-

mental6,7 and theoretical8–10 studies.

Despite a high molecular complexity, when the length scale is

large compared to the bilayer thickness and the energy scale is

small compared to the typical intermolecular interactions, the

cell membrane shape can be successfully described by a simple

model proposed by Helfrich nearly forty years ago.11 In his

seminal paper, Helfrich argued that the low-energy large-scale

properties of a liquid membrane can be described in terms of a

free energy that is a quadratic function of the two principal
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curvatures expressed in terms of their two invariants: the mean

curvature and the Gaussian curvature. Within the framework of

the Helfrich theory, various axisymmetric and non-axisymmetric

shapes of closed membranes have been predicted.12,13 In partic-

ular, the longstanding physiological puzzle about the biconcave

shape typical of the red blood cells has been beautifully solved;

the shape of the red blood cells has been understood as the

conformation that minimizes the Helfrich free energy under a set

of prescribed volume and area constraints.14 Many predictions

based on the Helfrich free energy have been observed experi-

mentally.9 For example, the theoretical discovery of the thermal

repulsion between membranes, that is to prevent sticking of cells,

has been confirmed by small angle X-ray diffraction

experiments.11,15

There are various ways to form pores on membranes in vivo

and in vitro. For example, pore-forming toxin proteins exist in a

wide range of organisms including bacteria, fungi, plant and

animal cells.16 By binding at particular sites on a membrane,

toxins can create pores via oligomerizing on the membrane

surface. The pores created by toxin proteins are of limited sizes.

For example, the maximum size of the pore formed by SecYEG

on E. coli is below 2.2–2.4 nm.17 Recent studies have shown that

larger pores can be created on a fluid membrane by detergents18

or submembranous protein talin.5Note that the size of the pore is

controlled by tuning the talin concentration over an appropriate

range.18 The localization of talin mainly along the pore rim, as

observed by fluorescent labelling, is likely responsible for stabi-

lizing the pores. A recent experiment introduced a method to

create pores of about 15 nm on a lipid membrane.19 In a salt-free

catanionic solution, charged pores are produced on membranes

due to the partial segregation of the anionic surfactant in excess.

In this case, the size of a pore can be controlled by tuning the

relative amount of anionic and cationic surfactants and thus the
Soft Matter, 2012, 8, 11613–11619 | 11613
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charges on a pore. The size of a stable pore is determined by the

competition of the line tension energy gR and the electrostatic

self-energy q2/(3R), where g is the line tension, R is the size of the

pore, q is the total charge on the pore and 3 is the dielectric

constant of the medium, such that R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=ðg3Þ

p
: Both the

increase of charge and the decrease of line tension can enlarge a

pore on the membrane.

In this paper, we study howaporemodifies themorphology of a

fluid membrane within the framework of the Helfrich theory. We

discuss the equilibrium solutions of the Helfrich shape equation

for fluid membranes with fixed area and pore size. In experiments

the fixed pore size constraint can be realized by introducing

stabilizing agents as discussed above.We find a budding structure

in pored membranes, dictated by the mean curvature term in the

Helfrich free energy. In studies of the conformation of closed

single-component liquid membranes, the Gaussian curvature

term in the Helfrich free energy can be omitted, as it is a constant

that does not depend on the membrane’s shape. However, this is

no longer the case if pores are present.We show that theGaussian

curvature term can significantly influence the shape of a pored

membrane by imposing a local constraint on the shape of the

membrane near the pore. The Gaussian curvature term tends to

pull themembrane outside a pore to the planewhere the pore loop

lies and themembrane near the pore is flattened. This observation

may lead to a simple method to fabricate polyhedral buckled

membranes by manipulating the size and position of the pores. In

addition, we propose a scheme to find the ratio of the Gaussian

rigidity and the bending rigidity from the shape of a pored

membrane. This ratio is usually difficult to measure experimen-

tally.20 The proposed scheme successfully passes the test on a

poredmembrane generated by Surface Evolver,21,22 and is applied

in an experimental case. Furthermore, we briefly discuss the

stability of a pore on a membrane by relaxing the constraint of

fixed pore size and adding the line tension.We find that a budding

pore may be meta-stable with a very shallow energy barrier and

over a very narrow range of values of line tension. Therefore,

stabilizing agents like talin proteins used in the experiment of ref. 5

are essential for a stable pore on fluid membranes. Finally, the

flattening effect due to the Gaussian curvature as found in

studying pored membranes is extended to two-component

membranes.Multicomponentmembranes can have awide variety

ofmorphologies, as has been recently discussed for both liquid23,24

andpolymerizedmembranes.25–27Wefind that the flattening effect

due to the Gaussian curvature can induce budding in two-

component membranes when there is sufficiently high contrast

between the components’Gaussian rigidities. This is recognized as

a domain-induced budding, but via a mechanism that is distinct

from the conventional line tension driven budding.28,29
Fig. 1 The mean curvature term in eqn (1) gives rise to a budding pore

(right) instead of making a membrane spherical everywhere (left). The red

line represents the opening of the membrane.
2. Model

The bending energy of a fluid membrane is modeled by the

Helfrich free energy:11

E ¼ 1

2
k

ð
ð2HÞ2dAþ kG

ð
KGdA; (1)

where k (�10kBT)
30 and kG are the bending rigidity and the

Gaussian rigidity, respectively. The mean curvature 2H ¼ 1/R1 +

1/R2 and the Gaussian curvature KG ¼ 1/(R1R2), where R1 and
11614 | Soft Matter, 2012, 8, 11613–11619
R2 are the radii of principal curvatures. For real membranes,

k > 0 and kG < 0.31 Note that in eqn (1) we have assumed that the

spontaneous curvature H0 ¼ 0, as is the case if there is no

asymmetry with respect to the middle surface of the bilayer. The

negative sign of the Gaussian rigidity indicates that it favors

lower genus surfaces.32 For example, without considering the

mean curvature term, a spherical membrane is more stable than a

toroidal membrane; the integrals of the Gaussian curvature for

sphere and torus are 4p and zero, respectively.

According to the Gauss–Bonnet theorem, the integral of the

Gaussian curvature over a manifold M is related to the integral

of the geodesic curvature kg along the boundary of the manifold

vM by ð
M

dAKG ¼ 2pcðMÞ � #
vM

kgdl (2)

where c(M) is the Euler characteristic of the manifoldM.32 For a

closed manifold M without pores, the geodesic curvature term

vanishes and the integral of the Gaussian curvature becomes a

constant. Therefore, kG plays no role for a topologically spher-

ical membrane. However, kG becomes important if a pore is

introduced into a membrane to change its topology.32 In fact, we

find that even without considering the Gaussian curvature term

in the Helfrich free energy, a pore on a membrane can induce an

interesting budding structure.

3. Results and discussion

3.1. Single pore

By exclusively considering the mean curvature term in the Hel-

frich free energy (eqn (1)), we analyze how the morphology of a

topologically spherical membrane is influenced by a pore. Based

on the intuition about closed membranes, one might guess that a

punctured membrane would take a spherical shape everywhere

except at the pore for minimizing the mean curvature term in the

Helfrich free energy, as in Fig. 1(a). Numerical experiments

performed with Surface Evolver,21,22 however, show that a

budding pore appears, as in Fig. 2(a). It is thus natural to ask:

why does budding of the pore appear? How does such a

conformation minimize the integral of the squared mean curva-

ture? To address these questions, we compare the energies of the

two shapes shown in Fig. 1(a) and (b). In order to minimize the

integral of the squared mean curvature, the neck prefers to being

a minimal surface with a vanishing mean curvature. A catenoid is

the only minimal surface with rotational symmetry.33
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 The ground state shapes of a pored membrane generated by Surface Evolver. The red line represents the opening of the membrane. The size of

the pore is fixed. In (a) kG/k ¼ 0 and in (b) k ¼ 2 and kG ¼ �1.5. The comparison of (a) and (b) shows that the mean curvature term in the Helfrich free

energy leads to a budding pore, while the Gaussian curvature term tends to flatten the membrane near the pore. In (a), measured by the radius of the

pore, the radius of the sphere R z 4.95, and the longitudinal size of the budding pore L z 1.22, which agrees well with our prediction (see eqn (4)). (c)

The shape of a pored fluid membrane from the experiment whose radius is about 1 mm. The pore is created by protein talin.5 Copyright (1998) National

Academy of Science, USA.
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Consequently, the shape shown in Fig. 2(a) is, to first approxi-

mation, composed of a catenoid and part of a sphere (empha-

sized by the purple oval in Fig. 2(a)). The integrals of the squared

mean curvature of the two shapes in Fig. 1 are calculated as:

Ea ¼ p

2
ð1þ cos qÞ and Eb ¼ p

2
ð1þ cos q

0 Þ; where the angles q

and q0 are defined in Fig. 1. Note that the bending energy is

independent of the radius of the sphere, as the integral of the

squared mean curvature is a scale invariant.8 Since q0 > q and

Eb < Ea, a budding pore is preferred. A theoretical model based

on the boundary layer method shows that catenoidal necks

between two asymptotically flat parallel membranes (a wormhole

like structure, see Fig. 3) interact like a gas of free particles with a

hard-core repulsion.7 The repulsion between necks comes from

their overlap as they approach each other, which increases the

bending energy of the system. It is analogous to the capillary

interaction between particles floating or immersing on a liquid

interface; their interaction originates from the overlap of the

capillary deformations near particles.34 Considering that the

budding pore structure is half of the wormhole like structure, we

expect that these budding pores also repel each other on the

membrane as they approach.

We further calculate the longitudinal size L of a budding pore,

as defined in Fig. 1(b). We choose an x–y coordinate system such

that the x-axis is along the solid red line in Fig. 1(b) and the y-

axis is along the symmetric axis of the membrane. The shape of

the neck is characterized by x(y) ¼ rcosh y, where r is the radius

of the waist of the catenoid. By assuming that the boundary of

the pore falls on the waist of the catenoid, we obtain the

expression for the angle a between the x-axis and the tangent
Fig. 3 The necks between two asymptotically flat parallel membranes

repel each other as they approach; their overlap increases the bending

energy of the system.

This journal is ª The Royal Society of Chemistry 2012
vector at the connecting circle of catenoid and sphere: cot a ¼
sinh(L/r). On the other hand, a geometric argument leads to the

relationship between the radiusR of the sphere and the size of the

pore L as Rsin a ¼ rcosh(L/r). From these two expressions, we

finally have

R ¼ r cosh2

�
L

r

�
; (3)

where r is the radius of the pore. The dependence of the radius R

of sphere on the longitudinal size L of the budding pore is plotted

in Fig. 4. Measured in units of the radius of the pore, L increases

from 1.4 to 1.8 as R increases from 5 to 10. Budding of a pore is

more obvious in a bigger membrane. For the shape generated by

Surface Evolver as shown in Fig. 2(a), we measure R ¼ 4.95 and

L z 1.22 which is close to our prediction L ¼ 1.4. The deviation

comes from the assumption that the pore boundary falls on the

waist of the catenoid, which is not precisely the case in Fig. 2(a).

For very large values ofR, from eqn (3), the longitudinal size L of

the budding pore scales as L � 1

2
ln R: The logarithm function

comes from the exponential growth of the catenoidal neck from

its waist.
Fig. 4 Sphere radius, R, as a function of the longitudinal size L of the

budding pore when |kG| � k, as given in eqn (3).

Soft Matter, 2012, 8, 11613–11619 | 11615
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Fig. 5 (a) The calculation of the geodesic curvature. (b) Possible shapes

of a membrane near a circular pore which is represented by two dots.
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In real fluid membranes, the Gaussian rigidity can contribute

more than 400 kJ mol�1 in topological transformation of a

membrane like creating a pore.20 Theoretical microscopic models

of monolayer fluid membranes show that kG/k ˛ [�1,0].35

Therefore, the Gaussian rigidity can compete with the bending

rigidity for influencing the shape of a pored membrane. In the

following, we study this problem in the light of the Gauss–

Bonnet theorem.

The Gauss–Bonnet theorem (eqn (2)) implies that the integral

of the Gaussian curvature can be maximized by minimizing the

line integral of the geodesic curvature, such that the bending

energy is minimized as kG is negative. Therefore, the Gaussian

curvature term in the Helfrich free energy, which is an integral

over the whole surface, essentially imposes a local constraint on

the shape near the boundary, such that the integral of the

geodesic curvature on the boundary is minimized. The geodesic

curvature kg describes the deviation of a curve away from a

geodesic, a generalization of a straight line in a plane. For

example, the geodesic curvature of a big circle on a sphere is zero,

since it corresponds to a straight line on the spherical geometry.

The geodesic curvature of a curve in a surface is defined in the

following way. Consider a curve ~x(s) being parametrized by the

arc length s, its curvature is ~k ¼ dt̂

ds
; where t̂ ¼ d~x

ds
is the unit

tangent vector of the curve. For a curve on a surface equipped

with the coordinates {~eu,~ev}, the curvature ~k can be projected

along the normal and the tangent plane of the surface:

~k ¼ d~t

ds
¼ ~kn þ ~kg; (4)

where ~kn ¼ (~k)n̂ and ~kg ¼ (~k)TM. ~n is the normal vector pointing

outward; i.e., along the direction of ~eu � ~ev. TM represents the

tangent plane. In the Gauss–Bonnet theorem, the sign of

the geodesic curvature needs to be clarified. kg ¼ ~kg$û, where

û ¼ n̂ � t̂.32 The direction of t̂ is chosen to be along the boundary

of the pore such that the membrane stays on the left hand side of

the boundary.32Under these conventions, the sign of the geodesic

curvature is unambiguously determined.

Using arguments based on the Gauss–Bonnet theorem, we

show that the Gaussian curvature term in the Helfrich free

energy tends to flatten the membrane near the pore. We first

calculate the geodesic curvatures on the circular boundaries in

the cut unit sphere as in Fig. 5(a). For the upper bigger part of the

cut sphere, the tangent vector on the boundary circle is clockwise

seen from below, so the sphere is on the left hand side walking

along the boundary circle. The other tangent vector û points

upward, as shown in Fig. 5(a), because the normal vector points

outward. The curvature vector ~k of the boundary circle and the

vector û make an obtuse angle, so that the geodesic curvature at

any point on the boundary circle is negative

kg ¼ ~k$û ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

r
; where r is the radius of the boundary

circle. A similar argument shows that the sign of the geodesic

curvature at the boundary of the lower smaller part of the cut

sphere in Fig. 5(a) is positive. Fig. 5(b) lists all the possible shapes

around a symmetric circular pore of radius r and the geodesic

curvature for each case. The first shape has the minimum

geodesic curvature, so it is preferred to other shapes. Therefore,

the Gaussian curvature term in the Helfrich free energy tends to
11616 | Soft Matter, 2012, 8, 11613–11619
pull the membrane outside a pore to the plane where the pore

loop lies. This conclusion also holds for multi-pored membranes.

From the aspect of the Gauss–Bonnet theorem, the flattening

effect of the Gaussian curvature term is disclosed. It also sheds

light on the numerically generated flat surface in the vicinity of a

pore on a membrane when the Gaussian rigidity is tuned to be

negative.36

We use Surface Evolver to generate the ground state shape of a

pored membrane for exploring the flattening effect caused by the

Gaussian curvature term in the Helfrich free energy. Surface

Evolver evolves a surface toward a local minimum energy shape

by calculating the force on each vertex from the gradient of the

total energy, which gives the direction of motion in the

membrane’s configuration space.22 Therefore, the method to

generate a ground state shape by Surface Evolver is distinct from

that used in ref. 36, where the equilibrium shapes are produced

from solving the shape equation. The result is shown in Fig. 2(b)

for k¼ 2 and kG¼�1.5. A comparison of Fig. 2(a) and (b) shows

that the Gaussian rigidity does play a role in regulating the shape

of a pored membrane. The mean curvature term prefers to form a

neck while the Gaussian curvature term tends to flatten the

membrane near the pore. A dark-field micrograph of an experi-

ment on a liposome with a pore whose size (measured by the

radius of the spherical body) is similar to that in Fig. 2(b) is

shown in Fig. 2(c).5 The similarity of the shapes in Fig. 2(b) and

(c) suggests that the experimental shape also results from the

competition of the mean curvature and the Gaussian curvature

terms.

The shape of the pore, as the result of the competition of the

mean curvature and the Gaussian curvature terms, encodes the

information about the ratio kG/k, as has been discussed in ref. 31,

37 and 38. Note that the absolute values of these rigidities cannot

be derived from the shape, because the shape is determined only

by their ratio. Here, we propose a scheme to determine the

quantitative relationship between the shape of the pore and

the ratio kG/k. Since the Gaussian curvature term flattens the
This journal is ª The Royal Society of Chemistry 2012
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membrane near a pore, we approximate the shape in Fig. 2(b) as

a combination of a circular truncated cone (the section between

the red line and the purple line) and a spherical crown. The

whole shape is characterized by three parameters r, A, and q,

where r is the radius of the pore, A is the area of the membrane,

and q is defined in Fig. 2(b), which is referred to as the pore angle.

The pore angle reflects the flatness of the membrane

near the pore. The total bending energy is

Ebðr;A; q; kG=kÞ ¼ 1

2
k

ð
2H2dAþ kG2pð1þ cos qÞ: The mean

curvature for sphere is 2H ¼ 2/R and for cone 2H ¼ cos2 d

zsin d
;

where 2d is the cone angle and z is the vertical distance to the tip

of the cone. In Eb(q,r,A;kG/k), by specifying r, A (as measured

from a given shape) and kG/k, we can find an optimal pore angle q

that minimizes the energy. We tune the ratio kG/k for fitting the

optimal pore angle to the measured one. The ratio kG/k is thus

found from a given shape. This scheme has its significance in

application, considering that the ratio kG/k is usually very diffi-

cult to measure from experiments where only a few results are

available.20 On the other hand, the scheme may be generalized to

other systems, where the direct measurement of the elastic

moduli is difficult, like for living materials.39,40

We test the above method for finding the ratio kG/k of the

shape shown in Fig. 2(b). The radius of the pore is defined as

unity, so R¼ 2.3 and the area is calculated to be 62.8. By varying

the ratio kG/k, we get different optimal pore angles, as shown in

Fig. 6(a). It shows that the membrane near the pore becomes

more and more flatten (q decreases) with stronger flattening

effect by the Gaussian curvature term (the absolute value of kG/k

increases). For fitting the optimal angle to the measured pore

angle 47�, the ratio is required to be kG/k ¼ �0.75, which is

exactly the one we use in Surface Evolver to generate the shape in

Fig. 2(b). The validity of the scheme for obtaining the ratio kG/k

is thus substantiated.

Now we apply this scheme to the shape in Fig. 2(c) for iden-

tifying the ratio kG/k of the liposome used in the experiment of

ref. 5. From the experimental shape shown in Fig. 2(c), we
Fig. 6 The plot of optimal pore angle q vs. the ratio of kG/k. The area

was measured to be 62.8 from the shape shown in Fig. 2(b) where the

fixed radius of the pore is defined to be unity. The membrane near the

pore becomes more and more flatten (q decreases) with the increase of

the absolute value of kG/k. For a real fluid membrane, kG/k ˛ [�1,0],

where more points are plotted.

This journal is ª The Royal Society of Chemistry 2012
measure R ¼ 2.25, pore angle q ¼ 55� and calculate the area

A ¼ 66. It is found that the observed pore angle can be fitted by

using kG/k ¼ �0.45. Therefore, the value of the ratio kG/k of the

liposome in the experiment of ref. 5 was estimated to be �0.45,

which was of the same order as the experimentally known values

for typical liposomes.20
3.2. Stability of a pore with line tension

Finally, we briefly discuss the consequences of relaxing the

constraint of fixed pore size by introducing the line energy, g #
v

dl

for the pore.47 We explore the stability of a budding pore by

working in the regime of |kG| � k where the formation of a

budding structure is expected. The pored membrane is assumed

to take the shape of a spherical cap plus a catenoid, and the

boundary of the pore is approximated as falling on the waist of

the catenoid. The energy is thus obtained as

E ¼ pk

4
ð1þ cos qÞ þ g2prþ kG2p; where q is the pore angle

and r is the radius of the pore. The area of the pore membrane is

fixed: A¼ pr(2L + rsinh(2L/r)) + 2pR2(1 + cos q), where L is the

height of the pore and R is the radius of the spherical cap (see

Fig. 1). L and R are related by eqn (3). For a given set of values

for k, kG and A, the energy is a function of r with the free

parameter g. Fig. 7 shows the plot of the energy versus r for

pored membranes with budding (black curve) and flat (blue

curve) pores. The shape of a vesicle with flat pores is approxi-

mated as a spherical cap.47 Fig. 7 shows that for a specified value

for the line tension the pore vanishes in both cases in the ground

state. We notice that a budding pore has a meta-stable state at

about r ¼ 0.43. However, this meta-stable state may be hard to

see in an experiment, because the depth of the energy barrier

(�0.01k) is very shallow and the range of values of the line
Fig. 7 The plot of energy versus the radius of the pore r for membranes

with budding (black curve) and flat (blue curve) pores. The two curves

coincide at r ¼ ffiffiffi
2

p
=2z0:7: It corresponds to a hemisphere beyond which

the ansatz shape of a spherical cap plus catenoid does not apply. g ¼
0.2049. k ¼ 1, kG ¼ 0, A ¼ p. The radius of the pore r is measured in the

unit of the radius r0 of the circular disk whose area is fixed in the

evolution. The meta-stable pore has r¼ 0.43, so the corresponding radius

of the spherical cap is R ¼ 0.50, L ¼ 0.17, and q ¼ 68 degrees.
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Fig. 8 The schematic plot of budding on a two-component membrane.
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tension where a meta-stable pore exists is very narrow: 0.19 (

r0g/k( 0.22, where r0 is the radius of the circular disk as defined

in the caption of Fig. 7. We perform a series of simulations using

Surface Evolver by adding the line energy to the pore. We were

not able to observe a stable pore, i.e., the pore either shrinks and

closes up (for large values of line tension) or it fully opens and the

membrane takes a form of a flat disk (for small line tension).

While our numerical results cannot exclude the possibility of the

existence of a stable pore within a certain parameter region, they

suggest that even if such a region exists, it is very narrow.

Therefore, stabilizing agents like talin proteins used in the

experiment of ref. 5 are essential for a stable pore on fluid

membranes.

The red line represents the boundary of the two domains. |k1G| > |k2G|.

Fig. 9 The plot of the asphericity of a two-component membrane vs. the

ratio of the twoGaussian rigidities in the two-component membrane with

15% of the purple (domain 1) component. Budding becomes more

obvious with the increase of the inhomogeneity of the membrane in

Gaussian rigidity.
3.3. Two-component membrane

So far, we have studied the effects of the mean curvature and the

Gaussian curvature terms in the Helfrich free energy on the shape

of pored membranes. It is interesting to extend the flattening

effect due to the Gaussian curvature to two-component

membranes where the components’ Gaussian rigidities are

different. A pored membrane may be regarded as a limiting case

of a two-component membrane, where one phase has vanishing

bending and Gaussian rigidities. The effect of the inhomogeneity

of the Gaussian rigidity in multicomponent membranes has been

extensively discussed.23,31,37,41,42 Monte Carlo simulations show

that a difference in the Gaussian rigidity of a two-component

membrane can develop and stabilize multi-domain morphol-

ogies.23,41,42 An explicit analytical expression for the shapes of

axisymmetric closed membranes with multiple domains was

derived in ref. 37. However, the influence of the inhomogeneity of

the Gaussian curvature on the local shape near the phase

boundary was not explicitly discussed. In this subsection, we

study how the same Gaussian-curvature effect that leads to the

flattening near a pore can result in the onset of budding in a

multicomponent membrane, if the Gaussian rigidities of the

components are different. For simplicity, consider a two-

component spherical membrane with Gaussian rigidities k(1)G and

k(2)G for domain 1 and domain 2 of the sphere, respectively (see

Fig. 8). Suppose DkG ¼ k(2)G � k(1)G > 0 without loss of generality.

The integral of the Gaussian curvature over the whole surface

is k
ð1Þ
G

Ð
1
KGdAþ k

ð2Þ
G

Ð
2
KGdA ¼ 2pðkð1ÞG þ k

ð2Þ
G Þ � DkG#2kgdl ¼

2pðkð1ÞG þ k
ð2Þ
G Þ þ DkG#1kgdl; where the subscript numbers in the

line integrals represent the boundary of the respective domains.

The second and third expressions indicate that the geodesic

curvature on the boundary of domain 2 (with larger Gaussian

rigidity) prefers to increase and that on the boundary of domain

1 (with smaller Gaussian rigidity) prefers to decrease for lowering

the Helfrich free energy. The effect is similar to imposing a

‘‘torque’’ rotating outward the original shape near the boundary

loop (the dashed lines in Fig. 8).

In order to confirm the proposed budding scenario, we per-

formed a series of simulated annealing Monte Carlo simulations

for a triangulated two-component membrane. Components were

assigned to the vertices of the discrete mesh and liquid character

of the membrane is ensured by using a dynamical triangulation;

i.e., we employed a Monte Carlo move in which an edge shared

by two triangles was flipped to connect two vertices that were
11618 | Soft Matter, 2012, 8, 11613–11619
previously not connected.8,43 The discrete version of the mean

curvature term in the Helfrich free energy was calculated

following a prescription introduced by Gompper and Kroll,44

while the Gaussian curvature term was treated according to

Meyer et al.45 For a membrane with about 2 � 103 vertices

typically 105 Monte Carlo sweeps with a linear cooling protocol

were sufficient to obtain low energy structures, with a sweep

defined as an attempted move of each vertex followed by an

attempted flip of each edge.

The result is shown in Fig. 9. In the simulation, k ¼ 2, k(2)G ¼
�0.5 and k(1)G /k(2)G increases from unity to 6. The deviation from a

spherical shape is characterized by the asphericityD
ðDRÞ2

E
hRi2 ¼ 1

N

XN

i¼1

ðRi � hRiÞ2
hRi2 ; where Ri is the radial distance

of vertex i and hRi ¼ 1

N

XN

i¼1
Ri is the mean radius.46 With the

increasing inhomogeneity in the Gaussian rigidity, the ‘‘torque’’

imposed on the phase boundary becomes stronger and budding

of the smaller component becomes more obvious as shown in

Fig. 9. This budding mechanism arising from an inhomogeneity

in the Gaussian rigidity is distinct from the usual mechanism due

to line tension. It sheds light on understanding shapes of
This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c2sm26608c


D
ow

nl
oa

de
d 

by
 N

or
th

w
es

te
rn

 U
ni

ve
rs

ity
 o

n 
03

/0
5/

20
13

 2
1:

13
:0

0.
 

Pu
bl

is
he

d 
on

 0
8 

O
ct

ob
er

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2S
M

26
60

8C

View Article Online
multicomponent membranes and provides a novel method to

control the shape of membranes.

4. Conclusions

Our study of shapes of pored membranes of fixed area and pore

size within the framework of the Helfrich theory shows that the

presence of pores can be an important ingredient for generating

various shapes of membranes. Several structures brought by

pores have been disclosed, including the budding pores purely

due to the mean curvature term and the flattening effect due to

the Gaussian curvature term. The latter effect may be used to

fabricate pore-controlled buckled membranes. Furthermore, we

have proposed a method to extract the value of the Gaussian

rigidity of a membrane simply from its shape. This scheme may

be generalized to systems where the elastic moduli are difficult to

measure, like in living materials. In addition, by relaxing the

constraint of a fixed pore size and adding the line tension, we

briefly discuss the stability of a pore and find that a budding pore

may be meta-stable with a very shallow energy barrier within a

narrow range of line tension values. Finally, we extend the flat-

tening effect due to the Gaussian curvature as found in studying

pored membranes to two-component membranes. Theoretical

analysis shows that sufficiently high contrast between the

components’ Gaussian rigidities can lead to budding of a two-

component membrane, which is substantiated by MC

simulations.
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