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Abstract. In this paper, we study the global existence and pointwise behavior
of classical solution to one dimensional isentropic Navier-Stokes equations with

mixed type boundary condition in half space. Based on classical energy method

for half space problem, the global existence of classical solution is established
firstly. Through analyzing the quantitative relationships of Green’s function

between Cauchy problem and initial boundary value problem, we observe that

the leading part of Green’s function for the initial boundary value problem
is composed of three items: delta function, diffusive heat kernel, and reflected

term from the boundary. Then applying Duhamel’s principle yields the explicit

expression of solution. With the help of accurate estimates for nonlinear wave
coupling and the elliptic structure of velocity, the pointwise behavior of the

solution is obtained under some appropriate assumptions on the initial data.

Our results prove that the solution converges to the equilibrium state at the

optimal decay rate (1 + t)−
1
2 in L∞ norm.

1. Introduction. The motion of a viscous, compressible and barotropic fluid is
governed by Navier-Stokes (N-S) equations. In Lagrangian coordinate, it is stated
as below {

vt − ux = 0,

ut + px = (
µ

v
ux)x,

(1)
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where x is the position, time t ≥ 0. Let positive constant µ be the viscous coefficient.
v(x, t) > 0 denotes the specific volume and u(x, t) represents velocity. The pressure
p is assumed to be a smooth function of v satisfying

p(v) > 0, p′(v) < 0.

In order to address more physically relevant situations, the following mixed type
boundary for velocity is considered

(aux + bu)
∣∣
x=0

= 0, (2)

with far field behavior

v(x, t)→ v∗, u(x, t)→ 0, as x→ +∞, (3)

where a, b are constants satisfying ab ≤ 0 and v∗ represents a strictly positive
constant. Without loss of generality, we assume v∗ = 1 in the following of this
paper. The initial data are given by

(v, u)
∣∣
t=0

= (v0, u0). (4)

There is a lot of literature on the global existence and large time behavior of
solutions to compressible fluid models. Let us recall some known results about
Cauchy problem to our knowledge. In the case of vacuum absence for initial density,
the existence of a global classical solution of (1) has been investigated by Kanel [9].
Later, Kazhikhov made a contribution to the non-isentropic N-S system in [14]. It
should be mentioned that the above results focus on large initial data. When small
initial data are taken into consideration, Kawashima and Nishida [12] established
the global solution to one dimensional non-isentropic N-S system. In relation to
the multi-dimensional case, the global classical solution was initially studied by
Mastumura and Nishida [23] in a perturbation framework. To reveal the decay
property of the solution, one shall study long time behavior. Kawashima [11, 10]
obtained the L2 time decay rate of several general hyperbolic-parabolic systems
with applications to related models. The optimal L2 time decay rate for the three-
dimensional full N-S system was investigated by Mastumura and Nishida [22] when
the initial data is a small perturbation of constant state in H3(R3)∩L1(R3). They
proved

‖(ρ− ρ∗, u, θ − θ∗)‖L2(R3) ≤ C(1 + t)−
3
4 , (5)

where ρ∗, θ∗ denote positive constants. Later, Lp time decay rate of the solution
was studied by Ponce [24]. Their results show that for large time t

‖∂αx (ρ− ρ∗, u, θ − θ∗)‖Lp(Rn) ≤ Ct−
n
2 (1− 1

p )−
|α|
2 , p ≥ 2, (6)

here |α| ≤ 2 and n = 2, 3. When the external force is taken into account, Li,
Matsumura and Zhang [18] proved that for Navier-Stokes-Poisson (N-S-P) system, if
the initial data is a small regular perturbation of a constant state inH4(R3)∩L1(R3),
the perturbed solutions satisfy the following decay rate

‖Dk
x(ρ− ρ∗)‖L2(R3) ≤ C(1 + t)−

3
4−

k
2 , ‖Dk

x(m,∇Ψ)‖L2(R3) ≤ C(1 + t)−
1
4−

k
2 ,

where ρ,m represent density and momentum respectively, and Ψ(x, t) denotes elec-
trostatic potential. Later, they continued their work on non-isentropic case, see
[28] for details. The methods applied in previous work are based on the spectrum
analysis of linearized equations and energy estimates for nonlinear system. As a
result, they proved the global existence and established L2 time decay rate of the
solution to compressible fluid models.
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It is noted that the time decay rates describe the parabolic properties of the
hyperbolic-parabolic system, but it provides less information to the effect of hy-
perbolic properties. To shed light on revealing the wave propagation related to
hyperbolic properties, Zeng [27] has studied L1 asymptotic behavior for system (1).
Their results show that the solution behaves like a heat kernel with diffusion wave.
Furthermore, the pointwise behavior of general quasi-linear hyperbolic-parabolic
systems of conservation laws was investigated by Liu and Zeng in [20]. To gain
a better understanding of the wave propagation for compressible fluids in multi-
dimension, Hoff and Zumbrun [5, 6] analyzed the Green’s function of an artificial
viscosity system related to linearized isentropic N-S equations and obtained the
space-time structure of the solution. Later, Liu and Wang [19] directly studied
Green’s function for isentropic N-S equations. Then applying Duhamel’s principle
and complex analysis method yields the explicit wave structure of the solution,
which exhibits the generalized Huygens’ principle in odd dimensions. Afterward,
David Li [17] extended their work to the full system on the linear level, where
additional new waves are introduced. When the external force is involved, the
time-asymptotic shape of the solution for N-S-P system was studied by Wang and
Wu in [25], which reveals that the rotating effect of the electric field makes the
Huygens’ principle observed in [19] for compressible N-S equations invalid here.
Later, Wu and Wang [26] generalized their results to the bipolar compressible N-S-
P system, which also exhibits a generalized Huygens’ principle as the Navier-Stokes
equations. This interesting phenomenon is the principal difference from the unipolar
Navier-Stokes-Poisson system. We conclude from the above results that the detailed
analysis of Green’s function to the linear system captures the effect of hyperbolic
properties of these compressible flows.

Once the boundary is present, there are also both rich phenomena and significant
mathematical challenges, such as slip boundary layer, thermal creep flow, and cur-
vature effects. Let us review some known results about the initial boundary value
problem (IBVP) to our knowledge. The global existence and uniqueness of classical
solution for one dimensional full N-S system with boundary were established by
Kazhikhov and Shelukhin [15] for large initial data. Matsumura and Nishida [21]
proved the global existence of full system in three-dimensional half space with small
initial data. Later, Kagei and Kobayashi [7, 8] proved the convergence of solutions
to the equilibrium state for N-S equations with Dirichlet boundary condition when
space dimension n ≥ 2. In contrast, very few works have been carried out for large
time behavior in pointwise sense for IBVP to compressible fluid. The pointwise esti-
mate for p system with damping in half space was studied by Deng [1]. Under some
suitable assumptions on the initial data, their results indicate that the solutions
satisfy

|(σ − 1, u)(x, t)| ≤ C(
e−

x2

C(1+t)

√
1 + t

+ e−
|x|+t
C ), (7)

here σ(x, t), u(x, t) represent specific volume and velocity. Furthermore, Deng and
Wang in [2] studied the Euler equations with damping in 3-D for half space. Then
the asymptotic behavior of solutions to the N-S with damping in Rn+ was investi-
gated around a given constant equilibrium by Du [3]. Afterwards, Du and Wang
[4] studied the one-dimensional isentropic N-S equations in Euler coordinate. They
showed

|∂αx (ρ− 1,m)(x, t)| ≤ C(1 + t)−α/4
[
(x− c(t+ 1))2 + (t+ 1)

]−1/2
, |α| ≤ 1, (8)
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where ρ(x, t),m(x, t) denote density and momentum respectively. It then follows
from the above inequality that the time decay rate for spatial derivatives is (1 +

t)−
3
4 in L∞ norm. There still leaves room for improvement. Meanwhile, their

method cannot be applied to the estimate of high order derivatives. When the
equilibrium state is non-constant, Kawashima and Zhu [13] studied the stability of
nonlinear waves for the outflow problem of the compressible N-S equations in half
line. Recently, Koike [16] obtained the long-time behavior of a mass point moving
in viscous fluid based on Green’s function and energy method. From the above
discussion, it still remains challenges to consider space-time pointwise estimates for
N-S equations to the initial boundary value problem in multi-dimension.

This paper is devoted to studying the global existence and large time behavior
of solutions for one dimensional compressible N-S system to IBVP in the sense of
pointwise. Motivated by the work of Koike in [16], we anticipate improving the L∞

decay rate of solutions for the derivatives and deducing the estimates of high order
derivatives by introducing some new ideas.

In what follows, we make a brief explanation of the main steps of the proof. Based
on classical energy method introduced in [21] for the initial boundary value problem,
the global existence of a classical solution is studied firstly under some regular
assumption on the initial data. After this step, to derive the pointwise estimate of
the perturbed solution U(x, t) = (ϕ, u)t , (v−1, u)t, we apply Duhamel’s principle
to yield

U(x, t) =

∫ ∞
0

G(x, t; y)U0(y)dy +

∫ t

0

∫ ∞
0

G(x, t− s; y)F (y, s)dyds. (9)

Here G(x, t; y) denotes the Green’s function for the initial boundary value problem
of system (1) and F represents the nonlinear term defined by (114). Thus it is
crucial to capture the estimate of G(x, t; y). Fortunately, since the Green’s function
of Cauchy problem named G(x, t) to system (1) has been studied by Zeng in [27].
The remaining goal is to build up a connection between Green’s functions for the
Cauchy problem and for the initial boundary value problem. Making use of Laplace
transform and Fourier transform, together with boundedness requirement at infinity,
we obtain the representation of Green’s function

G(x, t; y) = G(x− y, t)−
(
G(x+ y, t) + h(x+ y, t)

)( 1 0
0 −1

)
, (10)

where the function h(x, t) satisfies a ODE that can be solved as (109). We are
now in a position to deal with nonlinear system. Assume the solution satisfies the
following ansatz

Λ(t) = sup
0≤s≤t

{
‖UΦ−1‖L∞x + (1 + s)

(
log(2 + s)

)−1‖Ux‖L∞x + (1 + s)
1
2 ‖uxx‖L∞x

}
,

where Φ(x, t) represents the diffusive wave decaying at the L∞-rate (1+ t)−
1
2 or L2-

rate (1 + t)−
1
4 . According to the ansatz and some computational lemmas for wave

coupling, the pointwise structure of U(x, t) and Ux(x, t) are investigated directly
by using the expression of solution. However, it seems that differentiating (9) with
respect to x twice to derive the estimate of second spatial derivative may cause
the blow up of solution. To overcome this difficulty, we mainly rely on the elliptic
system of velocity. Actually, it is observed that

uxx =
1 + ϕ

µ
ut +

1 + ϕ

µ
p(1 + ϕ)x +

uxϕx
1 + ϕ

. (11)
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This inspires us to deduce the estimate of ut firstly. It is easy to see that the solution
Ut = (ϕt, ut)

t satisfies the system (195). After a careful observation, we find that
the Green’s function for this system coincides with G(x, t; y). Consequently, making
use of Duhamel’s principle yields

Ut(x, t) =

∫ ∞
0

G(x, t; y)∂tU(y, 0)dy +

∫ t

0

∫ ∞
0

G(x, t− s; y)∂sF (y, s)dyds. (12)

The estimate of Ut(x, t) is treated in a similar manner as U(x, t) by using (12). It is
noteworthy that after we transform the derivative of the nonlinear term to Green’s
function, the remaining nonlinear terms contain a high order term usy, seeing (209),
which can be dominated by the result of the energy estimate. Thus, the pointwise
behavior of Ut(x, t) is derived immediately. Then applying (11) and the estimate of
Ux, Ut gives the space-time estimate of uxx. Combing the definition of ansatz and
the smallness of δ0 gives rise to Λ(t) ≤ Cδ0. As a result, we obtain the space-time
estimates of solutions. Compared with [4], the L∞ time-decay rate of the derivative

Ux(x, t) is improved from (1 + t)−
3
4 to (1 + t)−1 log(2 + t), which gives a positive

answer to Remark 1.3 in [4]. It should be mentioned that the poinwise behavior
of higher order spatial derivatives can also be obtained in this way if we improve
higher regularity of the initial data.

The rest of the paper is organized as follows. In section 2, some notations and
auxiliary lemmas are introduced for later use. In section 3, we present the main
results of this paper. The global existence of classical solutions is investigated in
section 4. In section 5, we construct the Green’s function for the initial-boundary
value problem. The nonlinear pointwise estimates of the solutions are obtained in
section 6.

2. Preliminaries. In this section, we will introduce some notations and auxiliary
lemmas, which will be used throughout this paper. Write In to represent n × n
identity matrix (n ≥ 1). When n = 0, we denote

I0 =

(
1 0
0 0

)
. (13)

In the section 5, we will use the notations as follows

A =

(
0 −1
−c2 0

)
, B =

(
0 0
0 µ

)
. (14)

The Fourier transform of f is defined as f̂ or F[f ]

f̂(ξ) = F[f ] =

∫
R
f(x)e−ixξdx (ξ ∈ R).

The inverse Fourier transform of f is given by F−1[f ]

F−1[f ](x) = (2π)−1
∫
R
f(ξ)eiξxdξ (x ∈ R).

The Laplace transform of f is written as L[f ]

L[f ](s) =

∫ ∞
0

f(t)e−stdt (t ∈ R+).

Two functions are introduced as below to state the main results (i = 1, 2)

φθ(x, t;λi) =
(
1+t+|x−λi(1+t)|

)−θ/2
, ψθ(x, t;λi) =

(
1+t+(x−λi(1+t))2

)−θ/2
,
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where λ1 = c, λ2 = −c. It should be mentioned that since x > 0, c > 0, which
implies

φθ(x, t;−c) ≤ φθ(x, t; c), ψθ(x, t;−c) ≤ ψθ(x, t; c). (15)

For notational simplicity, we define Φ(x, t) as

Φ(x, t) = (1 + t)
1
4ψ 3

2
(x, t; c) + (1 + t)

3
8φ1(x, t; c)ψ 3

4
(x, t; c). (16)

Through this paper, C denotes a generic positive constant which may vary in
different estimates. f1 . f2 and f1 = O(1)f2 mean that there exists a constant
C > 0 such that f1 ≤ Cf2 for positive functions f1, f2. Denote by Lp and Wm,p the
usual Lebesgue and Sobolev spaces on R+ and Hm = Wm,2, with norms ‖ · ‖Lp , ‖ ·
‖Wm,p , ‖ · ‖Hm , respectively.

We next introduce some computational lemmas for wave coupling that will be
used in the proof of the main theorem.

Lemma 2.1. There holds for k ≥ 0, C1 > 0 and x ∈ R+, r ≥ 5
8 such that

e−
x+t
C1 ≤ C(1 + t)−kψ 3

2
(x, t; c),

e
− (x−λi(1+t))2

C1(1+t) ≤ C(1 + t)
3
4ψ 3

2
(x, t;λi),

e−
t
C1 (1 + x2)−r ≤ C(1 + t)−kφ1(x, t; c)ψ 3

4
(x, t; c),

e−
x
C1 (1 + t)−

3
2 ≤ C(1 + t)−

1
4φ1(x, t; c)ψ 3

4
(x, t; c).

Proof. In order to prove the first inequality, a straightforward calculation gives

e−
x+t
C1 ≤ e−

t
2C1 e−

x+t
2C1

≤ C(1 + t)−k(1 + t+ (x+ t+ 1)2)−
3
4 .

(17)

Note that if c ≤ 1, then (x+ t+ 1)2 ≥ (x+ c(t+ 1))2. For the case c > 1, we have

(x+ t+ 1)2 ≥ 1

c2
(x+ c(t+ 1))2, (18)

which together with (15) also leads to

e−
x+t
C1 ≤ C(1 + t)−kψ 3

2
(x, t;−c) ≤ C(1 + t)−kψ 3

2
(x, t; c). (19)

The second inequality is proved by using the fact e−z ≤ (1 + z)−
3
4 for z > 0.

Concerning the third inequality, it holds

e−
t
C1 (1 + x2)−r ≤ e−

t
C1 (1 + x)−

1
2 (1 + x2)−

3
8

≤ C(1 + t)−kφ1(x, t; c)ψ 3
4
(x, t; c).

(20)

One can similarly deduce the estimate for the last inequality. We hence complete
the proof of lemma.

Lemma 2.2. The Green’s function for system (1) to Cauchy problem satisfies the
following estimate∣∣∣∂αx(G(x, t)−e−

c2

µ tδ(x)I0

)∣∣∣ = O(1)t−
1
2−

α
2 (e−

(x−ct)2
2µt + e−

(x+ct)2

2µt )

+O(1)(1 + t)−
1
2 t−

1
2−

α
2 (e−

(x−ct)2
Ct + e−

(x+ct)2

Ct ) +O(1)e−
|x|+t
C ,

(21)

where δ(x) represents the Dirac function, the matrix I0 is given by (13) and positive
constant c denotes the sound wave speed.
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Proof. Combing Lemma 5.5 and Lemma 5.6 proved by Liu and Zeng in [20], we can
complete the proof of this lemma. See also [27].

Lemma 2.3. Define function

E(x, t;λ,D0) =

∫ ∞
0

e−ωze−
(x+z−λt)2

D0t dz. (22)

Let ω > 0, λ > 0. Then there exists a positive constant C such that for any given
ε > 0

∂k

∂xk
E(x, t;λ,D0) ≤ O(1)(t−

k
2 e
− (x−λt)2

(D0+ε)t + e−
|x|+t
C ). (23)

Proof. The lemma has been proved by Du and Wang, seeing Lemma 2.1 [4].

Lemma 2.4. For r ≥ 5
8 , there exists a positive constant such that

K1 =

∫ ∞
0

(1 + t)−1e−
(x−y−λi(1+t))2

2µ(1+t) (1 + y2)−rdy ≤ CΦ(x, t),

K2 =

∫ ∞
0

(1 + t)−1e−
(x+y−c(1+t))2

(2µ+ε)(1+t) (1 + y2)−rdy ≤ CΦ(x, t),

(24)

where λ1 = c, λ2 = −c and the definition of Φ(x, t) is given by (16).

Proof. In order to estimate K1, three cases are taken into consideration.

(1) |x− λi(1 + t)| <
√

1 + t, then we have

K1 ≤ C(1 + t)−1 ≤ C(1 + t)−
1
4ψ 3

2
(x, t;λi) ≤ CΦ(x, t). (25)

(2)
√

1 + t ≤ |x− λi(1 + t)| ≤ 1 + t, it holds

K1 ≤ C(1 + t)−1
∫
|y|≤ |x−λi(1+t)|

2

e−
(x−λi(1+t))2

8µ(1+t) (1 + y2)−rdy

+ C(1 + t)−1
∫
|y|> |x−λi(1+t)|

2

e−
(x−y−λi(1+t))2

2µ(1+t) (1 + y2)−rdy

≤ C(1 + t)−1e−
(x−λi(1+t))2

8µ(1+t) + C(1 + t)−
1
2 (1 + |x− λi(1 + t)|2)−r

≤ CΦ(x, t).

(26)

(3) |x− λi(1 + t)| > 1 + t, we are able to verify

K1 ≤ C(1 + t)−1
∫
|y|≤ |x−λi(1+t)|

2

e−
(x−λi(1+t))2

8µ(1+t) (1 + y2)−rdy

+ C(1 + t)−1
∫
|y|> |x−λi(1+t)|

2

e−
(x−y−λi(1+t))2

2µ(1+t) (1 + y2)−rdy

≤ C(1 + t)−1e−
(x−λi(1+t))2

8µ(1+t) + C(1 + t)−
1
2 (1 + |x− λi(1 + t)|)− 5

4

≤ CΦ(x, t),

where we have used the fact that when |x− λi(1 + t)| > 1 + t, it satisfies

(1 + |x− λi(1 + t)|)− 5
4 ≤ Cφ1(x, t; c)ψ 3

4
(x, t; c).

To conclude, we finally obtain the desired estimate of (24)1. As for K2, it can be
treated in a same manner as K1. Hence, this completes the proof.
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To gain a better understanding of interactions between different waves, we pro-
vide some lemmas as follows. The proof can be followed in a similar argument as
Lemma 3.5, 3.6, 3.7, 3.8 in [20] with slight modifications that replacing x ∈ R into
x ∈ R+. Here we omit the details of proof.

Lemma 2.5. Let α ≥ 0, β ≥ 0, µ̄ > 0 and λ be constants. Then for all x ∈ R+,
t ≥ 0, we have

∫ t

0

∫ ∞
−∞

(t− s)−1(1 + t− s)−α2 e−
(x−y−λ(t−s))2

µ̄(t−s) (1 + s)−
β
2 ψ 3

2
(y, s;λ)dyds

=

{
O(1)(1 + t)−

γ
2 ψ 3

2
(x, t;λ) log(2 + t), if α = 1 or β = 3

2

O(1)(1 + t)−
γ
2 ψ 3

2
(x, t;λ), otherwise,

where γ = min(α, 1) + min(β, 32 )− 1.

Lemma 2.6. Let the constants α ≥ 0, β ≥ 0, µ̄ > 0 and λ 6= λ′. Then for any fixed
K > 2|λ− λ′| and all x ∈ R+, t ≥ 0, we have

∫ t

0

∫ ∞
−∞

(t− s)−1(1 + t− s)−α2 e−
(x−y−λ(t−s))2

µ̄(t−s) (1 + s)−
β
2 ψ 3

2
(y, s;λ′)dyds

= O(1)(1 + t)−
γ
2 [ψ 3

2
(x, t;λ) + ψ 3

2
(x, t;λ′)]

+O(1)|x− λ(1 + t)|− 1
2 min(β, 52 )−

1
4 |x− λ′(1 + t)|− 1

2 min(α,1)− 1
2

· char
{

min(λ, λ′)(1 + t) + K
√

1 + t ≤ x ≤ max(λ, λ′)(1 + t)−K
√

1 + t
}

+


O(1)(1 + t)−

γ
2 log(1 + t)[ψ 3

2
(x, t;λ) + ψ 3

2
(x, t;λ′)], if α = 1

O(1)(1 + t)−
γ
2 log(1 + t)ψ 3

2
(x, t;λ), if α 6= 1 and β = 3

2

0, otherwise,

where γ = min(α, 1)+min(β, 32 )−1 and char is the characteristic function as usual.

Lemma 2.7. Let α ≥ 0, 0 ≤ β ≤ 2, µ̄ > 0, and λ be constants. Then for x ∈ R+,
t ≥ 0, we have

∫ t

0

∫ ∞
−∞

(t− s)−1(1 + t− s)−α2 e−
(x−y−λ(t−s))2

µ̄(t−s) (1 + s)−
β
2 φ1(y, s;λ)ψ 3

4
(y, s;λ)dyds

=

{
O(1)(1 + t)−

γ1
2 log(2 + t)φ1(x, t;λ)ψ 3

4
(x, t;λ), if α = 1, or 1 ≤ β ≤ 3

2

O(1)(1 + t)−
γ1
2 φ1(x, t;λ)ψ 3

4
(x, t;λ), otherwise

+

{
O(1)(1 + t)−

γ2
2 log(2 + t)ψ 3

2
(x, t;λ), if α = 1, or β = 3

2

O(1)(1 + t)−
γ2
2 ψ 3

2
(x, t;λ), otherwise,

where γ1 = min(α, 1)+ 1
2 (min(β, 1)+min(β, 32 ))−1, γ2 = min(α, 1)+min(β, 32 )−1.

Lemma 2.8. Let the constants α ≥ 0, 0 ≤ β ≤ 2, µ̄ > 0 and λ 6= λ′. Then for any
fixed K > 2|λ− λ′| and all x ∈ R+, t ≥ 0, we have
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∫ t

0

∫ ∞
−∞

(t− s)−1(1 + t− s)−α2 e−
(x−y−λ(t−s))2

µ̄(t−s) (1 + s)−
β
2 φ1(y, s;λ′)ψ 3

4
(y, s;λ′)dyds

= O(1)(1 + t)−
γ1
2

·


φ1(x, t;λ)ψ 3

4
(x, t;λ) + φ1(x, t;λ′)ψ 3

4
(x, t;λ′), if α 6= 1, β /∈ [1, 32 ]

log(2 + t)φ1(x, t;λ)ψ 3
4
(x, t;λ) + φ1(x, t;λ′)ψ 3

4
(x, t;λ′), if α 6= 1, β ∈ [1, 32 ]

log(2 + t)[φ1(x, t;λ)ψ 3
4
(x, t;λ) + φ1(x, t;λ′)ψ 3

4
(x, t;λ′)], if α = 1

+O(1)(1 + t)−
γ2
2


ψ 3

2
(x, t;λ) + ψ 3

2
(x, t;λ′), if α 6= 1, β 6= 3

2

log(2 + t)ψ 3
2
(x, t;λ) + ψ 3

2
(x, t;λ′), if α 6= 1, β = 3

2

log(2 + t)[ψ 3
2
(x, t;λ) + ψ 3

2
(x, t;λ′)], if α = 1

+O(1)|x− λ(1 + t)|− 1
2 min(β,2)− 1

4+ε|x− λ′(1 + t)|− 1
2 min(α,1)− 1

2

· char
{

min(λ, λ′)(1 + t) + K
√

1 + t ≤ x ≤ max(λ, λ′)(1 + t)−K
√

1 + t
}
,

where γ1 = min(α, 1) + 1
2 (min(β, 1) + min(β, 32 ))− 1, γ2 = min(α, 1) + min(β, 32 )− 1

and ε > 0 arbitrarily small.

3. Main results. In this paper, we consider the small perturbation of solutions
(v, u) near a constant state (1, 0). Define a new variable ϕ = v − 1. Then system
(1) is reformulated to 

ϕt − ux = 0,

ut + p(1 + ϕ)x = (
µux

1 + ϕ
)x.

(27)

The boundary condition becomes

(aux + bu)|x=0 = 0, and (ϕ, u)→ (0, 0) as x→ +∞. (28)

The initial data are given by

(ϕ, u)|t=0 = (ϕ0, u0) , (v0 − 1, u0). (29)

To state the main theorem of global existence, we introduce the energy E(t) and
dissipation D(t) as

E(t) = ‖(ϕ, u)‖H4(R+) +

2∑
k=0

|∂kt ϕ(0, t)|,

D(t) = ‖ϕx‖H3(R+) + ‖ux‖H4(R+) +

2∑
k=0

|∂kt u(0, t)|.

(30)

Since the classical solution is taken into consideration in this paper, the following
compatible conditions are needed

(au′0 + bu0)|x=0 = 0. (31)

Theorem 3.1. (Global existence) Assume the initial data (ϕ0, u0) ∈ H4(R+) sat-
isfying compatibility condition (31). There exists a small positive constant δ0 such
that if

‖(ϕ0, u0)‖H4(R+) ≤ δ0, (32)
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then the initial boundary value problem (27)− (29) admits a unique global classical
solution when ab < 0 or a = 0, or b = 0

ϕ ∈ C([0,∞);H4(R+)) ∩ C1([0,∞);H3(R+)),

u ∈ C([0,∞);H4(R+)) ∩ C1([0,∞);H2(R+)),

ϕx ∈ L2([0,∞);H3(R+)), ux ∈ L2([0,∞);H4(R+)),

(33)

and satisfies for any given time T > 0 that

sup
0≤t≤T

E(t)2 +

∫ T

0

D(t)2dt ≤ Cδ20 , (34)

where C is a positive constant independent of time.

Remark 1. It should be emphasized that the signs of parameters in the boundary
condition plays an important role in studying the global existence. When ab < 0
or a = 0 or b = 0, the solution of this problem could be stable under some suitable
assumption on the initial data. If ab > 0, it should be unstable even in the linear
level.

Remark 2. We note that when a = 0 or b = 0, it reduces to Dirichlet boundary
condition or Neumann boundary condition. The existence of these cases can be
proved in a same manner as ab < 0. For simplicity, we only consider ab < 0 in the
proof of this theorem.

The linear system of initial boundary value problem (27) − (29) can be written
as 

ϕt − ux = 0,

ut − c2ϕx = µuxx,

(aux + bu)|x=0 = 0,

(ϕ, u)|x→+∞ = (0, 0),

(ϕ, u)|t=0 = (ϕ0, u0),

(35)

here c =
√
−p′(1) > 0. The Green’s function G(x, t; y) of (35) satisfies

(∂t +A∂x −B∂xx)G(x, t; y) = 0, x > 0, y > 0, t > 0,

G(x, 0; y) = δ(x− y)I2,

(a∂t b)G(0, t; y) = 0,

(36)

where the matrix A,B is defined in (14).
The second theorem captures the explicit poinwise structure of Green’s function

G(x, t; y).

Theorem 3.2. For Green’s function G(x, t; y), we have the following estimate for
0 ≤ x, y <∞, t ≥ 0∣∣∣∂αx(G(x, t; y)− e−

c2

µ t(δ(x− y)− δ(x+ y))I0

)∣∣∣
= O(1)t−

1
2−

α
2 (e−

(x−y−ct)2
2µt + e−

(x−y+ct)2

2µt + e−
(x+y−ct)2

(2µ+ε)t )

+O(1)(e−
|x−y|+t

C + e−
|x+y|+t

C ),

(37)

where δ(x) represents the Dirac function, the matrix I0 is given by (13). The positive
constant ε is arbitrarily small.
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Remark 3. The theorem tells us that the leading part of Green’s function to IBVP
is the heat kernel with convection, which propagates with different characteristic
speeds. Compared with the Green’s function of Cauchy problem, the reflected term
is appeared due to the presence of boundary.

Based on the above theorems, nonlinear pointwise estimates of the solution are
obtained as follows.

Theorem 3.3. Under the assumptions in Theorem 3.1 and define U0 = (ϕ0, u0)
satisfying

|U0(x)| ≤ Cδ0(1+x2)−r, |U ′0(x)| ≤ Cδ0(1+x2)−r,
∣∣ ∫ ∞
x

U0(y)dy
∣∣ ≤ Cδ0(1+x2)−r,

(38)
where r ≥ 5

8 . Then the solution has the following pointwise estimates

|(ϕ, u)| ≤ Cδ0Φ(x, t), |(ϕx, ux)| ≤ Cδ0(1 + t)−1 log(2 + t), |uxx| ≤ Cδ0(1 + t)−
1
2 ,

where Φ(x, t) is given by (16).

Corollary 1. Applying the assumptions in Theorem 3.3 and the definition of Φ(x, t),
we have the following optimal decay rate of the solution

‖(ϕ, u)(·, t)‖Lp(R+) ≤ Cδ0(1 + t)−
1
2 (1−

1
p ), p ∈ [1,+∞]. (39)

Remark 4. When the non-isentropic N-S equations are taken into consideration,
we need to deal with the trouble induced by the liner diffusive wave. For such a
complicated problem, we will investigate it in the coming paper.

4. The global existence of classical solution. First, the local existence of the
solution is established as below.

Theorem 4.1. (Local existence) Assume the initial data (ϕ0, u0) ∈ H4(R+) satisfy-
ing compatibility condition (31). Then the initial boundary value problem (27)−(29)
admits a unique local classical solution (ϕ, u) satisfying

ϕ ∈ C([0, T ];H4(R+)) ∩ C1([0, T ];H3(R+)),

u ∈ C([0, T ];H4(R+)) ∩ C1([0, T ];H2(R+)),

ϕx ∈ L2([0, T ];H3(R+)), ux ∈ L2([0, T ];H4(R+)),

(40)

and satisfies for some given time T > 0 that

sup
0≤t≤T

E(t)2 +

∫ T

0

D(t)2dt ≤ CE(0)2, (41)

where C is a positive constant independent of time.

Proof. The construction of local-in-time solution is based on an iteration scheme as
in [21]. Here we omit the details.

To extend the short time classical solution to be a global one, we shall establish
the uniform estimates. Hence, it is natural to provide the a-priori assumption for
any given T > 0

sup
0≤t≤T

E(t) ≤ δ, (42)

here δ > 0 is a sufficiently small constant. We first establish the basic L2 energy
estimate as follows.
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Proposition 1. Assume (ϕ, u) is the classical solution of (27) satisfying the as-
sumptions in Theorem 3.1 and the a-priori assumption (42). Then we have the
following estimate for any given T > 0

sup
0≤t≤T

(
‖(ϕ, u)‖2L2 + |ϕ(0, t)|2

)
+

∫ T

0

(|u(0, t)|2 + ‖ux‖2L2)dt ≤ Cδ20 .

Proof. Multiplying (27)1 and (27)2 by −p(1 + ϕ) + p(1) and u respectively, then
integrating the resulting equation with respect to x in R+ gives

d

dt

(∫
R+

Γ(ϕ)dx+
1

2
‖u‖2L2

)
+
(
(p(1 + ϕ)− p(1))u

)∣∣∣x=+∞

x=0

+
µω|u(0, t)|2

1 + ϕ(0, t)
+

∫
R+

µu2x
1 + ϕ

dx = 0,

(43)

where c =
√
−p′(1) > 0 and ω = − b

a > 0. The function Γ(ϕ) is given by

Γ(ϕ) = −
∫ ϕ

0

(p(1 + y)− p(1))dy.

A direct computation gives rise to

p(1 + ϕ)− p(1) = −c2ϕ+O(ϕ2) as ϕ→ 0. (44)

Utilizing the a-priori assumption (42) and the smallness of the initial data, we
capture the following approximation in the next section

p(1 + ϕ)− p(1) ∼ −c2ϕ. (45)

Furthermore, it also holds

Γ(ϕ) ∼ 1

2
c2ϕ2. (46)

Therefore, according to the boundary condition, (43) can be written as

1

2

d

dt

(
c2‖ϕ‖2L2 + ‖u‖2L2 +

c2

ω
|ϕ(0, t)|2

)
+
µω|u(0, t)|2

1 + ϕ(0, t)
+

∫
R+

µu2x
1 + ϕ

dx = 0.
(47)

Integration of (47) in t ∈ [0, T ] gives the desired estimate. This completes the
proof.

Next we proceed to establish L2 energy inequality for the time derivatives of
solution.

Proposition 2. Assume (ϕ, u) is the classical solution of (27) satisfying the as-
sumptions in Theorem 3.1 and the a-priori assumption (42). Then we obtain the
estimate for any given T > 0 satisfying

2∑
k=1

(
sup

0≤t≤T
(‖∂kt (ϕ, u)‖2L2 + |∂kt ϕ(0, t)|2) +

∫ T

0

(|∂kt u(0, t)|2 + ‖∂kt ux‖2L2)dt
)

≤ Cδ20 + Cδ

∫ T

0

D(t)2dt.
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Proof. We begin with the case of k = 1. Differentiate the system (27) with respect
to t, then multiply the resulting equations by −p(1+ϕ)t and ut respectively. Adding
and integrating these equations yield

1

2

d

dt
‖ut‖2L2 −

∫
R+

p(1 + ϕ)tϕttdx+

∫
R+

p(1 + ϕ)tutxdx

+

∫
R+

p(1 + ϕ)txutdx =

∫
R+

(
µux

1 + ϕ
)txutdx.

(48)

It is easy to verify the following estimate from (45)

−
∫
R+

p(1 + ϕ)tϕttdx ∼
c2

2

d

dt
‖ϕt‖2L2 . (49)

Making use of integration by parts also gives∫
R+

p(1 + ϕ)tutxdx+

∫
R+

p(1 + ϕ)txutdx ∼
c2

2ω

d

dt
|ϕt(0, t)|2. (50)

Similarly, the last terms in (48) can be addressed as below∫
R+

(
µux

1 + ϕ
)txutdx = −µω|ut(0, t)|

2

1 + ϕ(0, t)
+
µux(0, t)ϕt(0, t)ut(0, t)

(1 + ϕ(0, t))2

−
∫
R+

µu2tx
1 + ϕ

dx+

∫
R+

µuxϕtutx
(1 + ϕ)2

dx.

(51)

Thus, we conclude from above results that

1

2

d

dt
(c2‖ϕt‖2L2 + ‖ut‖2L2 +

c2

ω
|ϕt(0, t)|2) +

µω|ut(0, t)|2

1 + ϕ(0, t)
+

∫
R+

µu2tx
1 + ϕ

dx

=
µux(0, t)ϕt(0, t)ut(0, t)

(1 + ϕ(0, t))2
+

∫
R+

µuxϕtutx
(1 + ϕ)2

dx.

(52)

Via Young’s inequality, one has

µux(0, t)ϕt(0, t)ut(0, t)

(1 + ϕ(0, t))2
≤ CE(t)D(t)2 + ε

µω|ut(0, t)|2

1 + ϕ(0, t)
. (53)

By the a-priori assumption (42) and Proposition 1, we obtain∫
R+

µuxϕtutx
(1 + ϕ)2

dx ≤ C‖ux‖2L∞‖ϕt‖2L2 + ε

∫
R+

µu2tx
1 + ϕ

dx

≤ Cδ‖ux‖H1‖ux‖2L2 + ε

∫
R+

µu2tx
1 + ϕ

dx

≤ CE(t)D(t)2 + ε

∫
R+

µu2tx
1 + ϕ

dx.

(54)

It then concludes from above estimates and the smallness of ε to give

1

2

d

dt
(c2‖ϕt‖2L2 + ‖ut‖2L2 +

c2

ω
|ϕt(0, t)|2)

+
µω|ut(0, t)|2

2(1 + ϕ(0, t))
+

1

2

∫
R+

µu2tx
1 + ϕ

dx ≤ CE(t)D(t)2.
(55)
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Integrating time from 0 to T , then applying the a-priori assumption (42) yields

sup
0≤t≤T

(‖(ϕt, ut)‖2L2 + |ϕt(0, t)|2) +

∫ T

0

(|ut(0, t)|2 + ‖utx‖2L2)dt

≤ Cδ20 + Cδ

∫ T

0

D(t)2dt.

(56)

The case of k = 2 can be treated in a similar argument as k = 1. Hence, we
complete the proof of the proposition.

To derive the estimate of high order spatial derivatives, we shall obtain the energy
inequalities as follows.

Proposition 3. Assume (ϕ, u) is the classical solution of (27) satisfying the as-
sumptions in Theorem 3.1 and the a-priori assumption (42). Then we obtain the
estimate for any given T > 0 satisfying

1∑
k=0

(
sup

0≤t≤T
(‖∂kt ux‖2L2 + |∂kt u(0, t)|2) +

∫ T

0

‖∂k+1
t u‖2L2dt

)
≤ Cδ20 + Cδ

∫ T

0

D(t)2dt.

Proof. Taking the inner product of (27)2 and ut, then integrating x in R+

‖ut‖2L2 +

∫
R+

p(1 + ϕ)xutdx−
∫
R+

(
µux

1 + ϕ
)xutdx = 0. (57)

In terms of integration by parts, we have∫
R+

p(1 + ϕ)xutdx ∼ c2
∫
R+

ϕutxdx+ c2ϕ(0, t)ut(0, t). (58)

A direct calculation gives

c2
∫
R+

ϕutxdx = c2
d

dt

∫
R+

ϕuxdx− c2
∫
R+

u2xdx. (59)

To estimate the third term in (57), we consider it as follows

−
∫
R+

(
µux

1 + ϕ
)xutdx =

∫
R+

µuxutx
1 + ϕ

dx+
µux(0, t)ut(0, t)

1 + ϕ(0, t)
. (60)

Furthermore, it is obvious to verify∫
R+

µuxutx
1 + ϕ

dx =
µ

2

d

dt

∫
R+

u2x
1 + ϕ

dx+

∫
R+

µu2xϕt
2(1 + ϕ)2

dx. (61)

Similarly, it also holds

µux(0, t)ut(0, t)

1 + ϕ(0, t)
=
µω

2

d

dt

( |u(0, t)|2

1 + ϕ(0, t)

)
+
µω|u(0, t)|2ϕt(0, t)

2(1 + ϕ(0, t))2
. (62)
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We obtain the following estimate from above obtained results

µ

2

d

dt

(∫
R+

u2x
1 + ϕ

dx+
ω|u(0, t)|2

1 + ϕ(0, t)

)
+ ‖ut‖2L2

= −c2 d
dt

∫
R+

ϕuxdx+ c2
∫
R+

u2xdx− c2ϕ(0, t)ut(0, t)

+

∫
R+

µu2xϕt
2(1 + ϕ)2

dx+ +
µω|u(0, t)|2ϕt(0, t)

2(1 + ϕ(0, t))2
.

(63)

By the definition of E(t),D(t), we deduce∫
R+

µu2xϕt
2(1 + ϕ)2

dx+
µω|u(0, t)|2ϕt(0, t)

2(1 + ϕ(0, t))2
≤ CE(t)D(t)2. (64)

Making use of Proposition 1 and 2 shows

sup
0≤t≤T

∫
R+

ϕuxdx ≤ C sup
0≤t≤T

‖ϕ‖L2 sup
0≤t≤T

‖ux‖L2

≤ C sup
0≤t≤T

‖ϕ‖L2 sup
0≤t≤T

‖ϕt‖L2

≤ Cδ20 + Cδ

∫ T

0

D(t)2dt.

(65)

Via integration by parts, Proposition 1 and 2, we can prove∫ T

0

ϕ(0, t)ut(0, t)dt = ϕ(0, t)u(0, t)
∣∣∣t=T
t=0
−
∫ T

0

ϕt(0, t)u(0, t)dt

≤ sup
0≤t≤T

|ϕ(0, t)||u(0, t)|+ Cδ20 +

∫ T

0

|ϕt(0, t)||u(0, t)|dt

≤ 1

ω
sup

0≤t≤T
|ϕ(0, t)||ϕt(0, t)|+ Cδ20 + ω

∫ T

0

|u(0, t)|2dt

≤ Cδ20 + Cδ

∫ T

0

D(t)2dt.

(66)

Therefore, integrating (63) with time t over [0, T ], then applying (64) ∼ (66) yields

sup
0≤t≤T

(‖ux‖2L2 + |u(0, t)|2) +

∫ T

0

‖ut‖2L2dt ≤ Cδ20 + Cδ

∫ T

0

D(t)2dt. (67)

It should be noted that the case of k = 1 can be treated in a similar argument as
k = 0. Hence, we complete the proof.

We are now ready to establish the L2 energy estimates of the spatial derivatives.

Proposition 4. Assume (ϕ, u) is the classical solution of (27) satisfying the as-
sumptions in Theorem 3.1 and the a-priori assumption (42). Then we obtain the
estimate for any given T > 0 satisfying

sup
0≤t≤T

‖(ϕx, ux)‖2H3 +

∫ T

0

(‖ϕx‖2H3 + ‖uxx‖2H3)dt

≤ Cδ20 + Cδ

∫ T

0

D(t)2dt.
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Proof. (27)2 is reformulated into the following form

uxx =
1 + ϕ

µ
ut +

1 + ϕ

µ
p(1 + ϕ)x +

uxϕx
1 + ϕ

. (68)

It then follows from (27)1 and (68) that

ϕtx =
1 + ϕ

µ
ut +

1 + ϕ

µ
p(1 + ϕ)x +

uxϕx
1 + ϕ

. (69)

Multiplying (69) by ϕx, then integrating with respect to x in R+ gives

1

2

d

dt
‖ϕx‖2L2 +

∫
R+

c2(1 + ϕ)

µ
ϕ2
xdx =

∫
R+

(
1 + ϕ

µ
ut +

uxϕx
1 + ϕ

)ϕxdx. (70)

Thus, by Young’s inequality, we deduce∫
R+

(
1 + ϕ

µ
ut +

uxϕx
1 + ϕ

)ϕxdx

≤ ε
∫
R+

c2(1 + ϕ)

µ
ϕ2
xdx+ C‖ut‖2L2 + CE(t)D(t)2.

(71)

Because of the smallness of ε and the a-priori assumption (42), one has

1

2

d

dt
‖ϕx‖2L2 +

1

2

∫
R+

c2(1 + ϕ)

µ
ϕ2
xdx ≤ C‖ut‖2L2 + CE(t)D(t)2. (72)

Integrating time t from 0 to T yields

sup
0≤t≤T

‖ϕx‖2L2 +

∫ T

0

‖ϕx‖2L2dt ≤ Cδ20 + Cδ

∫ T

0

D(t)2dt, (73)

here we have made use of Proposition 3. Since ϕt = ux, it is easy to verify from
Proposition 2 that

sup
0≤t≤T

‖ux‖2L2 ≤ Cδ20 + Cδ

∫ T

0

D(t)2dt. (74)

Take L2 inner product on (68)

‖uxx‖L2 ≤ C(1 + ‖ϕ‖L∞)‖ut‖L2 + C(1 + ‖ϕ‖L∞)‖ϕx‖L2 + C‖ux‖L∞‖ϕx‖L2

≤ C(1 + δ)‖ut‖L2 + C(1 + δ)‖ϕx‖L2 .
(75)

By (73) and Proposition 3, we integrate time t in [0, T ] to gain∫ T

0

‖uxx‖2L2dt ≤ Cδ20 + Cδ

∫ T

0

D(t)2dt. (76)

Finally, collecting above inequalities together gives the desired estimate as follows

sup
0≤t≤T

(‖ϕx‖2L2 + ‖ux‖2L2) +

∫ T

0

(‖ϕx‖2L2 + ‖uxx‖2L2)dt

≤ Cδ20 + Cδ

∫ T

0

D(t)2dt.

(77)

The estimate for high order spatial derivatives could be treated in a similar proce-
dure. This completes the proof of the proposition.
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4.1. The proof of Theorem 3.1.

Proof. Combining Proposition 1, 2 and 4 together to obtain

sup
0≤t≤T

E(t)2 +

∫ T

0

D(t)2dt ≤ Cδ20 + Cδ

∫ T

0

D(t)2dt. (78)

Due to the smallness of δ, it is easy to verify

sup
0≤t≤T

E(t)2 +

∫ T

0

D(t)2dt ≤ Cδ20 . (79)

When the initial data satisfy Cδ20 ≤ 1
4δ

2, we could close the a-priori assumption
(42). Then, based on the continuous method, the global existence of solution is
obtained. The reader can refer to [21] for details. This completes the proof of
Theorem 3.1.

5. The estimates of Green’s function for IBVP. To obtain the Green’s func-
tion of (35), we construct a specific solution for x ≥ 0 as following

Ũ(x, t) = (ϕ̃, ũ)t =

∫ ∞
0

G(x− y, t)U0(y)dy, (80)

where G(x, t) denotes the Green’s function of Cauchy problem satisfying{
(∂t +A∂x −B∂xx)G(x, t) = 0 x ∈ R, t > 0,

G(x, 0) = δ(x)I2.
(81)

We are able to verify that Ũ(x, t) solves the following system

ϕ̃t − ũx = 0, x > 0, t > 0,

ũt − c2ϕ̃x = µũxx,

(aũx + bũ)|x=0 = m(t),

(ϕ̃, ũ)|x→+∞ = (0, 0),

(ϕ̃, ũ)|t=0 = (ϕ0, u0),

(82)

where boundary term m(t) is given by

m(t) = (a∂t, b)

∫ ∞
0

G(−y, t)U0(y)dy. (83)

To make the initial data become zero, we define some new variables

ϕ̄ = ϕ̃− ϕ, ū = ũ− u, (84)

where (ϕ, u) is the solution of (35). Moreover, we have

ϕ̄t − ūx = 0, x > 0, t > 0,

ūt − c2ϕ̄x = µūxx,

(aūx + bū)|x=0 = m(t),

(ϕ̄, ū)|x→+∞ = (0, 0),

(ϕ̄, ū)|t=0 = (0, 0).

(85)

By a suitable combination, we obtain{
ϕ̄tt − c2ϕ̄xx = µϕ̄txx,

ūtt − c2ūxx = µūtxx.
(86)
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Making use of Laplace transform in time yields{
s2L[ϕ̄]− c2L[ϕ̄]xx = µsL[ϕ̄]xx,

s2L[ū]− c2L[ū]xx = µsL[ū]xx.
(87)

Solving above equations and utilizing (85)4 give

L[ϕ̄] = c1e
−σx, L[ū] = c2e

−σx, (88)

where c1, c2 denote unknowns and σ = s√
µs+c2

> 0. Taking Laplace transform in

(85)1 and (85)3 yields {
sL[ϕ̄]− L[ū]x = 0,

(asL[ϕ̄] + bL[ū])|x=0 = L[m](s).
(89)

Substituting (88) into (89) gives rise to{
c1s+ c2σ = 0,

c1as+ c2b = L[m](s).
(90)

We are able to solve c1, c2 as

c1 =
σ

s(aσ − b)
L[m](s), c2 =

1

b− aσ
L[m](s). (91)

To obtain the explicit formula of L[m](s), we take Laplace transform in (83)

L[m](s) = (as, b)

∫ ∞
0

L[G](−y, s)U0(y)dy. (92)

The remaining challenge is to estimate L[G](−y, s). Taking Fourier transform in x
and Laplace transform in t to (81) provides(

s −iξ
−ic2ξ s+ µξ2

)
L
[
F[G]

]
(ξ, s) = I2. (93)

After tedious computations, one has

L
[
F[G]

]
(ξ, s) =

1

s2 + (µs+ c2)ξ2

(
s+ µξ2 iξ
ic2ξ s

)
. (94)

It is easy to observe

s2 + (µs+ c2)ξ2 = (µs+ c2)(σ2 + ξ2). (95)

Applying Residue Theorem gives the following results for (x 6= 0)

1

2π

∫
R

eixξ

σ2 + ξ2
dξ =

e−σ|x|

2σ
,

1

2π

∫
R

iξeixξ

σ2 + ξ2
dξ = − sign(x)

2
e−σ|x|,

(96)

where sign(x) denotes symbol function. Then we are able to show

L[G](x, s) =

(
µσ2

s2 δ(x) + c2σ3

2s3 e
−σ|x| − σ2

2s2 sign(x)e−σ|x|

− c
2σ2

2s2 sign(x)e−σ|x| σ
2se
−σ|x|

)
. (97)

On the one hand, substituting x = −y(y > 0) into (97) leads to

L[G](−y, s) =
e−σy

2s3

(
c2σ3 σ2s
c2σ2s σs2

)
. (98)
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On the other hand, when x > 0, y > 0, from (97) we have

L[G](x+ y, s) =
e−σ(x+y)

2s3

(
c2σ3 −σ2s
−c2σ2s σs2

)
. (99)

By (92) and (98), it is easy to verify

L[m](s) =

∫ ∞
0

(aσ + b)

2s2
(c2σ2ϕ0 + σsu0)e−σydy. (100)

Consequently, one could combine (88), (91) and (99) to obtain

L[ϕ̄](x, s) =
aσ + b

aσ − b

∫ ∞
0

e−σ(x+y)

2s3
(c2σ3ϕ0 + σ2su0)dy,

L[ū](x, s) = −aσ + b

aσ − b

∫ ∞
0

e−σ(x+y)

2s3
(c2σ2sϕ0 + σs2u0)dy.

(101)

Compared with (99), it is obvious to justify

L[Ū ](x, s) =
aσ + b

aσ − b

∫ ∞
0

L[G](x+ y, s)

(
1 0
0 −1

)
U0(y)dy. (102)

It should be emphasized that the Laplace transform of Ũ is computed as

L[Ũ ](x, s) =

∫ ∞
0

L[G](x− y, s)U0(y)dy. (103)

Thanks to (102),(103) and (84), which implies

L[U ](x, s) =

∫ ∞
0

(
L[G](x− y, s)− aσ + b

aσ − b
L[G](x+ y, s)

(
1 0
0 −1

))
U0(y)dy.

Thus, the Laplace transform of Green’s function for IBVP is expressed as

L[G](x, s; y) = L[G](x− y, s)− (1 +
2b

aσ − b
)L[G](x+ y, s)

(
1 0
0 −1

)
. (104)

It is easy to see when a = 0, taking inverse Laplace transform gives rise to

G(x, t; y) = G(x− y, t) +G(x+ y, t)

(
1 0
0 −1

)
. (105)

In a same manner to treat b = 0, it asserts

G(x, t; y) = G(x− y, t)−G(x+ y, t)

(
1 0
0 −1

)
. (106)

In what follows, we mainly consider the case of ab < 0. Denote

h(x, t) , L−1[
2b

aσ − b
L[G](x, s)]. (107)

It is noticeable that h(x, t) satisfies the following ordinary equation

a∂xh(x, t) + bh(x, t) = −2bG(x, t). (108)

After a simple calculation, the solution of h(x, t) is expressed as

h(x, t) = −2ω

∫ ∞
0

e−ωzG(z + x, t)dz, (109)

where ω = − b
a > 0. It is natural to take inverse Laplace transform on (104) to get

G(x, t; y) = G(x− y, t)−
(
G(x+ y, t) + h(x+ y, t)

)( 1 0
0 −1

)
. (110)
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With Lemma 2.2 and Lemma 2.3, one has the following lemma for the estimate of
G(x, t; y) ∣∣∣∂αx (G(x, t; y)− e−

c2

µ t(δ(x− y)− δ(x+ y))I0
)∣∣∣

= O(1)t−
1
2−

α
2 (e−

(x−y−ct)2
2µt + e−

(x−y+ct)2

2µt + e−
(x+y−ct)2

(2µ+ε)t )

+O(1)(e−
|x−y|+t

C + e−
|x+y|+t

C ).

(111)

We hence complete the proof of Theorem 3.2.

6. Nonlinear pointwise estimates of classical solution. Considering the non-
linear system as below 

ϕt − ux = 0,

ut − c2ϕx = µuxx + f,

(ϕ, u)|t=0 = (ϕ0, u0),

(112)

where f represents nonlinear term satisfying

f = f̃x = −
(
p(1 + ϕ)− p(1)− p′(1)ϕ+

µϕux
1 + ϕ

)
x
. (113)

Denote

U = (ϕ, u)t, F̃ = (0, f̃)t, F = (0, f)t. (114)

In the sense of small solution, we can obtain

f̃ = O(1)
(
|ϕ|2 + |ϕ||ux|

)
, f = O(1)

(
|ϕ||ϕx|+ |ϕx||ux|+ |ϕ||uxx|

)
. (115)

In order to provide an additional derivative for the initial data, we define

W0(x) ,
∫ ∞
x

U0(y)dy, W ′0(x) = −U0(x). (116)

To investigate the poinwise behavior of the solution for (112), we first introduce the
following ansatz

Λ(t) = sup
0≤s≤t

{
‖UΦ−1‖L∞x + (1 + s)

(
log(2 + s)

)−1‖Ux‖L∞x + (1 + s)
1
2 ‖uxx‖L∞x

}
.

(117)
From the ansatz, it is easy to verify

|U | ≤ Λ(t)Φ(x, t), |Ux| ≤ (1 + t)−1 log(2 + t)Λ(t), |uxx| ≤ (1 + t)−
1
2 Λ(t).

(118)
Indeed, utilizing (115) and (118) yields

|F̃ (x, t)| = O(1)Λ(t)2
[
(1 + t)−

1
4ψ 3

2
(x, t; c) + (1 + t)−

1
2φ1(x, t; c)ψ 3

4
(x, t; c)

]
, (119)

and

|F (x, t)| = O(1)Λ(t)2
[
(1 + t)−

1
4ψ 3

2
(x, t; c) + (1 + t)−

1
8φ1(x, t; c)ψ 3

4
(x, t; c)

]
.

(120)
Furthermore, by (119) we immediately get

|F̃ (0, t)| ≤ C(1 + t)−
7
4 Λ(t)2. (121)

Once the spatial variable is ignored, the time decay rate for F̃ (x, t), F (x, t) can be
calculated as

|F̃ (x, t)| ≤ C(1 + t)−1Λ(t)2, |F (x, t)| ≤ C(1 + t)−1Λ(t)2. (122)
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For simplicity, we decompose the Green function G(x, t; y) into two parts

G(x, t; y) = Gs(x, t; y) + G`(x, t; y). (123)

Here Gs(x, t; y) is the short wave part related to singular part in Green’s function
G(x, t; y). G`(x, t; y) represents the long wave part, which dominates the long time
behavior. They are given by

Gs(x, t; y) = e−
c2

µ t(δ(x− y)− δ(x+ y))I0, (124)

and
G`(x, t; y) , G`1(x, t; y) + G`2(x, t; y), (125)

where G`1(x, t; y) and G`2(x, t; y) satisfy the following estimates for any α > 0

|∂αxG`1(x, t; y)| = O(1)t−
1
2−

α
2 (e−

(x−y−ct)2
2µt + e−

(x−y+ct)2

2µt + e−
(x+y−ct)2

(2µ+ε)t ),

|∂αxG`2(x, t; y)| = O(1)(e−
|x−y|+t

C + e−
|x+y|+t

C ).
(126)

To close the ansatz assumption, we first establish the pointwise estimate of solution
U(x, t) and Ux(x, t) as follows.

Proposition 5. Under the assumptions of Theorem 3.3, there exists a positive
constant C such that

|U(x, t)| ≤ C(δ0 + Λ(t)2)Φ(x, t),

|Ux(x, t)| ≤ C(1 + t)−1 log(2 + t)(δ0 + Λ(t)2).
(127)

Proof. By Duhamel’s principle, the solution U(x, t) is expressed as

U(x, t) =

∫ ∞
0

G(x, t; y)U0(y)dy +

∫ t

0

∫ ∞
0

G(x, t− s; y)F (y, s)dyds

, I + J.

(128)

We begin to evaluate the first term by applying (123) ∼ (125)

I =

∫ ∞
0

G`1(x, t; y)U0(y)dy +

∫ ∞
0

G`2(x, t; y)U0(y)dy +

∫ ∞
0

Gs(x, t; y)U0(y)dy

, I1 + I2 + I3.

(129)
Since the case when 0 ≤ t ≤ 1 can be handled easily by using the assumption of
Theorem 3.3, we only focus on t > 1 in the following. In terms of I1, changing the
initial data U0 into W ′0, then taking integration by parts yields

|I1| = O(1)t−
1
2 (

2∑
i=1

e−
(x−λit)

2

2µt + e−
(x−ct)2
(2µ+ε)t )|W0(0)|

+O(1)

∫ ∞
0

t−1(

2∑
i=1

e−
(x−y−λit)

2

2µt + e−
(x−y−ct)2

(2µ+ε)t )|W0(y)|dy

, I11 + I12.

(130)

As a result of (38) and Lemma 2.1, it is easy to confirm

I11 ≤ Cδ0(1 + t)−
1
2 e−

(x−c(1+t))2

(2µ+ε)(1+t)

≤ Cδ0(1 + t)
1
4ψ 3

2
(x, t; c)

≤ Cδ0Φ(x, t).

(131)
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As for I12, using Lemma 2.4 and t > 1 gives rise to

I12 ≤ Cδ0
∫ ∞
0

(1 + t)−1(

2∑
i=1

e−
(x−y−λi(1+t))2

2µ(1+t) + e−
(x+y−c(1+t))2

(2µ+ε)(1+t) )(1 + y2)−rdy

≤ Cδ0Φ(x, t).

(132)

It then follows from (131) and (132) to obtain

|I1| ≤ Cδ0Φ(x, t). (133)

In order to estimate I2, with the help of Lemma 2.1 and r ≥ 5
8 , we find

|I2| ≤ Cδ0
∫ x

2

0

e−
|x−y|+t

C (1 + y2)−rdy + Cδ0

∫ ∞
x
2

e−
|x−y|+t

C (1 + y2)−rdy

≤ Cδ0e−
x+t
2C + Cδ0e

− t
C (1 + x2)−r

≤ Cδ0Φ(x, t).

(134)

For I3, we have the following estimate from Lemma 2.1

|I3| ≤ Cδ0e−
c2

µ t(1 + x2)−r ≤ Cδ0Φ(x, t). (135)

Consequently, we summarize above results together to get

|I| ≤ |I1|+ |I2|+ |I3| ≤ Cδ0Φ(x, t). (136)

The next goal is to deal with J coming from nonlinear coupling. We rewrite it as

J =

∫ t

0

∫ ∞
0

G`1(x, t− s; y)F (y, s)dyds+

∫ t

0

∫ ∞
0

G`2(x, t− s; y)F (y, s)dyds

+

∫ t

0

∫ ∞
0

Gs(x, t− s; y)F (y, s)dyds

, J1 + J2 + J3.

(137)

Integration by parts on J1 with respect to y gives

|J1| = O(1)

∫ t

0

∫ ∞
0

(t− s)−1(

2∑
i=1

e−
(x−y−λi(t−s))

2

2µ(t−s) + e−
(x+y−c(t−s))2

(2µ+ε)(t−s) )|F̃ (y, s)|dyds

+O(1)

∫ t

0

(t− s)− 1
2 (

2∑
i=1

e−
(x−λi(t−s))

2

2µ(t−s) + e−
(x−c(t−s))2
(2µ+ε)(t−s) )|F̃ (0, s)|ds

, J11 + J12.

(138)
It then follows from (119) that

J11 . Λ(t)2
∫ t

0

∫ ∞
−∞

(t− s)−1(1 + s)−
1
4 e−

(x−y−c(t−s))2
2µ(t−s) ψ 3

2
(y, s; c)dyds

+ Λ(t)2
∫ t

0

∫ ∞
−∞

(t− s)−1(1 + s)−
1
4 e−

(x−y+c(t−s))2
2µ(t−s) ψ 3

2
(y, s; c)dyds

+ Λ(t)2
∫ t

0

∫ ∞
−∞

(t− s)−1(1 + s)−
1
4 e−

(x−y−c(t−s))2
(2µ+ε)(t−s) ψ 3

2
(y, s;−c)dyds
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+ Λ(t)2
∫ t

0

∫ ∞
−∞

(t− s)−1(1 + s)−
1
2 e−

(x−y−c(t−s))2
2µ(t−s) φ1(y, s; c)ψ 3

4
(y, s; c)dyds

+ Λ(t)2
∫ t

0

∫ ∞
−∞

(t− s)−1(1 + s)−
1
2 e−

(x−y+c(t−s))2
2µ(t−s) φ1(y, s; c)ψ 3

4
(y, s; c)dyds

+ Λ(t)2
∫ t

0

∫ ∞
−∞

(t− s)−1(1 + s)−
1
2 e−

(x−y−c(t−s))2
(2µ+ε)(t−s) φ1(y, s;−c)ψ 3

4
(y, s;−c)dyds

, L1 + L2 + L3 + L4 + L5 + L6.

Let α = 0, β = 1
2 , λ = c, µ̄ = 2µ. Then by Lemma 2.5 we have

L1 = O(1)Λ(t)2(1 + t)
1
4ψ 3

2
(x, t; c) = O(1)Φ(x, t)Λ(t)2. (139)

Set α = 0, β = 1
2 , λ = −c, λ′ = c, µ̄ = 2µ. It can be concluded from Lemma 2.6 to

get

L2 = O(1)Λ(t)2(1 + t)
1
4 [ψ 3

2
(x, t;−c) + ψ 3

2
(x, t; c)]

+O(1)Λ(t)2(1 + t)
3
8 [φ1(x, t;−c)ψ 3

4
(x, t;−c) + φ1(x, t; c)ψ 3

4
(x, t; c)]

= O(1)Φ(x, t)Λ(t)2,

(140)

where we have used that when −c(1+ t)+c
√

1 + t ≤ x ≤ c(1+ t)−c
√

1 + t, it holds

c
√

1 + t ≤ |x+ c(1 + t)| ≤ 2c(1 + t), c
√

1 + t ≤ |x− c(1 + t)| ≤ 2c(1 + t). (141)

Obviously, one can deduce

|x+ c(1 + t)|− 1
2 |x− c(1 + t)|− 1

2

. (1 + t)
3
8 (φ1(x, t;−c)ψ 3

4
(x, t;−c) + φ1(x, t; c)ψ 3

4
(x, t; c)).

(142)

With the help of Lemma 2.5, choosing α = 0, β = 1
2 , λ = −c, µ̄ = 2µ+ ε gives

L3 = O(1)Λ(t)2(1 + t)
1
4ψ 3

2
(x, t;−c) = O(1)Φ(x, t)Λ(t)2. (143)

Substituting α = 0, β = 1, λ = c and µ̄ = 2µ into Lemma 2.7 yields

L4 = O(1)Λ(t)2[log(2 + t)φ1(x, t; c)ψ 3
4
(x, t; c) + ψ 3

2
(x, t; c)]

= O(1)Λ(t)2[(1 + t)
3
8φ1(x, t; c)ψ 3

4
(x, t; c) + (1 + t)

1
4ψ 3

2
(x, t; c)]

= O(1)Φ(x, t)Λ(t)2.

(144)

Via Lemma 2.8, let α = 0, β = 1, λ = c, λ′ = −c, µ̄ = 2µ, we are able to show

L5 = O(1)Φ(x, t)Λ(t)2. (145)

The estimate of L6 can be derived in a same manner as L4, which implies

L6 = O(1)Φ(x, t)Λ(t)2. (146)

In summary, it is easy to obtain the following estimate

J11 = L1 + L2 + L3 + L4 + L5 + L6 = O(1)Φ(x, t)Λ(t)2. (147)
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As for the term of J12, making use of (121) gives rise to

J12 . Λ(t)2
∫ t

0

(t− s)− 1
2 (1 + s)−

7
4 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

+ Λ(t)2
∫ t

0

(t− s)− 1
2 (1 + s)−

7
4 e−

(x+c(t−s))2
(2µ+ε)(t−s) ds

, X1 +X2.

(148)

We write X1 as follows

X1 =Λ(t)2
∫ t

2

0

(t− s)− 1
2 (1 + s)−

7
4 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

+ Λ(t)2
∫ t

t
2

(t− s)− 1
2 (1 + s)−

7
4 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

,N1 +N2.

(149)

In order to estimate N1, we break the integration interval into two parts:
(1) |x− c(1 + t)| ≤

√
1 + t

N1 . Λ(t)2
∫ t

2

0

t−
1
2 (1 + s)−

7
4 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

. Λ(t)2(1 + t)−
1
2

∫ t
2

0

(1 + s)−
7
4 ds

. Λ(t)2(1 + t)
1
4ψ 3

2
(x, t; c)

. Φ(x, t)Λ(t)2.

(150)

(2) |x− c(1 + t)| >
√

1 + t, we use the decomposition as below

R1 = {0 ≤ s ≤ t

2
; |x− c(1 + t)| ≥ 2cs}, R2 = {0 ≤ s ≤ t

2
; |x− c(1 + t)| < 2cs}.

(151)
It is easy to get

N1 . Λ(t)2(1 + t)−
1
2

∫
R1

(1 + s)−
7
4 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

+ Λ(t)2(1 + t)−
1
2

∫
R2

(1 + s)−
7
4 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds.

(152)

Denote the first term on the right-hand side of (152) as N11. It is computed as

N11 . Λ(t)2(1 + t)−
1
2

∫ t
2

0

(1 + s)−
7
4 e−

(x−c(1+t))2

C(1+t) ds

. Λ(t)2(1 + t)−
1
2 e−

(x−c(1+t))2

C(1+t)

. Λ(t)2(1 + t)
1
4ψ 3

2
(x, t; c)

. Φ(x, t)Λ(t)2.

(153)

The second term on the right-hand side of (152) called N12 can be estimated as
follows

N12 . Λ(t)2(1 + t)−
1
2ψ 3

2
(x, t; c)

∫ t
2

0

(1 + s)−
1
4 ds
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. Λ(t)2(1 + t)
1
4ψ 3

2
(x, t; c)

. Φ(x, t)Λ(t)2.
(154)

We conclude from (153) and (154) to have

N1 = O(1)Φ(x, t)Λ(t)2. (155)

In the next part, we plan to deal with N2. Similarly, it can be decomposed into two
cases: (1) |x− c(1 + t)| ≤

√
1 + t:

N2 . Λ(t)2
∫ t

t
2

(t− s)− 1
2 (1 + s)−

7
4 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

. Λ(t)2(1 + t)−
7
4

∫ t

t
2

(t− s)− 1
2 ds

. Λ(t)2(1 + t)
1
4ψ 3

2
(x, t; c)

. Φ(x, t)Λ(t)2.

(156)

(2) |x − c(1 + t)| >
√

1 + t, as mentioned earlier, the integral domain are divided
into two parts

R3 =
{ t

2
≤ s ≤ t; |x− c(1 + t)| ≥ 2cs

}
, R4 =

{ t
2
≤ s ≤ t; |x− c(1 + t)| < 2cs

}
.

(157)
To continue the current estimates, using the above decomposition gives

N2 . Λ(t)2(1 + t)−
7
4

∫
R3

(t− s)− 1
2 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

+ Λ(t)2(1 + t)−
7
4

∫
R4

(t− s)− 1
2 e−

(x−c(t−s))2
(2µ+ε)(t−s) ds

, N21 +N22.

(158)

With regard to the first term N21, applying the Lemma 2.1 yields

N21 . Λ(t)2(1 + t)−
7
4

∫ t

t
2

(t− s)− 1
2 e−

(x−c(1+t))2

C(1+t) ds

. Λ(t)2(1 + t)−
5
4 e−

(x−c(1+t))2

C(1+t)

. Λ(t)2(1 + t)
1
4ψ 3

2
(x, t; c)

. Φ(x, t)Λ(t)2.

(159)

Similar argument also applies to N22, which implies

N22 . Λ(t)2ψ 3
2
(x, t; c)

∫ t

t
2

(t− s)− 1
2 (1 + s)−

1
4 ds

. Λ(t)2(1 + t)
1
4ψ 3

2
(x, t; c)

. Φ(x, t)Λ(t)2.

(160)

It together with (159) and (160) results in

N2 = O(1)Φ(x, t)Λ(t)2, (161)

which also leads to

X1 = N1 +N2 = O(1)Φ(x, t)Λ(t)2. (162)
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The same result is derived for X2 in the same way as X1. Thus, it holds

|J1| = J11 + J12 = O(1)Φ(x, t)Λ(t)2. (163)

As for J2, due to x, y ≥ 0, we prove the following inequality by (120)

|J2| ≤ CΛ(t)2
∫ t

0

∫ ∞
0

e−
|x−y|+t−s

C (1 + s)−
1
4ψ 3

2
(y, s; c)dyds

+ CΛ(t)2
∫ t

0

∫ ∞
0

e−
|x−y|+t−s

C (1 + s)−
1
8φ1(y, s; c)ψ 3

4
(y, s; c)dyds.

(164)

We only consider the first term named T1 on the right-hand side of (164). It is easy
to verify

T1 . Λ(t)2
∫ t

0

∫ x
2

0

e−
|x−y|+t−s

C (1 + s)−
1
4ψ 3

2
(y, s; c)dyds

+ Λ(t)2
∫ t

0

∫ ∞
x
2

e−
|x−y|+t−s

C (1 + s)−
1
4ψ 3

2
(y, s; c)dyds

, T11 + T12.

(165)

Utilizing Lemma 2.1 gives

T11 . Λ(t)2
∫ t

0

e−
x

4C e−
t−s
C (1 + s)−1ds

. e−
x

4C (1 + t)−1Λ(t)2

. Φ(x, t)Λ(t)2.

(166)

It remains the challenge for T12. We break the integration region into two parts

T12 ≤ Λ(t)2
∫ t

0

∫
R5

e−
|x−y|+t−s

C (1 + s)−
1
4ψ 3

2
(y, s; c)dyds

+ Λ(t)2
∫ t

0

∫
R6

e−
|x−y|+t−s

C (1 + s)−
1
4ψ 3

2
(y, s; c)dyds

, H1 +H2,

(167)

where

R5 = {y ≥ x

2

∣∣∣|y − c(1 + s)| ≥ c(1 + s)}, R6 = {y ≥ x

2

∣∣∣|y − c(1 + s)| < c(1 + s)}.

For y ∈ R5, it is obvious to get

(y−c(1+s))2 ≥ 1

2
(y−c(1+s))2+

1

2
c2(1+s)2 ≥ 1

4
(|y−c(1+s)|+c(1+s))2 ≥ 1

4
|y|2.

In conclusion, we obtain

H1 ≤ CΛ(t)2
∫ t

2

0

∫
R5

e−
|x−y|+t−s

C (1 + s)−
1
4 (1 + s+ y2)−

3
4 dyds

+ CΛ(t)2
∫ t

t
2

∫
R5

e−
|x−y|+t−s

C (1 + s)−
1
4 (1 + s+ y2 + (y − c(1 + s))2)−

3
4 dyds

≤ CΛ(t)2
∫ t

2

0

e−
t−s
C (1 + s)−

1
4 (1 + x2)−

3
4 ds
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+ CΛ(t)2
∫ t

t
2

e−
t−s
C (1 + s)−

1
4 (1 + s+ x2 + c2(1 + s)2)−

3
4 ds

≤ CΛ(t)2(1 + t)
1
4ψ 3

2
(x, t;−c)

≤ CΦ(x, t)Λ(t)2.

Notice that applying the definition of R6 indicates

x

2
≤ y ≤ 2c(1 + s) ≤ 2c(1 + t)⇒ |x− c(1 + t)| ≤ 3c(1 + t). (168)

Thus it holds

(1 + t)−
5
4 ≤ Cφ1(x, t; c)ψ 3

4
(x, t; c). (169)

In terms of H2, we are able to prove

H2 ≤ CΛ(t)2
∫ t

0

e−
t−s
C (1 + s)−1ds

≤ CΛ(t)2(1 + t)−1

≤ CΛ(t)2(1 + t)
3
8φ1(x, t; c)ψ 3

4
(x, t; c)

≤ CΦ(x, t)Λ(t)2,

(170)

which implies

T1 ≤ CΦ(x, t)Λ(t)2.

In the same way, we evaluate the second term on the right-hand side of (164) named
T2 as

T2 ≤ CΦ(x, t)Λ(t)2.

To this end, we conclude from above results that

|J2| ≤ CΦ(x, t)Λ(t)2. (171)

After a direct calculation, it is significant to verify

I0F (y, s) =

(
1 0
0 0

)
(0, f)t = 0, (172)

which implies J3 = 0. Combining the estimates of J1, J2, J3 yields

|J | ≤ |J1|+ |J2|+ |J3| ≤ CΦ(x, t)Λ(t)2. (173)

It together with (136) also leads to

|U(x, t)| ≤ |I|+ |J | ≤ C(δ0 + Λ(t)2)Φ(x, t). (174)

In the following, we intend to deduce the estimate of Ux(x, t). Applying Theorem
3.1 gives

|Ux(x, t)| ≤ C‖U(x, t)‖H4 ≤ Cδ0. (175)

Thus for 0 ≤ t ≤ 2, we are able to show

|Ux(x, t)| ≤ Cδ0 ≤ Cδ0(1 + t)−1 log(2 + t). (176)

Hence, the case of t > 2 is mainly taken into consideration in the following. We
solve the solution Ux(x, t) as

Ux(x, t) =

∫ ∞
0

∂xG(x, t; y)U0(y)dy +

∫ t

0

∫ ∞
0

∂xG(x, t− s; y)F (y, s)dyds. (177)
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To cope with the first term on the right-hand side of (177), we write it as∫ ∞
0

∂xG(x, t; y)U0(y)dy =

∫ ∞
0

∂xG`(x, t; y)U0(y)dy +

∫ ∞
0

∂xGs(x, t; y)U0(y)dy.

(178)
In terms of (125), (126) and the assumptions in Theorem 3.3, one has∣∣∣ ∫ ∞

0

∂xG`(x, t; y)U0(y)dy
∣∣∣ ≤ C(1 + t)−1

∫ ∞
0

|U0(y)|dy ≤ C(1 + t)−1δ0. (179)

Applying the expression of Gs(x, t; y) gives rise to∣∣∣ ∫ ∞
0

∂xGs(x, t; y)U0(y)dy
∣∣∣ ≤ Ce− c2µ t|U ′0(x)| ≤ C(1 + t)−1δ0. (180)

Therefore, we conclude from above inequalities to gain∣∣∣ ∫ ∞
0

∂xG(x, t; y)U0(y)dy
∣∣∣ ≤ C(1 + t)−1δ0. (181)

In order to deal with the second term in (177), it is easy to verify∫ t

0

∫ ∞
0

∂xG(x, t− s; y)F (y, s)dyds

=

∫ t

0

∫ ∞
0

∂xG`1(x, t− s; y)F (y, s)dyds+

∫ t

0

∫ ∞
0

∂xG`2(x, t− s; y)F (y, s)dyds

+

∫ t

0

∫ ∞
0

∂xGs(x, t− s; y)F (y, s)dyds.

(182)
To avoid the singularity of time, we divide the time interval into [0, t−1] and [t−1, t].
It holds∫ t

0

∫ ∞
0

∂xG`1(x, t− s; y)F (y, s)dyds

=

∫ t−1

0

∫ ∞
0

∂xG`1(x, t− s; y)F (y, s)dyds+

∫ t

t−1

∫ ∞
0

∂xG`1(x, t− s; y)F (y, s)dyds.

(183)
Denote the first term on the right-hand side of (183) as Q1. Integration by parts
gives

Q1 = −
∫ t−1

0

∂xG`1(x, t− s, 0)F̃ (0, s)ds−
∫ t−1

0

∫ ∞
0

∂2xG`1(x, t− s; y)F̃ (y, s)dyds.

Thanks to (121) and (122), it leads us to obtain∣∣∣ ∫ t−1

0

∂xG`1(x, t− s, 0)F̃ (0, s)ds
∣∣∣

≤ CΛ(t)2
∫ t−1

0

(t− s)−1(1 + s)−
7
4 ds

≤ CΛ(t)2
∫ t

2

0

(t− s)−1(1 + s)−
7
4 ds+ CΛ(t)2

∫ t−1

t
2

(t− s)−1(1 + s)−
7
4 ds

≤ C(1 + t)−1Λ(t)2.

(184)
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In the same way, we have∣∣∣ ∫ t−1

0

∫ ∞
0

∂2xG`1(x, t− s; y)F̃ (y, s)dyds
∣∣∣

≤ CΛ(t)2
∫ t−1

0

(t− s)−1(1 + s)−1ds

≤ CΛ(t)2
∫ t

2

0

(t− s)−1(1 + s)−1ds+ CΛ(t)2
∫ t−1

t
2

(t− s)−1(1 + s)−1ds

≤ C(1 + t)−1 log(2 + t)Λ(t)2.

(185)

Combing above results together gives

|Q1| ≤ C(1 + t)−1 log(2 + t)Λ(t)2. (186)

We now proceed to estimate the second term on the right-hand side of (183) named
Q2.

|Q2| ≤ CΛ(t)2
∫ t

t−1
(t− s)− 1

2 (1 + s)−1ds

≤ C(1 + t)−1Λ(t)2,

(187)

which together with (186) also leads to∣∣∣ ∫ t

0

∫ ∞
0

∂xG`1(x, t− s; y)F (y, s)dyds
∣∣∣ ≤ C(1 + t)−1 log(2 + t)Λ(t)2. (188)

What is left is to estimate the second term in (182). Making use of (125) yields∣∣∣ ∫ t

0

∫ ∞
0

∂xG`2(x, t− s; y)F (y, s)dyds
∣∣∣

≤ CΛ(t)2
∫ t

0

∫ ∞
0

(e−
|x−y|+t−s

C + e−
|x+y|+t−s

C )(1 + s)−1dyds

≤ CΛ(t)2
∫ t

0

e−
t−s
C (1 + s)−1ds

≤ C(1 + t)−1Λ(t)2.

(189)

The third term in (182) can be treated similarly as J3, which implies∫ t

0

∫ ∞
0

∂xGs(x, t− s; y)F (y, s)dyds = 0. (190)

Applying (188), (189) and (190) gives rise to∣∣∣ ∫ t

0

∫ ∞
0

∂xG(x, t− s; y)F (y, s)dyds
∣∣∣ ≤ C(1 + t)−1 log(2 + t)Λ(t)2. (191)

Thus, we are able to derive the following estimate for Ux(x, t) via (181) and (191)

|Ux(x, t)| ≤ C(1 + t)−1 log(2 + t)(δ0 + Λ(t)2). (192)

This completes the proof.

Proposition 6. Under the assumptions of Theorem 3.3, there exists a positive
constant C such that

|uxx(x, t)| ≤ C(1 + t)−
1
2 (δ0 + δ0Λ(t) + Λ(t)2). (193)



2632 HAILIANG LI, HOUZHI TANG AND HAITAO WANG

Proof. It is natural to verify that making use of Theorem 3.1 gives the estimate for
0 ≤ t ≤ 2

|Ut| ≤ ‖U‖H4 ≤ Cδ0 ≤ C(1 + t)−
1
2 δ0, |uxx| ≤ ‖U‖H4 ≤ Cδ0 ≤ C(1 + t)−

1
2 δ0.

Thus, the case of t > 2 is mainly taken into account in the next section. Differentiate
the system (112) with respect to time t

ϕtt − utx = 0,

utt − c2ϕtx = µutxx + ft,

(ϕt, ut)|t=0 = (ϕt(x, 0), ut(x, 0)),

(autx + but)|x=0 = 0.

(194)

Let us reformulate above system as the operator form
∂tUt +A∂xUt = B∂xxUt + Ft,

Ut(x, t = 0) = Ut(x, 0),

(a∂t b)Ut(0, t; y) = 0.

(195)

It is easy to verify that the Green’s function for system (195) is the same as G(x, t; y).
Thus, the solution is expressed as follows

Ut(x, t) =

∫ ∞
0

G(x, t; y)∂tU(y, 0)dy +

∫ t

0

∫ ∞
0

G(x, t− s; y)∂sF (y, s)dyds. (196)

In terms of (112), we have

∂tU(y, 0) = (u0(x)′,−p(1 + ϕ0(x))x + (
µu0(x)′

1 + ϕ0(x)
)x)t , (u0(x)′, g0(x)′)t, (197)

where g0 is defined as

g0(x) = −p(1 + ϕ0(x)) + p(1) +
µu0(x)′

1 + ϕ0(x)
.

Then via (123), the first term on the right-hand side of (196) is stated as below∫ ∞
0

G(x, t; y)∂tU(y, 0)dy =

∫ ∞
0

G`(x, t; y)∂tU(y, 0)dy+

∫ ∞
0

Gs(x, t; y)∂tU(y, 0)dy.

(198)
Integration by parts with x in R+ gives rise to∣∣∣ ∫ ∞

0

G`(x, t; y)∂tU(y, 0)dy
∣∣∣

≤
∣∣∣G`(x, t; 0)(u0(0), g0(0))t

∣∣∣+
∣∣∣ ∫ ∞

0

∂xG`(x, t; y)(u0(y), g0(y))tdy
∣∣∣

≤ C(1 + t)−
1
2 δ0.

(199)

Applying the definition of Gs(x, t; y) and assumptions on the initial data yields∣∣∣ ∫ ∞
0

Gs(x, t; y)∂tU(y, 0)dy
∣∣∣ ≤ C(1 + t)−

1
2 δ0, (200)

which together with (199) also leads to∣∣∣ ∫ ∞
0

G(x, t; y)∂tU(y, 0)dy
∣∣∣ ≤ C(1 + t)−

1
2 δ0. (201)
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We are in a position to deal with the nonlinear term in (196). It holds∫ t

0

∫ ∞
0

G(x, t− s; y)∂sF (y, s)dyds

=

∫ t

0

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds+

∫ t

0

∫ ∞
0

Gs(x, t− s; y)∂sF (y, s)dyds.

(202)
In order to avoid the singularity of time, we break the interval of time into [0, t− 1]
and [t− 1, t].∫ t

0

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds

=

∫ t−1

0

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds+

∫ t

t−1

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds.

(203)
Integration by parts with regard to time t gives∫ t−1

0

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds

=

∫ t−1

0

∫ ∞
0

∂tG`(x, t− s; y)F (y, s)dyds+

∫ ∞
0

G`(x, 1; y)F (y, t− 1)dy

−
∫ ∞
0

G`(x, t; y)F (y, 0)dy.

(204)

To estimate the first term in (204), making use of integration by parts with respect
to x yields∣∣∣ ∫ t−1

0

∫ ∞
0

∂tG`(x, t− s; y)F (y, s)dyds
∣∣∣

≤
∣∣∣ ∫ t−1

0

∫ ∞
0

∂txG`(x, t− s; , y)F̃ (y, s)dyds
∣∣∣+
∣∣∣ ∫ t−1

0

∂tG`(x, t− s; 0)F̃ (0, s)ds
∣∣∣

≤ CΛ(t)2
∫ t−1

0

(t− s)−1(1 + s)−1ds+ CΛ(t)2
∫ t−1

0

(t− s)−1(1 + s)−
7
4 ds

≤ C(1 + t)−
1
2 Λ(t)2.

(205)
What is left is to cope with the remaining terms in (204). It is easy to have∣∣∣ ∫ ∞

0

G`(x, 1; y)F (y, t−1)dy−
∫ ∞
0

G`(x, t; y)F (y, 0)dy
∣∣∣ ≤ C(1 + t)−

1
2 Λ(t)2. (206)

As a result, it holds∣∣∣ ∫ t−1

0

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds
∣∣∣ ≤ C(1 + t)−

1
2 Λ(t)2. (207)

Using integration by parts with respect to x to deduce the second term in (203)∣∣∣ ∫ t

t−1

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds
∣∣∣

≤
∣∣∣ ∫ t

t−1

∫ ∞
0

∂xG`(x, t− s; y)∂sF̃ (y, s)dyds
∣∣∣+
∣∣∣ ∫ t

t−1
G`(x, t− s; 0)∂sF̃ (0, s)ds

∣∣∣
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≤ C(δ0Λ(t) + Λ(t)2)

∫ t

t−1
(t− s)− 1

2 (1 + s)−
1
2 ds

≤ C(1 + t)−
1
2 (δ0Λ(t) + Λ(t)2),

(208)

where we have used Theorem 3.1 and Proposition 5 to show

|∂sF̃ (y, s)| ≤ C(|ϕ||uy|+ |uy|2 + |ϕ||usy|) ≤ C(1 + s)−
1
2 (δ0Λ(t) + Λ(t)2), (209)

and

|∂sF̃ (0, s)| ≤ C(1 + s)−
1
2 (δ0Λ(t) + Λ(t)2). (210)

Combing (208) and (207) together also leads to∣∣∣ ∫ t

0

∫ ∞
0

G`(x, t− s; y)∂sF (y, s)dyds
∣∣∣ ≤ C(1 + t)−

1
2 (δ0Λ(t) + Λ(t)2). (211)

Via (124), the second term in (202) is computed as∫ t

0

∫ ∞
0

Gs(x, t− s; y)∂sF (y, s)dyds = 0. (212)

As a result of (201), (211) and (212), we have

|Ut(x, t)| ≤ C(1 + t)−
1
2 (δ0 + δ0Λ(t) + Λ(t)2). (213)

To close the ansatz, we are going to derive the pointwise estimate of uxx. Applying
(68) and Proposition 5 yields

|uxx(x, t)| ≤ C(1 + |ϕ|)|ut|+ C(1 + |ϕ|)|nx|+ C|ux||ϕx|

≤ C(1 + t)−
1
2 (δ0 + δ0Λ(t) + Λ(t)2).

(214)

This completes the proof of the proposition.

6.1. The proof of Theorem 3.3.

Proof. Combining (118), Proposition 5 and Proposition 6 together yields

Λ(t) ≤ Cδ0 + Cδ0Λ(t) + CΛ(t)2. (215)

Since δ0 is sufficiently small, we deduce that there exists a constant C > 0 indepen-
dent of time such that

Λ(t) ≤ Cδ0. (216)

Then the pointwise estimates of solutions are stated as

|U(x, t)| ≤ Cδ0Φ(x, t),

|Ux(x, t)| ≤ Cδ0(1 + t)−1 log(2 + t),

|uxx(x, t)| ≤ Cδ0(1 + t)−
1
2 .

(217)

We hence complete the proof.
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