Lecture 3: Bacterial Swimming

- Introduction
- Bacterial swimming
- Near surface accumulation
- Circular trajectories near interface
- Trapping of swimming bacteria at the air-water interface
Abundance of microbes at the interface

Biofilm: Bacteria mats near Grand Prismatic Spring in Yellowstone

Steps flagellated bacteria take to form biofilm

Jay X Tang, Brown University
Various species of motile bacteria
Bacterial motion driven by rotation of flagellar motor

Swimming direction

Google images
Life cycle of *Caulobactor crescentus*

Yves Brun, Indiana University
From swimming to attachment and adhesion

• **Body parts**
 - Cell body
 - Flagellum
 - Pilus
 - Holdfast
 - Stalk

• **Physics**
 - Swimming hydrodynamics
 - Electrostatics (DLVO)
 (Jucker et. al., 1998; Vigeant et al., App. Env Microbio., 2002; G. Li, LK Tam & J. X. Tang, PNAS, 2008)
A reversible motor powers bacterial swimming

Biochemistry, 3rd Ed., Voet & Voet, John Wiley & Sons

Jay X Tang, Brown University
Uni-flagellated bacteria are efficient swimmers

C. crescentus, movies taken by Guanglai Li, Brown Univ.

Jay X Tang, Brown University
The essential physics of bacterial swimming

• There two essential properties of a bacterial flagellum:
 – A rotary flagellar motor
 – A helical flagellar filament

• The next two slides explain the basic hydrodynamics that enable swimming of flagellated bacteria.
Asymmetric drag and vector analysis

G. Li & J. X. Tang, PRE, 2004;

Biological Physics, by Philip Nelson, 2004, W.H. Freeman

Jay X Tang, Brown University
A helical propeller
Specific topics

• I. Near surfaces accumulation
 – steric confinement & effects of collision
 – near surface drag, lubrication force

• II. Near surface swimming path
 – observation and analysis of circular trajectories
 – coupling between Brownian motion and hydrodynamics

• *** Swimming path at the air/water and oil/water interface
 – trapped at the surface
 – effects of surface tension, surface viscosity, and hydrophobicity

Implications: chemotaxis, bacterial adhesion, differentiation, biofilm formation, etc.

Jay X Tang, Brown University
Topic I. Near surface accumulation of micro-swimmers

Berke et al. 2008, Phys Rev Lett (Lauga)

Rothschild, 1963, Nature

Li & Tang, 2009, Phys Rev Lett
Visualizing how bacteria hit a surface

Ming-ming Wu, Cornell Univ.
What happens after a swimmer hits a surface
How fast to become parallel to surface

Force and torque balance
\[F_p \cos \theta + F_{\parallel} \cos \theta + F_{\perp} \sin \theta = 0 \]
\[\Gamma = 0 \]

Hydrodynamic force and torque

\[
\begin{pmatrix}
F_{\parallel} \\
F_{\perp} \\
\Gamma
\end{pmatrix}
= \begin{pmatrix}
-A_{11} & 0 & 0 \\
0 & -A_{22} & A_{23} \\
0 & A_{32} & -A_{33}
\end{pmatrix}
\begin{pmatrix}
V_{\parallel} \\
V_{\perp} \\
\Omega
\end{pmatrix}
\]

\[V_{\parallel} = V_x \cos \theta \quad V_{\perp} = V_x \sin \theta \]

Results

\[\Omega = \frac{A_{23} \sin \theta \cos \theta}{A_{33}(A_{11} \cos^2 \theta + A_{22} \sin^2 \theta) - A_{23}^2 \sin^2 \theta} \frac{F_p}{F_p} \]
Simulating a microswimmer confined in a thin layer

Simplified Model

Equations of Motion

\[
\Delta y = V \sin \phi \Delta t + \zeta \sqrt{2D_t \Delta t}
\]

\[
\Delta \phi = \zeta \sqrt{2D_r \Delta t}
\]

Simulated Path

Density distribution

Jay X Tang, Brown University
Comparison with Experiments

Guanglai Li & J. X. Tang, Phys Rev Lett, 2009, 103:078101

Jay X Tang, Brown University
Summary of Topic I

Surface sets initial angle

Swimming under the influence of rotational Brownian motion

Jay X Tang, Brown University
Specific Topic II

Near surface swimming path

- Observation and analysis of circular trajectories
- Coupling between Brownian motion and hydrodynamics

Implications on
- chemotaxis
- bacterial adhesion
- differentiation
- biofilm formation

Jay X Tang, Brown University
Swimming in circles near a surface boundary

E. coli Frymier, PNAS 1995

Vibio. alginolyticus Goto, Biophys. 2005

C. crescentus Li, PNAS 2008

H. pylori Celli, PNAS 2009

Jay X Tang, Brown University
The hydrodynamic basis of circular trajectory of near surface swimming
Trajectories Observed by TIRF

\[I_z = I_0 e^{-z/d_p} \]
Force and Torque Analysis

\[
A\begin{pmatrix} U_1 \\ U_2 \\ U_3 \\ \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{pmatrix} + B\begin{pmatrix} U_1 \\ U_2 \\ U_3 \\ \Omega_1 \\ \Omega_2 - \omega \\ \Omega_3 \end{pmatrix} + \begin{pmatrix} 0 \\ F_{\text{dlvo}} \cdot \sin \theta \\ F_{\text{dlvo}} \cdot \cos \theta \\ T_{\text{dlvo}} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ t_1 \\ t_2 \\ t_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}
\]

dlvo (Derjaguin, Landau, Verwey and Overbeek Theory)

Jay X Tang, Brown University
Curvature and Swimming Speed vs Distance—Comparison between Measured and Simulated Data

Measured by TIRF microscopy

Simulated

Jay X Tang, Brown University
Role of Brownian Motion on Foraging

Guanglai Li, LK Tam & J. X. Tang, PNAS, 2008, 105:18355
Open Puzzle: Why are circular path noted only for backward swimmers?

A schematic comparison between forward and backward swimming near a surface

Jay X Tang, Brown University
Summary of Topic II

Brownian motion varies distance to surface

Drag sensitive to distance

Jay X Tang, Brown University
Topic III: Swimming at the air/water interface

Mike Morse, Huang, Li, Maxey & Tang, Biophys. J. (2013), 105:21-28
Analysis of trajectories at the air surface

Two types of swimming trajectories at the liquid/air interface:
~40% straight swimmers & ~60% circular swimmers
Manipulation of swimming at the air/water interface

Hypothesis: bacteria tend to get trapped at the air/water surface due to its large surface tension. Adding surfactant, which reduces the surface tension, might release them from the surface.

Experiment: Add Triton, a non-ionic surfactant and observe!

Jay X Tang, Brown University
Molecular Layer of Triton onto the Surface Leads to Full Release of Trapped Bacterial Swimmers from the Liquid-Water Interface

Chemical Structure of Triton-100

Molecular weight: 625 Dalton
Molecular Length: ~3 nm

Swimming cells are trapped at the air surface of growth medium but not minimal salt solution.

Orange data: minimal salt solution

Blue data: growth medium containing Bactotrypton and Yeast Extract
Effects of selected organic materials in growth medium on trapping of the swimming cells at the surface

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage of trapped cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal salt solution</td>
<td>4.0+-2.4</td>
</tr>
<tr>
<td>Growth medium</td>
<td>59.7+-5.9</td>
</tr>
<tr>
<td>Growth medium + surfactant</td>
<td>6.8+-1.3</td>
</tr>
<tr>
<td>Minimal salts + Yeast Extract</td>
<td>15.9+-1.6</td>
</tr>
<tr>
<td>Minimal salts + Bactotrypton</td>
<td>25.6+-2.3</td>
</tr>
</tbody>
</table>

Jay X Tang, Brown University
Circular trajectories of opposite handedness at the air/liquid surface

Contradictory recent reports on E. coli

- Lemelle, Pallierne, Chatre & Place, J. Bacteriology, 192:6307, 2010.
 - CW and CCW circles
 - Condition: growth medium

 - CW circles only, opposite to near solid surface
 - Condition: motility buffer

Take home message:
SURFACE CHEMISTRY MATTERS
Observation of swimming at the water/oil interface

- The forward swimmers move in tight, clockwise circles (radius under 2 um)
- They tend to be terminally trapped
- The strains that switch motor rotation directions can escape while backing off

Unpublished work-M. Morse & J. X. Tang
Flagellar motor switching is a first passage time process

Morse, Bell, Li & Tang, Phys. Rev. Lett., 2015
Concluding Remarks

• Swimming microbes tend to accumulate near a confining surface subsequent to collision.

• The accumulation facilitates biological functions such as nutrient foraging, adhesion, and biofilm formation.

• Adsorption of large organic molecules at the air/water interface causes the swimming microbes to be trapped. The trapped swimmers can be released by surfactants, which some microbes secrete.

• Detailed experiments and analysis of low Reynold # hydrodynamics and surface physics/chemistry are required to explain various bacterial properties at interfaces.
Acknowledgements

• **Dr. Guanglai Li**, former postdoc and senior associate, Brown University

• **Collaborators:**
 Prof. Yves Brun and associates, Indiana University;
 Profs Martin Maxey and Thomas Powers, Brown University

• **PhD students:** Michael Morse & Jordan Bell

• **Undergraduate students:**
 LK Tam (Yale Univ), Lauren Francis, Robert Kim (Vanderbilt Univ.),
 Jesse Mahautmr, Daniel Munger, Katrina Wilson, Tatiana Lopes, James Bensson,
 Liana Nishimova, Serin Seckin, Athena Huang, Marianna Neubaeur, Yokun Gao,
 Erica Khan, Jeffrey Commons, Nathan Johnson, Sha Sha…

• **Funding from NIH and NSF Phys & NSF CBET**
Key Refs

