About Speakers Contact Us INS
【Workshop postponed, future dates TBD】Workshop on Computational Fluid Dynamics and Uncertainty Quantification

A new type of multi-resolution WENO schemes with increasingly higher order of accuracy for hyperbolic conservation laws


Jun Zhu , Nanjing University of Aeronautics and Astronautics



In this talk, a new type of high-order finite difference and finite volume multi-resolution weighted essentially non-oscillatory (WENO) schemes is presented for solving hyperbolic conservation laws. We only use the information defined on a hierarchy of nested central spatial stencils and do not introduce any equivalent multi-resolution representation. These new WENO schemes use the same large stencils as the classical WENO schemes, could obtain the optimal order of accuracy in smooth regions, and could simultaneously suppress spurious oscillations near discontinuities. The linear weights of such WENO schemes can be any positive numbers on the condition that their sum equals one. This is the first time that a series of unequal-sized hierarchical central spatial stencils are used in designing high-order finite difference and finite volume WENO schemes. These new WENO schemes are simple to construct and can be easily implemented to arbitrary high order of accuracy and in higher dimensions. Benchmark examples are given to demonstrate the robustness and good performance of these new WENO schemes.