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Dynamics of vacancies in two-dimensional Lennard-Jones crystals
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Vacancies represent an important class of crystallographic defects, and their behaviors can be strongly coupled
with relevant material properties. In this work, we study the dynamics of generic n-point vacancies in two-
dimensional Lennard-Jones crystals in several thermodynamic states. Simulations reveal the spectrum of distinct,
size-dependent vacancy dynamics, including the nonmonotonously varying diffusive mobilities of one-, two-
and three-point vacancies, and several healing routines of linear vacancies. Specifically, we numerically observe
significantly faster diffusion of the two-point vacancy that can be attributed to its rotational degree of freedom.
The high mobility of the two-point vacancies opens the possibility of doping two-point vacancies into atomic
materials to enhance atomic migration. The rich physics of vacancies revealed in this study may have implications
in the engineering of defects in extensive crystalline materials for desired properties.
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I. INTRODUCTION

Defects naturally occur in almost all crystalline materi-
als [1–4]. Specific defects are artificially introduced in a variety
of industrial materials like silicon crystals, graphenes, and
metals to achieve desired properties [5,6]. Vacancy defects
have received increasing attention in the past decades for
their crucial role in the migration of atoms [7], the melting
and growth of crystals [8–10], the crystallization of DNA-
programmable nanoparticles [11], and even as promising
candidates for achieving quantum tunneling in quantum
solids [12]. Understanding the physics of vacancies would
lay the foundation for the engineering of new materials
at multiple length scales [5,13,14]. However, it is a chal-
lenge to directly track vacancies in three-dimensional atomic
materials [13]. To address this problem, mesoscopic two-
dimensional colloidal crystals serve as an excellent model
system for studying crystallographic defects [13,15–19]. The
spontaneous formation of two-dimensional colloidal crystals
has been directly observed in experiments using either the pure
repulsive electrostatic interaction [13,15,16] or the balance
of the electrohydrodynamic attraction and the electrostatic
repulsion [17]. An n-point vacancy with n missing particles
was created by dragging away n particles with optical tweezers
[13,15,16].

Previous studies mostly focused on the dynamics of small
vacancies with n � 3 at a fixed temperature [13,15–17,20].
The problem of how the vacancy dynamics depends on vacancy
size and temperature is still unclear. In addition, it appears that
the behavior of vacancies is very sensitive to the nature of the
interaction potential through a survey of the energetics [21–24]
and dynamics [25–29] of vacancies in two-dimensional crys-
tals with the Yukawa potential [25,27–29], Gaussian core [30],
the repulsive 1/r3 potential [23], the purely repulsive Weeks-
Chandler-Andersen potential [20], and the Lennard-Jones
potential [21,22]. The generic, formally simple Lennard-Jones
(L-J) potential represents an important form of interaction that
has been extensively used to model a large variety of chemical
and physical bonds [31]. The revealed vacancy physics in the

L-J system is therefore applicable to understanding a host
of vacancy-mediated phenomena in crystalline materials like
crack initiation, the stress-strain relation, and other associated
structural properties of crystals [32]. The examination of
the energetics of vacancies in L-J crystals suggested that a
sufficiently deep valley in the curve of the interaction potential
is essential to support intact vacancies [21,22]. In contrast, the
integrity of vacancies was hardly observed in systems of purely
repulsive particles where the n-point vacancies tend to collapse
into various defect clusters [15,28,33–35]. We therefore expect
a distinct scenario of vacancy dynamics in L-J crystals.

In this work, we perform MD simulations to systematically
study the dynamics of generic n-point vacancies in two-
dimensional L-J crystals at several thermodynamic states.
We will focus on the NPT ensemble with zero external
pressure, while the NAT ensemble will be employed to
study the dependence of the vacancy mobility on the particle
density. The integrity of the one-point vacancy is found to
be well preserved even in its thermally excited hoppings
over the crystal; the super stability of one-point vacancies
is discussed in terms of the underlying topological defect
structures. We numerically observe that the two-point vacancy
has a much higher mobility than the one-point vacancy
despite of its larger size, while the mobility of the three-point
vacancy is significantly reduced. These intriguing phenomena
are discussed in terms of the increased number of vacancy
configurations in the two- and three-point vacancies. The
significantly faster diffusion of the two-point vacancy in
comparison with the one- and three-point vacancies opens the
possibility of doping two-point vacancies into atomic materials
to enhance the efficiency of atoms migration. Simulations also
capture the details of the spontaneous zipping of an initially
open, linear vacancy to form a belt with square lattice ordering
in the hexagonal crystal. Depending on the vacancy length,
this geometrically incompatible beltlike object conforms to
distinct dynamic modes, including the breathing mode, and
the collective modes of uniform translation and rotation. We
finally report that the increasing particle density in L-J crystals
tends to immobilize vacancies. The revealed rich physics
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of vacancies as well as their connection with topological
defects may have implications in the engineering of defects
in extensive crystalline materials.

II. METHOD

We employ the molecular dynamics simulator
LAMMPS [36] to study the vacancy dynamics in
two-dimensional L-J crystals [37]. We first construct a
rectangular two-dimensional hexagonal lattice of N particles
with the periodic boundary condition to mimic an infinitely
large crystal. N = 20 000 unless otherwise specified. The
lattice spacing is the balance distance rm = 21/6σ0 ≈ 1.1225σ0

of the adopted L-J potential V (r) = 4ε0[(σ0/r)12 − (σ0/r)6],
with a cutoff length rcut-off = 2.5σ0. Throughout this work,
the energy (as well as the temperature for the Boltzmann
constant kB = 1) and the length are measured in the units of
σ0 and ε0, respectively. The unit of time is τ0 = σ0(m/ε0)1/2,
where m is the mass of the particle. An n-point vacancy
is created by deleting n particles at desired lattice sites.
The initial temperature of the system is specified by a
Gaussian distribution of velocity over all particles. The
motion of particles is confined in the plane. The trajectory
of motion is obtained by performing time integration on
Nose-Hoover-style non-Hamiltonian equations of motion
which can generate positions and velocities sampled from
the isothermal-isobaric ensemble [37]. The configuration
of particles is updated for every time step �t = 0.005τ0.
We compile C++ codes to perform data analysis, including
the Delaunay triangulation [9] and the identification and
tracking of the vacant sites. To exclude the possible finite size
effect, we also simulate the diffusion of one-point particle at
T = 0.25 in the systems of N = 7199 and N = 12 799, and
compare the numerically measured diffusion coefficients with
the value in the original system of N = 19 999. We find that
the finite size effect can be eliminated at least for N > 12 799.

III. RESULTS AND DISCUSSION

We first study the behaviors of the one-point vacancy.
Simulations show that below the melting temperature the
integrity of the one-point vacancy is well preserved even in

FIG. 1. (Color online) The topological defect structure associ-
ated with the one-point vacancy in a perfect hexagonal lattice (a) and
at finite temperature (b). The red, blue, and black dots represent five-,
seven-, and eight-fold disclinations, respectively. A slight fluctuation
of the particles gives rise to distinct defect motifs. The region of the
vacancy is shadowed in green.
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FIG. 2. (Color online) The mean squared displacement 〈r2〉 vs
time over 20 independent runs in MD simulations. (a) The case of
one-point vacancy. From above to below, T = 0.3, 0.28, and 0.25,
respectively. The slopes are 79.05,48.03, and 19.40 (in the unit of
σ 2

0 /2500τ0). (b) From above to below lists the cases of two-point
(triangles, dotted, red), three-point (dots, solid, black), and one-point
(squares, dashed, green) vacancies, whose slopes are 32.28,10.66,
and 1.11 (in the unit of σ 2

0 /2500τ0), respectively. T = 0.2. The unit
of time is 2500τ0.

its hopping over the crystal lattice. The sixfold symmetry of
the intact one-point vacancy is compatible with the crystal
where it lives. To understand the super stability of the one-
point vacancy supported by the L-J potential, we examine
its topological defect structure which is revealed by the
Delaunay triangulation [9]. The elementary topological defects
in two-dimensional hexagonal lattices are disclinations which
are vertices surrounded by p nearest neighbors with p �= 6.
The disclinations associated with the one-point vacancy in a
perfect hexagonal crystal constitute a necklace of alternating
five- and seven-fold disclinations [see Fig. 1(a)]. This defect
motif transforms with the positional fluctuation of the particles
around the vacant site, as shown in Fig. 1(b). Despite the
thermally driven transfer of topological charges among the
disclinations, the net topological charge around the vacancies
is always zero conforming to the topological requirement [9].

FIG. 3. (Color online) The distance Dpp between two one-point
vacancies vs time at T = 0.25. The three configurations in the insets
are at t = 162, 163, and 168, in the unit of 25τ0. The red, blue,
and black dots represent five-, seven-, and eight-fold disclinations,
respectively.
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FIG. 4. The energy variation when a neighboring particle moves
to fill a vacant site for the case of one-point vacancy (a) and two-point
vacancy (b). The height of the energy barrier is read as 2.69 (a) and
1.68 (b). The lattice spacing is a = rm. The energy and length are
measured in the unit of ε0 and σ0.

Energetically, these topologically neutral, tightly bound defect
“multipoles” impose negligible influence on the stress distri-
bution in the crystal [9,38]. Note that such a bound structure
of defects stably existing in planar geometries can be pulled
apart on a sufficiently curved surface with spatially varying
curvature [39,40]. The energetically favored inseparability of
the associated defect clusters in planar crystals, however, does
not exclude the possibility of their translational motion as a
whole along one of the six symmetric axes of the hexagonal
crystal.

At finite temperature, the one-point vacancy has some
probability to jump to a neighboring lattice point; this
thermally excited process is realized by a neighboring particle
moving in to fill the vacant site. In the energy landscape for
the one-point vacancy over the crystal lattice, every lattice
point corresponds to the bottom of the energy valley. An
energy barrier must be conquered by the one-point vacancy
to escape from the valley. The shape of the energy landscape
resembles that of a hexagonal egg crate. The energy of the
system is degenerate when the one-point vacancy jumps from
one valley to another. The one-point vacancy is numerically
observed to drift away from the origin point. We track the mean
squared displacement 〈r2〉 over a number of independent runs

at different temperatures. Simulations show that the 〈r2〉 − t

curve converges to a straight line with the increase of the
number of simulation runs; it is the signature of diffusion as
well as an indicator of reliable simulations [see Fig. 2(a)]. We
therefore confirm the diffusive nature of the one-point vacancy.

To explore the nature of the diffusive motion of a point
vacancy in the crystal, we propose a random walk model on a
two-dimensional hexagonal lattice. Consider a walker initially
at z = 0 on a complex plane. In the time interval δt , it has
the identical probability pm to jump to one of the six nearest
neighbors, and the probability p0 to stay in the original site.
6pm + p0 = 1. The position of the walker after N steps is

zN =
N∑

j=1

rj exp(iθj ). (1)

For an arbitrary step j , either rj = 0 (the walker does
not move) or rj = � and θj takes one value from
{0,π/3, . . . ,5π/3} with the same probability. It is straightfor-
ward to check that 〈zN 〉 = 0 as expected. At step j , 〈r2

i 〉 = �2 ×
(1 − p0) + 0 × p0 = �2(1 − p0). We assume the statistical
independence between consecutive steps, i.e., 〈rj rk exp(iθj −
θk)〉 can be written as the product of 〈rj exp(iθj )〉 and
〈rk exp(iθk)〉, both of which are zero. By making use of these
equalities, We finally obtain the mean squared displacement

〈|zN |2〉 = (1 − p0)N�2 = 2D′t, (2)

where D′ = (1 − p0)D and D = �2/(2δt). In the parameter
p0 contains the microscopic information about the depth of
the potential well. Equation (2) shows that the stay in the
original site (p0 �= 0) does not change the diffusive nature of
the dynamics of the particle; a nonvanishing p0 only reduces
the particle mobility. The derived mean squared displacement
Eq. (2) also applies for random walk on square lattice and off-
lattice. The diffusive nature of the dynamics of the one-point
vacancy is therefore well captured by the random walk model
on the hexagonal lattice.

FIG. 5. (Color online) The morphologies of the originally horizontally oriented three-point vacancy found in MD simulations during the
temperature range T ∈ (0.1,0.3). The empty blue circles in the upper row indicate the vacant sites. The lower row shows the defect structures
via the Delaunay triangulation. The red, blue, and black dots represent five-, seven-, and eight-fold disclinations, respectively.
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FIG. 6. The scheme to increase the temperature to identify the
critical value Tzip-up at which a linear vacancy is zipped up. The
excellent overlap of the preset temperature variation (solid line with
squares) and the real temperature variation (dashed line with dots) is
an indicator of high-quality simulations. The time is measure in the
unit of 5125τ0.

We proceed to study the case of two-point vacancies.
We first discuss their stability. Simulations show that, at
least during the entire running time for 10 million time
steps, the two-point vacancy can preserve its integrity well
at temperatures below Tsplit ≈ 0.23. The event of the split
of a two-point vacancy is observed only once at T = 0.2
and T = 0.22, respectively. The resulting two one-point
vacancies are then quickly recombined. The frequency of the
split and recombination of the two-point vacancy increases
with temperature. At T = 0.25, for example, the long-time
separation of the vacancy is captured in simulations as shown
in Fig. 3 where Dpp is the separation between the two split
one-point vacancies. From the abscissa in Fig. 3 we read the
duration of the separated state for up to 1 million time steps.
The defect structures at t = 163, 164, and 165 are also shown
in Fig. 3. The elongated ellipse-like defect cluster in the first
inset in Fig. 3 is seen to be torn apart into two topologically
neutral clusters accompanying the split of the two-point
vacancy. The configurations of the split defect clusters keep
transforming in response to the variation of their separation.
The linear 5-8-5 defect in the second inset in Fig. 3 becomes

the 5-7-5-7 defect cluster shown in the last inset while the
total topological charge of these dancing defect clusters always
remains zero. The separation of the two-point vacancy into two
one-point vacancies may be understood thermodynamically.
At sufficiently high temperature T = Tsplit, the split of the
two-point vacancy can occur when the entropic contribution
to the free energy starts to dominate over the energy required
to tear the defect cluster into two.

Now we discuss the dynamics of the two-point vacancy
below the split temperature Tsplit where its integrity is well
preserved. The mobility of the two-point vacancy originates
from the movement of a surrounding particle to fill one of
the two vacant sites. In Fig. 2(b) we plot the mean squared
displacement of the center of the vacancy versus time for
both cases of one-point (squares, dashed, green) and two-point
(triangles, dotted, red) vacancies. We see that the two-point
vacancy also moves diffusively in the crystal, but with a
significantly larger diffusion coefficient. This phenomenon
seems counterintuitive considering the larger size of the
two-point vacancy than the one-point vacancy; the diffusion
coefficient of real particles is inversely proportional to the
particle size according to the Stokes-Einstein relation. In
comparison with the one-point vacancy case, we notice that
the extra vacant site in the two-point vacancy increases the
probability of being occupied by a surrounding particle which
is the origin of the vacancy motion. In other words, the extra
vacant site in the two-point vacancy enhances its activity
of motion and facilitates the diffusion. Notably, a closer
examination reveals that, in addition to moving forward or
backward, the two-point vacancy can also rotate via filling
a vacant site with one of the two neighboring particles on
the central line perpendicular to the vacancy. The rotational
motion is easier due to the lower energy barrier (see Fig. 4). To
quantitatively account for the faster diffusion of the two-point
vacancy in comparison with that of the one-point vacancy, we
estimate the probability Pfill that a vacant site is occupied by
any of the neighboring particles during the time interval δt .

FIG. 7. (Color online) The details of the healing process of a linear vacancy with 21 missing particles revealed in MD simulations at t = 5τ0

(a), 6τ0 (b), 7τ0 (c), and 8τ0 (d). The lower row shows the associated defect structures via the Delaunay triangulation. The red, blue, and black
dots represent five-, seven-, and eight-fold disclinations, respectively. T = 0.01.
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FIG. 8. The linear eight-point vacancy alternately opens and
closes when the temperature is steadily increased from 0.07 (at
t = 20) to 0.078 (at t = 68). The time is measure in units of 5125τ0.

For the one-point vacancy case, Pfill,1 = 6pa , where pa is the
probability for a neighboring particle to jump to fill the vacant
site [see the inset in Fig. 4(a)]. For the two-point vacancy
case, Pfill,2 = 6pa + 4pb, where pb is the probability for the
jump shown in the inset in Fig. 4(b). The factor 4 is for the four
ways for the two middle particles to fill either of the two vacant
sites [see Fig. 4(b)]. pb is significantly larger than pa for the
much lower energy barrier in Fig. 4(b) than that in Fig. 4(a).
To conclude, Pfill,2 � Pfill,1, which indicates the much higher
mobility of the two-point vacancy than that of the one-point
vacancy.

For the three-point vacancy, the plot of 〈r2〉 versus time is
given in Fig. 2 (dots, solid, black). Surprisingly, the mobility of
the three-point vacancy is found to be reduced in comparison
with the two-point vacancy. It may be attributed to the
numerically observed morphological change of the three-point
vacancy shown in Fig. 5. With the gradual increase of temper-
ature from 0.1 to 0.3, the originally frozen rodlike three-point
vacancy becomes deformable (during the observation time of 2
millions time steps). The observed morphologies are presented
in Fig. 5, including the smeared structure (collapsed vacancies)
highlighted in the red triangular box where the vacancies are
“dissolved” in the crystal with a crosslike underlying defect
structure. In real alkali halide crystals, these morphologies of
the three-point vacancy might be distinguishable as different
color centers. It is important to note that these morphological
transformations do not contribute to the displacement of the
three-point vacancy. The activity of motion brought by the
extra vacant sites in the three-point vacancy is partially self-
consumed in these morphological transformations, resulting
in the reduction of the diffusion coefficient in comparison
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FIG. 10. (Color online) The energy variation δE/M in the close
of a linear vacancy. δx0 is the variation of the vacancy width. The
original vacancy width is d = 2 (lower, green), 3 (middle, blue), and
4 (upper, black), measured in the unit of the lattice spacing. The
number of layers of involved particles is n = 100 (a), and n = 106

(b).

with the two-point vacancy. Therefore, the significantly fast
diffusion of the two-point vacancy provides the most efficient
mechanism, among the types of the one-, two- and three-
point vacancies, to realize particles migration in crystalline
materials.

The further increase of the vacancy length leads to distinct
dynamical scenarios. MD simulations allow us to capture
the details of these events. For linear n-point vacancy of
n > 7, simulations show that an originally open linear vacancy
at sufficiently low temperature can be healed via a zip-up
mechanism when the temperature increases to a critical value
Tzip-up. The scheme to increase the temperature is shown
in Fig. 6. A higher Tzip-up is required to heal a shorter
vacancy; Tzip-up increases from 0.001 for n = 11 to 0.07 for
n = 8. Figure 7 shows the details of the healing process of
a linear vacancy at T = 0.01. At temperature above Tzip-up,
the large positional fluctuation of particles that are exposed
to the vacancy is enhanced by the van der Waals attraction
which finally brings these particles together. The resulting
square-lattice belt is characterized by a row of dislocations
(pairs of five-fold and seven-fold disclinations) in Fig. 7(a).

This newly formed, geometrically incompatible square-
lattice belt in the background of the hexagonal lattice is
unstable. The instability modes can be classified into three
categories depending on the length n of the vacancy. For n = 8,
the linear vacancy alternately closes and opens in response to
the increasing temperature; Fig. 8 shows the breathing mode of
an eight-point vacancy when the temperature starts to increase
uniformly from t = 20 (T = 0.07ε0) to t = 68 (T = 0.078ε0).
For n ∈ [9,15], the closed vacancy experiences collective

FIG. 9. (Color online) The translation and rotation of a closed linear 10-point vacancy at T = 0.037 (a), T = 0.056 (b), T = 0.075 (c),
and T = 0.078 (d).
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translation and rotation as a whole without destroying the belt
structure (see Fig. 9). For n larger than 15, a square-lattice
belt tends to be transformed to a hexagonal pattern via a
translation by half of the lattice spacing [see Figs. 7(a)–7(c)].
In this transformation, the row of dislocations along the cut
annihilates, leaving out a pair of dislocations that absorb
all the geometric frustrations. In the process of healing a
linear cut in the two-dimensional L-J crystal, we perform
heuristic calculations at zero temperature and illustrate that
the participation of more layers of surrounding particles can
reduce the associated energy barrier and facilitate the healing
process.

Consider a long linear vacancy of width d and length Mb

in the middle of the two-dimensional crystal. b is the balance
distance of the L-J potential V (r). We calculate the energy
variation when the width shrinks by 2δx0. The n + 1 layers of
particles on each side of the linear vacancy labeling from i = 0
to n are subject to a displacement in the healing of the vacancy.
To simplify the calculation, we only consider the interaction
between neighboring particles. And the horizontal distance
between neighboring particles is assumed to be invariant while
the width of the layer i increases from c = √

3b/2 to c′ =
(ci + δx0)/i. We finally obtain the energy variation δE with
the shrinking of the vacancy width by 2δx0:

δE(δx0)/M = 4n[V (b′) − V (b)] + 2[V (�′) − V (�)]

+ [V (d ′) − V (d)],

where b′ =
√

c′2 + (b/2)2, � = √
b2 + d2, and

�′ =
√

b′2 + (d − 2δx0)2. The plot of δE/M versus the
displacement δx0 in Fig. 10 shows that the participation of
more particles; i.e., larger n can reduce the energy barrier to
close the vacancy and therefore facilitate the healing of the
crystal.

In addition to the thermodynamics states of the L-J crystal
represented by the NPT ensemble, here we also report the
dependence of the one-point vacancy mobility on the particle
density using the NAT ensemble; the particle density is
controlled by changing the area A. Simulations show that the
increase of particle density does not change the integrity of the
one-point vacancy as well as the diffusive nature of the motion.
In contrast, the reduction of the particle density finally leads
to the emergence of holes; they start to scatter in the crystal
when the particle density is below 0.82 corresponding to the
lattice spacing a = 1.18σ0. Figure 11 shows that the diffusion
coefficient is rapidly reduced with the increase of the particle
density. The increasing particle density in L-J crystals tends
to immobilize vacancies. It can be attributed to the significant

FIG. 11. The reduction of the mobility of the one-point vacancy
with the increase of the particle density. D0 is the diffusion coefficient
at the particle density ρ0 = 0.92 corresponding to the lattice spacing
a = rm. N = 19 999. T = 0.3.

increase of the energy barrier for a vacancy to move with the
reduction of the lattice spacing; the decrease of the lattice
spacing by 3% and 5% will lead to the increase of the energy
barrier by 46% and 94%, respectively.

IV. CONCLUSION

In summary, we study the dynamics of n-point vacancies
supported by the two-dimensional Lennard-Jones crystals. The
integrity and the diffusive motion of vacancies are associated
with the basic feature of the local minimum in the L-J
potential. Therefore, the results in this study can provide
conceptual understanding of the formation and dynamics of
vacancies in systems with other types of potentials who also
possess sufficiently deep valley structures. In contrast, under
pure repulsive potentials the vacancies were observed to be
collapsed to dislocations; the diffusion of the dislocaitons
were experimentally observed [13]. In our study, the healing
of a linear vacancy leads to a pair of dislocations, suggesting
the intimate connection between vacancies and topological
defects. The interplay and mutual conversion of vacancies and
topological defects constitutes an interesting theoretical prob-
lem and may provide an extra dimension in the engineering of
defects in extensive crystalline materials [9].
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