In this talk, we are concerned with the Fokker-Planck equations associated with the Nonlinear Noisy Leaky Integrate-and-Fire model for neuron networks. Due to the jump mechanism at the microscopic level, such Fokker-Planck equations are endowed with an unconventional structure: transporting the boundary flux to a specific interior point. In the first part of the talk, we present a conservative and positivity preserving scheme for these Fokker-Planck equations, and we show that in the linear case, the semi-discrete scheme satisfies the discrete relative entropy estimate, which essentially matches the only known long time asymptotic solution property. We also provide extensive numerical tests to verify the scheme properties, and carry out several sets of numerical experiments, including finite-time blowup, convergence to equilibrium and capturing time-period solutions of the variant models. Secondly, we are concerned with a kinetic model for neuron networks. Individual neurons are characterized by their voltage and conductance, the dynamics of the voltage is influenced by the conductance and when the voltage is reaching a threshold, it is immediately reset to a lower value. By exploring a series of toy models, we aim to identify the cause of the emergence of time-periodic solutions in such Fokker-Planck equations.