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Abstract

In this paper, we get the quantitative space-time behavior of the full Boltzmann equation with soft poten-
tials (—2 < y < 0) in the close to equilibrium setting, under some velocity decay assumption, but without
any Sobolev regularity assumption on the initial data. We find that both the large time and spatial behaviors
depend on the velocity decay of the initial data and the exponent y. The key step in our strategy is to obtain
the L° bound of a suitable weighted full Boltzmann equation directly, rather than using Green’s function
and Duhamel’s principle to construct the pointwise structure of the solution as in [25]. This provides a new
thinking in the related study.
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1. Introduction
1.1. The models
Consider the following Boltzmann equation:

F +& -V F=Q(F,F),
(1.1)
F(0,x,8) = Fo(x,§),

where F(t,x,&) is the distribution function of the particles at time ¢ > 0, position x =
(x1,x2,x3) € R3 and microscopic velocity &€ = (£, &, &3) € R3. The left-hand side of this equa-
tion models the transport of particles and the operator on the right-hand side models the effect of
collisions on the transport with

Q(F,G):% / &€ — & B®){F,G'+ G,F' — F.G — G.F}dé.dw.

R3x 82

Here the usual conventions, i.e., F = F(t,x,§), Fx = F(t,x,§), F' = F(t,x,&) and F, =
F(t,x,&,), are used.

In this paper, we consider the soft potentials (—2 < y < 0); and B(¢) satisfies the Grad’s
angular cutoff assumption

0< B(@) <C|cos?|,
for some constant C > 0. Moreover, the post-collisional velocities satisfy
E'=—[¢E-&) olo, §=E+[¢-E) olo,
and ¢ is defined by

1§ — &) - ol
& — &
It is well known that the global Maxwellians are steady-state solutions to the Boltzmann

equation (1.1). Therefore, it is natural to consider the Boltzmann equation (1.1) around a global
Maxwellian

cost =

ME =~ exp(TEL),
(2m)3/2 2
with the standard perturbation f (¢, x, £) to M as
F=M+M"Pf, Fo=M+nM"f,

where 1 > 0 is sufficiently small. After substituting F' and Fyp into (1.1), the equation for the
perturbation f is
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Of+&-Vif=Lf+T(f. f)

(1.2)
FO.5,6) = nfo(x, &) = L
9 9 = 0 9 = b
v M
where L = —v (&) + K is the linearized collision operator defined as

Lf =MTE[OM M f)+ oM £ M)
and I is the nonlinear operator defined as

T(f, f) = M7V2QMV2 £, M2 ).

It is well-known that the null space of L is a five-dimensional vector space with the orthonormal
basis { Xi}?:o’ where

%(|§|2—3>M1/2}, i=1,2,3.

Based on this property, we can introduce the macro-micro decomposition: let Py be the orthogo-
nal projection with respect to the L% inner product onto Ker(L), and P; =1d — Py.

Ker(L) ={xo0, xi, xa} = {Ml/z, M2,

1.2. Notation
Before the presentation of the main theorem, let us define some notations used in this pa-

per. We denote (£)° = (1 + |£|%)*/? and Ep = (D?* + |£1%)%/2, where D > 0, s € R. For the
microscopic variable £, we denote

g\ .
lglg = ([ 1e17ag) " if 1 =g <00, Il = sup 1g(®)l,
£eR3
R3

and the weighted norms can be defined by

M /I qu$ it <q <o, lglegs, = sup [(€)°
£ ’ £cR3
and
|&lzgeemy = sup {lgE)m (&)},
£eR3

where B € R and m is a weight function. The L% inner product in R3 will be denoted by ( >
ie.,

%-,

(f.8)e= / f&)g@)de.
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For the Boltzmann equation, the natural norm in & is | - |2, which is defined as

2

sl =€) e,

For the space variable x, we have similar notations, namely,

1/q
gl e = /Iglqu if 1 <g <oo, |glree = sup [g(x)].
RS xeR3

Furthermore, we define the high order Sobolev norm: let s € N and define

181n; = > ‘agg o lelmy = > 0¥ 8]z
&

| <s la|<s

where « is any multi-index with || <'s.
Finally, with X and ) being normed spaces, we define

Igllxy =]lgly] 5
and for simplicity, we denote

172

Il = gl 32 = fmga
R3

The domain decomposition plays an important role in our analysis, so we introduce a cut-off
function x : R — R, which is a smooth non-increasing function, x(s) =1 for s <1, x(s) =0
for s > 2 and 0 < x < 1. Moreover, we define xr(s) = x (s/R) for positive R.

For simplicity of notations, hereafter, we abbreviate “< C” to “<”, where C is a positive
constant depending only on fixed numbers.

1.3. Review of previous works and main result

In the literature, there are a lot of works concerning the large time behavior of the solution
for various models of the Boltzmann equation, such as the hard sphere, hard potentials and soft
potentials.

In the literature, there are several energy methods for the study of the Boltzmann equations
near Maxwellian in the whole space. The direct energy method through the micro-macro de-
composition was initiated by Liu-Yu [24] and developed by Liu-Yang-Yu [26] and Guo [13]
independently in two different ways. In between there is another energy method introduced by
Kawashima [ 18], which is based on constructing compensating function for the thirteen moments
of Boltzmann equation. Under some suitable Sobolev regularity assumptions on the initial condi-
tion, combining energy estimate with the spectrum method [10,11,31] or compensating function
method [5,18,32], one can get the time decay rate. For more details, the reader is referred to the

183



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

reference therein. In addition, people are aware that the large time behavior is governed by the
long wave part in terms of the Fourier variables of the linearized equation, no matter for the hard
sphere, hard potential or soft potential.

For Boltzmann equation in a bounded domain, an important L?> — L theory was developed
in [14] to obtain the global existence and the exponential decay rate of the solution around a
global Maxwellian for hard potentials associated with appropriate boundary conditions. See also
[23] for its extension to soft potential in a bounded domain, where a sub-exponential decay rate
is obtained. One is also referred to [7,15,19] for the recent advancements of this theory.

On the other hand, it is noted that the inter-molecular potential can influence the spatially
asymptotic behavior for the stationary linearized Boltzmann half space problem (i.e., the Milne
problem). Indeed, [2] obtained exponential decay for the hard sphere case, [1,8] obtained ar-
bitrary polynomial decay for the hard potential upon assuming corresponding velocity weights
on boundary data, and [9] obtained sub-exponential decay for the hard potential upon assum-
ing Gaussian weight. Thus, it would be interesting to investigate the space-time behaviors of
the solutions for different potentials. To this end, the pointwise approach has been initiated by
[25,27,28] for the full nonlinear hard sphere case, and then generalized by [20-22] to hard and
soft potential cases on the linear level.

However, the nonlinear problems for hard potential and soft potential have not been settled.
In this paper, the spatially asymptotic behavior and uniform time decay for fully nonlinear Boltz-
mann equation with soft potential are established. The similar result for hard potential is also
stated without proof, which is actually easier. It is worth mentioning that our results do not re-
quire any Sobolev regularity of the initial data. The main results are stated as follows.

Theorem 1 (The large time behavior for —2 <y <0). Let =2 <y <0, 0< p1 <2, p» > 3/2,
& > 0 sufficiently small, and j > 0 sufficiently large. Assume that the initial data nfo satisfies
Swso=w3 fo € Lg?p2+3j (L)lc N LS°) where w3 = EE (8> 0), and n > 0 is sufficiently small.

Then there is a unique solution f to (1.2) in Lg’omﬂj (e )L% N Lg?pﬁzj (56" YL with

3
lws fO) 2 <nCA+07F (lwsfollze o+ lwsfolliz | re)s (13)
,pp X &, pp+2j X x

&, pp+2j

_3
lws fOllgs, 10 <nC20+073 (lwsfollye, 11 +lwsfollez, o). (14)

§.pa+3j
-
lwsfOlig, 12 =1C (I|w3f0||Lgfpz+2jL; + ||w3f0||L§_cp2+2_iLgc), (1.5)
w3 f(t <nC (llw w 1.
lws Ol aee <nCa(lwsfollize, iy +lwsfolis L ix).  (16)

for some positive constants Cy, C, C1, C depending on y, &, p1, pa, and j.
We here mention that whenever & =0, f,,, = f is the solution to the equation (1.2).
Theorem 2 (The spatially asymptotic behavior for —2 <y <0). Let =2 <y <0 and let f be a

solution to the Boltzmann equation (1.2) with initial data nfy, where fy is compactly supported
in the x-variable for all &:

fo(x,&)=0for |x| > 1, & e R,
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and n > 0 is sufficiently small.

(i) Let 0 < ¢ K 1. Suppose that |f()|L)oCo € Lg’op+ﬁ+3/f0r some p>1, 8>3/2, and j > 0 large
enough. Then: '

If —1 < y <0, there exists M > 0 such that for (x) > 2Mt,

£ 0], S 1+ (x) + MD™

<§-)P+ﬁ+3j fo ”

LELYP®

If y = —1, there exists M > 0 such that for (x) > 2Mt,

£ 0], S 1+ (@) + M ™

p+B+3j ”
(&) Jo L

If =2 < y < —1, there exists M > 0 such that for (x) > 2Mt,

£, S0 +07H7 () + M T

p+B+3j H
(&) fo L .

(ii) Let O < ¢ < 1. Suppose that | fol . € Lgo(e§<é>p (EYPHPE3TY for some 0 < p <2, B> 3/2,
& > 0 sufficiently small, and j > 0 large enough. Then:

If =1 <y <0, there exist M > 0 and 0 < ¢ < & such that for (x) > 2Mt,

)4
— +1- g(EVP i
(20|, S0l 402 MO F 0T ) PRI o o

If y = —1, there exist M > 0 and 0 < € < & such that for (x) > 2Mt,

—r_ )
f (0,0, S (1 4+ 0)7Fe e QMM T (@) PEPEST fo o,

If =2 <y < —1, there exist M > 0 and 0 < ¢ < & such that for (x) > 2Mt,

p
7+3 PEI=y || B(EVP i
|t 2)l e, S (L) 7o CIHMD T O () P fy

In fact, we have also established the corresponding results for the full nonlinear Boltzmann
equation with hard potential cases (i.e., 0 < y < 1). The proof in that case is almost the same as
in the soft potential one and most of the parallel lemmas can be obtained more easily. To avoid a
lengthy discussion, we focus on the soft potential case in this paper and just state the results for
the hard potential as below.

Theorem 3 (The large time behavior for 0 <y < 1). Let0<y <1,0< p1 <2, p» > 3/2, and

let & > 0 be sufficiently small. Assume that the initial fo satisfies fy,0 = w3 fo € Lg?p2+y (L}C N

L) where wz = O and n > 0 is sufficiently small. Then there exists a unique solution f to

(12)in L, . (&ML N Lg?p2+y(e5<¥>“ YL with
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ol ., e S0 +07"2 (W fusollzgs, v + 1 funolliz, 11) (1.7)
and
Vol 12 S0 +07 (I fusollg, 1z + 1 usolliz, 11)- (1.8)

We here mention again that f,,, = f is the solution to the equation (1.2) whenever & = 0.

Theorem 4 (The spatially asymptotic behavior for 0 <y < 1). Let 0 <y < 1 and let f be a
solution to the Boltzmann equation (1.2) with initial data nfo, where fy is compactly supported
in the x-variable for all &:

fox.&)=0for x| =1, € R,
and n > 0 is sufficiently small.
(i) Suppose that |f0|L§o € Lg?p+ﬂ+y/2 for some p > 1 and B > 3/2. Then there exists M > 0
such that for (x) > 2Mt,

£, SO +0"20) + MO folley, rse.

&, p+B+y /27X

(ii) Suppose that | folp o € L (e*®" (E)PTFHYI2) for some 0 < p <2, B> 3/2, & > 0 suffi-
ciently small. Then there exist M > 0 and 0 < & < & such that for (x) > 2Mt,

P
— 1— a D
(2], S n(1 )12 e CIEMOTTEE FEOT ) PREEY 2 o
1.4. Method of proof and plan of the paper

In order to study the spatially asymptotic behavior of the solution f to the full nonlinear
Boltzmann equation (1.2), the following weight functions will be taken into account (which are
motivated by the linear results [21,22]):

Weight function w;. Let § > 0 be sufficiently small, D, M > 1 sufficiently large and p > 1.
Define w; as

P — —
wy (1, x,6) =56 ((x) — M) ™7 (1 —x (M)) +3(6)D x (M) :
&)p &)p
(1.9)
Weight function wj. Let €, § > 0 be sufficiently small, M > 0 sufficiently large and 0 < p <2.
Define w; as

wat, x, &) = ePUH) (1.10)
with
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_p» 8 -M 8 -M
p(t,x,8) =58 ((x) — M) r#T=r (1 X (%)) +3(6)7 x (%)

Weight function ws. Let £ > 0 be sufficiently small and 0 < p; < 2. Define w3 as

w3 (€) = £ E 1.11)

Here we mention that the coefficients 5 and 3 can be replaced by other combinations of positive
constants a and b with a > b > 0, meeting the desired requirement d;w; <0 (i = 1, 2). Now, let
Sw;=w; f,i=1,2.Then f,, (i =1, 2) satisfies the equation

a 1 VX l
O fr + & - Vi g — DL E VW) T e £
w; (1.12)

Jw; (0, x,8) =nw; (0, x,8) fo(x, &) = nfuwolx, ).

Here Lu, fu, = (wiLw]") fur = (=v @) + Kuy) furs Ty G /) = wi T} fus f).

Therefore, in order to get the spatially asymptotic behavior of the solution f to (1.2), the
key step of our strategy is to obtain the L bound for the solution u to the weighted linearized
Boltzmann equation with a source term as below:

0. wi - Vyw;
8[u+$'vxu_(lwl+$ xwl)MZLwiu+rw;(gi:hi)»
o (1.13)

M(O,x, S) = nwi(ov-xv %‘)fo(xv ‘i:) = nfwl‘o(xs 5)5

where g; and h; are prescribed, i = 1, 2. With the sharp estimate of f, a priori estimate of f,,,
and substituting g; = fy,,, h; = f, we can obtain the L*>° bound of f,.
Note that for (x) > 2Mt, we have

(x) Mt
(x)—Mt>?+T,

therefore one has

P
-

wi (£, x,£) 2[5 ((x) — MOT™7 2 [(x) + M{]T7

and
p(t,x,€) > [8 ((x) — MO > [(x) + M1]7777 |

According to the L* bound of f,,, it provides the spatial asymptotic behavior of the solution in
Theorem 2 and Theorem 4.

The procedure relies on large time decay of the solution f to nonlinear problem for initial data
living in &£-weighted space. Using compensating function methods and the wave-remainder de-
composition, we first obtain the large time behavior of the linearized equation in normed spaces
LZL} and LZLY. By applying Ukai’s bootstrap argument to the integral equation, we improve
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the estimates to the weighted spaces Lgo (eg@)pl (E)m) L?C, Lgo (eémp1 (E)”2> L°, etc. Fur-
thermore, given a source term I" (k1, hp) with prescribed time decay (see (5.15)), we establish
the large time behavior for inhomogeneous equation, through Duhamel principle in terms of
Green’s function and damped transport operator, together with refined estimates for I" (h1, 7).
The estimate for the nonlinear term I" is more exquisite in the soft potential case (-2 < y < 0).
In particular, in Lemma 15, the extra decay (—1) in (2.39) is important in studying the lin-
earized equation with a source term I" (h1, h2). With the help of an extra interpolation inequality
(Lemma 29), it enables us to get the time decay of I' (41, hy) from hy and h; through these re-
fined estimates for I'. The large time behavior of the nonlinear problem (1.2) then follows from
an iteration scheme. Due to the interpolation argument, we only get the large time in the L° at

the rate of (1 + t)_% at first glance, then we recover the rate of (1 + t)_% by a bootstrap process
(see Section 5).

Next we turn to the L bound of the solution u to the equation (1.13). We combine the wave-
remainder decomposition, the energy estimate, and the regularization estimates to conclude the
proof. In the sequel, we explain the idea in more details. The wave-remainder decomposition
is based on a Picard-type iteration, which is manipulated to construct the increasingly regular
particle-like waves. The pointwise estimate for the wave part is obtained from the property of
the time-dependent damped transport operator (defined in (3.9) and (3.11). It is noted damped
transport equation in weighted equation is not an autonomous differential equation, so one needs
to consider the evolution operator rather than simple semi-group. The energy estimate is used
to analyze the remainder term. In the course of this procedure, the regularization estimate (see
Lemma 24) plays a crucial role, which allows us to show the remainder becomes regular, and in
turn do the higher order energy estimate. Also thanks to the regularization estimate, we obtain
the pointwise estimate without regularity assumption on the initial data. Finally, we bootstrap the
remainder part from Lg to Lg?ﬁ (B > 3/2) so that the velocity norms of the remainder part and
the wave part become consistent.

Here we would like to remark three points in the proof: (1) due to the weaker damping term
(i.e., —2 < y < 0), one needs to trade off velocity decay for time decay either to get the decay of
f or to control the growth of u, so the delicate velocity-weight-gaining properties of K, I, 'y,
(see Lemmas 11, 15 and 17) are fully used in the estimates; (2) although the bootstrap from Lg. to
Lgo is frequently used in the proof, it is not obvious the integral operator K owns this property if
—2 < r < —3/2. Thanks to Riesz-Thorin interpolation theorem, K has Lg’ 1_y-L§ estimate in the
case —2 < y < —3/2 (see Lemma 8). Associated with Lgf’7 /47V—Lg estimate, K eventually has
L§7/4_V—Lg—L§ estimate in the case —2 < y < —3/2; (3) In the proof of Lemma 24, it reveals
that the mixture of the two operators Sztu,- and K, can transport the regularity in the microscopic
velocity & induced by K, to the regularity in the space x. It is worth mentioning that K, is an
integral operator from L} to H, only when y > —2 (see Lemma 11), this is the reason why we
restrict ourselves to the case y > —2. The removal of this restriction is left to the future.

Lastly, we want to compare the method in this paper with those in [25], which studied the
nonlinear Boltzmann equation with hard sphere, and gave the only space-time pointwise struc-
ture result of the nonlinear solution so far. There, it is crucial that the estimates of linear problem
can be obtained in the same weighted space as the initial data, which allows for the nonlinear it-
eration, then the authors achieve the estimate of nonlinear problem. However, for hard potential,
as well as soft potential, this methodology does not work since one needs extra weights for main-
taining the space-time structure even for the linear equation (see [20-22]). As a comparison, to
obtain the spatially asymptotic behavior of the nonlinear equation, we circumvent the difficulty

188



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

of nonlinear iteration due to mismatch of velocity weight on the linear level, and directly study
the L°° L° estimate of the solution f;, to the weighted full Boltzmann equation (1.12). This is
a new 1dea in the related studies. In addition, it should be mentioned that although the spatially
asymptotic behavior and time decay of the nonlinear solution are achieved by this new method,
we still do not have the space-time pointwise description of the solution as precise as the result
in [25]. For soft potential, this is understandable since there is no detailed spectral information of
the linearized operator, which contains the fluid behavior of the solution, and thus the pointwise
structure inside the finite Mach region. For hard potential, one can indeed obtain the pointwise
structure for linearized equation, but cannot close the nonlinear iteration due to the loss of ve-
locity weight in linear estimate. Therefore, it is still challenging to investigate the space-time
pointwise structure of the nonlinear Boltzmann equation with potentials other than hard sphere.

The rest of this paper is organized as follows: We first present some basic properties con-
cerning the operators L, I" and the corresponding weighted operators L., (i =1, 2, 3) and I'y,
(i =1, 2, 3) in Section 2. After that, we study the weighted linearized Boltzmann equation with
a source term in Section 3. With these preparations and the large time behavior (Theorem 1), we
demonstrate the spatially asymptotic behavior (Theorem 2) in Section 4, and postpone the proof
of Theorem 1 until Section 5.

2. Preliminaries

As mentioned in the Introduction section, we will study the weighted equation (1.12) first.
Before proceeding, some basic properties concerning the operators L, I" and the corresponding
weighted operators L., (i =1, 2, 3) and I'y;, (i =1, 2, 3), need to be studied. The linearized

collision operator L, which was analyzed extensively by Grad [16], consists of a multiplicative
operator v(£) and an integral operator K :

Lf =—v@)f+Kf, 2.0

where
V(é)ZfB(f/‘)IE — & M(EDdédw,
and

Kf=-Kif+Kxf (2.2)

is defined as [16]:
Kif= / B@)|g — &Y M2 M2, f(EDdEdo,
K f = / B@)[E — &) M2 E)M'PE) f () dEde

+ / B & — &) M2 (E) M ED () dEndo.

To begin with, we present a number of properties and estimates of the operators L, v(§) and K,
which can be found in [3,6,8,16,22,30].
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Lemma S. Let =2 <y < 0. For any g € L?,, we have the coercivity of the linearized collision
operator L, that is, there exists a positive constant vy such that

(g, Lg)e = —wo [P1gl7 . (2.3)
For the multiplicative operator v(§), there are positive constants vy and v such that

vo (§)Y <v(§) <vi (€)7, (2.4)

and for each multi-index «,

0g v(E)| < (5)7 71 (2.5)

For the integral operator K,

Kf=—K1f+K2f=/—k1(é,€*)f(§*)d$*+/k2(§,5*)f($*)dé*,
R3 R3

the kernels k1 (&€, &) and ky (&, &) satisfy

1
ki€, 60 S1E — &l exp {‘Z (1612 + |s*|2)},

and

1 2 _ *22
kz@,s*):a(s,s*,x)exp(—( 8")[('1_5'2) +|s—s*|2]),

forany 0 < k < 1, together with

Cel€ — &7 A+ ] + &7 Y if —1<y <0,
a(€, &, k) < 3 Celé — &7 InNE — &1+ IEl+1&D7Y ify =—1,
Celé — &V (1 + |&] + &Y if—2<y<-1,

and their derivatives as well have similar estimates, i.e.,

1
Veki (€, 801, Ve k1§ 61 S 16 — &7 exp {‘Z (161 +1&.17) }

1— 2_ g, 2 2
|Veka(§, &0, Ve k2(8, 601 S [ Vea (6,64, k) lexp (—( 8K) [(E"g_f"z) +|$—§*I2D,

with

190



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

Cogiz (14 €+ 18D, if—1<y <0,

Vea (€.6.0) | < 1 Ceglla lnlg — &1L+ Il +16D7 7, ify =—1,

Co Bl (14 15|+ &7, if—2<y<—1.

“le—g-y

Immediately from Lemma 5, we have the following lemma.

Lemma 6. Let —2 <y <0 and t € R. Then

/"‘(5’5*)'@’61&5<s>’”’2’ /Ik(&&)l(é)fdég(E*>”H,
R3 R3

f |Vek (€,£0] ()7 dE S (&)7T T, / |Vek (§.80)](€)7dE S (&)
R3 R3

Consequently, we have
K < , |KV < ,
| gIHEl S Igng,%1 | sg|L§ S IgILgil
and

K < , 1 <g<oo.
| 8|Lg,1+27yN|g|LgJ =q =

Lemma 7. Let t € R. Then if —3/2 <y <0,

/(1 + |§*|)rk2 (&, &0 dE, < ($>r+2y—3,
R?

and if =2 <y < =3/2,

/(1 +ENDTRY (£, &) dE, < (g)THar—D-1
R3

provided 1 <q < _iy Consequently, if —3/2 <y <0,

K8l = Clgngﬁr,
and if =2 <y < =3/2,

Kgljo <C

| gle ot S IgILg_T

3

provided q > T
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Taking ¢ =3 in (2.13) and g = 1 in (2.9), respectively, we have,
IKglig,_, < Clely.
and
(Kgly,  =Clglpy

Applying the Riesz-Thorin interpolation theorem to the linear operator (€)' =" K, we obtain the
following estimate, which is useful in the proofs of Theorems 1 and 18 whenever —2 < y <
-3/2.
Lemma 8. For -2 <y < —-3/2,
K <C . 2.14
| gngJ*V_ |g|L%2_ ( )

To proceed, we need the estimates associated with the weight function w;, i = 1, 2, 3. By
straightforward computation, wj and w» have the derivative estimates as below.

Lemma 9. Let —2 < y < 0. For the weight function wi, we have

witow| oM, Jur'Van|ss@nT [ur Ve | s @30l @15)
iV @ | SEMET T u' Vi@ Vao| S8 @7 ClElL @16
i Ve G| SOM @16l [wr Ve @ V| S8@LT @)

For the weight function w», its exponent p(t, x, &) satisfies
B0l SSM(E) 1, IVepl S8ET | Vep| S )PP
IV @0 SEPMAE)TPF 2 VL (6 - Vap) S 8% (6) 7P 2 gl
Ve 30)| SSM ()75, Ve €-Vap)| S8(6) 7,
where 0 < p <2.
Moreover, we have

Lemma 10. For -2 <y <0,

)4
2

'wl *,x.8 ] p>1, (2.18)

wi (1, x, &)

=Cp A 14 |lgP — 6,2
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(t,x,8) 2 »
2t <eqpfiep - 62 exp (ecy e -1 ) 0<p 22 @19
w8 ] o (e - )
‘wa (t,x, &) 15+ ‘ exp (8 18+ ,0<pr<2. (2.20)

Here the constants ¢, > 0 and C > 0 are dependent only upon p and y .

Proof. Lets = (§)p and s; = (&«) p. Then

<CysP7H,

awl (t )
—(t,x,s
as

and thus

lwy (2, x,8) —wy (¢, x,51)| = (S_Sl)/aswl(I»X,Qs-i-(l—e)sl)de

<Ci|(s —sl)/<0s+<1 —0)s))""'ab

<ci|( -,

Also, since w (¢, x, &) 2, (S*)% and D > 1, we can deduce that for 1 < p < 2,

‘wla,x,g) B ‘:‘wm,x,s)—wl(t,x,s*)
wi(t, x, &) wi(t, x, )
~ @) — E)pl ) P/
S ]|s| e,

and for p > 2,

'wl(r,x,@ _1‘ - ©)p — 5|
witx &) 1T (g

1
2_ g, 2 51
5%/(9 @+ -0)(E})" do
)

do

< lEP e I/ (D2 + 16,40 (6P — &)
(D2 + 1)t

)

e =] (14 [igr - 162

Combining the above two estimates, we can conclude (2.18).
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Similar to w;, we have

|2‘p/2

(1%, 6) = p (1,5, 8)| S 6 | ) = (67| < ¢ |16 - I
for 0 < p <2, so that

‘wz(t,x,é) _1‘

— |eeotx &) =ptx.8) _ 1‘
w2(t, X, S*)

Selp(t.x.6) = pt,x, &) e H ORI

)4
2
5

E1> — |&2

<€cp

61— 6. " exp (ecp

as desired. As for w3, the proof is straightforward, that is,

‘M _ 1‘ _|eften—em) _y|
w3 (t, x, &)

<E[E)" — (&) [exp (2 [(5)" — (8)P1])

P
2)

With the help of the estimates on the weight functions, we obtain some useful estimates re-
garding the integral operator K in the weighted spaces. For simplicity of notations, we define
Ky, =wi (t,x,8) Kw; ' (t,x,&),i=1,2,3.

&% — |&.)

r1
N 2 2172 A
=€ |57 — 18] eXP<8

for 0 < p; < 2. The proof of this lemma is completed. O

Lemma 11. Let t € R. For =2 <y <0andi =1, 2,3, we have

/‘wi(t,x,E)k(E,é*)wi‘l(t,x,S*) ()T dE S (E)TH 2, 2.21)
R3
/ i (1, EK(E, Ew (1,3, 60| (6)7 dE S (672, 222)
R3
/}wi(t,x,é) (Vek(5,80) w; (1, %, 8| (57 dE S (&) (2.23)
R3
/‘wi(t,x,é) (Vek(&, &0) w; ' (1, x, 8| (§)7 d& S (877, (2.24)
R3
uniformly in t and x; consequently, we have
K tx. )]y Slatx g, (2.25)
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[(&)° Kwiq(r,x,s)ng < \(W‘”V q(t, %, > (2.26)
§
[(&)° ngwiq(r,x,e>|L§ < \<é>"1+yq<t,x, I (2.27)
&
Furthermore, if =3/2 <y <0,
|Kuiq 2,9 S \<s>’*3/2+yq(t,x, |27 (2.28)
,T £
if —2<y<-3/2,
K q (1. 3. )lge SHET7 g x, )1y, (2.29)
provided s > % and
(Kwiq(t,x. s Slgt,x, gz (2.30)

Proof. Since k = —k; + k2 and the estimate for k| can be obtained easily, we just prove (2.21)
for ko whenever the weight function is w; and then a similar argument can be applied to the
estimates (2.21)-(2.24) for the weight functions w;, i =1, 2, 3. Now, rewrite

wi (1, X, E)ka (€, E)w] (2, x, &) — ka (€, &)

1 | 2 16 2)
1 (g = 1&12) ) wy (¢, x)
X{eXp<_3_2[ e—ep 0 F X(wl*a,x)_l)

=q2(§,8)5(D, €, §5).

By the Cauchy-Schwarz inequality,

(€7 — |&.[2)°
& — &

In view of (2.18), we obtain

16— &2 22|16 — 1.

Sup|S(Da€7$*)| — Oas D — o,

Sk

which implies that SUpg ¢, Is(D, &, &:)| <1 forall D> 1 sufficiently large. Moreover, in view of
Lemma 6, we know

/ ko €, £ E1)T dEw < (£)72,
R3
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[ |g2(€, £ (Ex)T dE S (8)7T7 72

Therefore,

/‘w1(t X, )€, EDwi (1, x, £ (E4)T dEs

5/|k2(§"§*)|<§*>rdé*+/|6]2($’§*)S(D75,§*)|(S*)ng*

< (S ) T+y—2 .
Combining the above estimates (2.21)-(2.24) together with (2.15), we can deduce (2.25)-(2.27).
Mimicking the proof of (2.21), together with (2.12)-(2.14), we obtain (2.28)-(2.30). The proof

of this lemma is completed. O

Remark 12. Similar to the proof of Lemma 10, together with the conservation of energy, we

have
wix8) < p=2rp) 5
wi (¢, x, &) sb- [1+‘|5| — &l ] .p=1, (2.31)
M_ *{2/\1)} / 2_ 2 1_2)
‘wl(t,x,éj’) I'SD [1+‘|§*| 1€« ] ,p=1, (2.32)
wa(t, %, §) 12 2|2 /2 2|7
‘m—l‘ﬁ cp‘|5| — |&x] ’ eXp(ecp‘|§| — & >’0<p§2, 2.33)
wo(t, x, &)
‘m l‘< Cp‘|§*| — & ‘ eXp(écp‘|$*| —|‘§* > O<p=<2. (2.34)

Here the constant ¢, > 0 is the same as in Lemma 10. On the other hand, for the weight function
w3, we have

w3 (£, x,§) ‘ 2((5)P1—(E)P1) ) N
——1|=e * — 1| <exp(e pr_ r1
‘m Cx B <exp(&[()" — (&)™)
—exp(&[(1+16P)” - (1+16.P)
I’l
< exp( ‘Iél2 [ ) (2.35)
since 0 < p1/2 < 1. By the conservation of energy,
w3 (t,x,§) < )
—1l<e 0 <2, 2.36
w3 (t,x,é;) — Xp |$* <pP1= ( )
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gexp(

Furthermore, we consider the linear operator £,,,, i =1, 2, defined as

‘wg(r,x,s) »

w3 (1, x,§")

| _|S*

) 0<p <2 (2.37)

Loyh=—& - Vih+ @w; +& - Vew)w, b+ Ly, h.
By straightforward computation, we obtain the energy estimate for the linear part as below.

Lemma 13 (Weighted energy estimate for the linear part). Let =2 <y < 0. If § > 0 is sufficiently
small, and D, M > 1 are sufficiently large with § M sufficiently small, then

2
Z V{hVi L, hdxdg

J=Op3 3

— (vo —CID2 =y — C38M // &) P1V’ dxdg

J= 3 R3

dxdé&

2
- (C48M — 5 —C D2 Z / [ ((x) — M1)]~ ’POV’
¥

J=0up

[\S}

+(C1D_2—|—C28+C58M Zf )Povf dxdg +C1 D™ 22/ }Povf
]=0H(f’ Jj=0 HD

dxdg,

where

D {(x,8):8((x) — M1) > 2(6) ;7).
Ho ={(x, &) (£)) " <8 ((x) =M1 <2(&) 57},
HP = {(x,€): 8 ((x) — M1) <€), ).

If € > 0, § > 0 are sufficiently small and M is sufficiently large such that SM is large but §M <
-1
€, then

2
> VI hVi Lo, hdxdE
J=0R3 g3
2 . 2
< —(vo—€8Cy — 68MC3)Z/ / Y% (Plv;h) dxdé
J=0R3 g3

2 1 .
—e(BMCy—8C—C) Y f [ ((x) — M)]77 77 |PoVin
j=0

+
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+e(5C2+8MC5+C1)Z/‘P0V’h‘ dxds+6012/ ‘POVJ

j=0 Hl j=0 H!
where

H_~l_ ={(x,&):8 ((x) — Mt) > 2<$>p+l—y}’
HY = ((x.8): (6)PH177 <5((x) — Mr) <2(6)7+17),
H! = {(x,&):8 ((x) — Mt) < (E)P-H—y}.

The rest of this section is devoted to estimates for the nonlinear operators I" and I',,, . Before
going on, we point out an essential lemma, which is proved by Guo [12, Lemma 2] and is used

frequently in the following discussion. In addition, we split I" into two parts I'gqi; and o as
below:

(g, h) = l—‘gain (g, h) —Tioss(g, )

1 !/ 1./ /
=5 | BVl M [ + gl dbudo

R3xS?

1
-5 f B®)I§ — 5" M [guh + ghildé.do.

R3xS?

Lemma 14. [ /2, Lemma 2] Let ¢ > —3,1(§) € C*® (R3) and g (§) e C*® (R3\{O}). Assume that
for any multi-index «, there is Cy > 0 such that

0% (6)] < Cqy IS,

1091 (8)| < Cpe ™,
with some to > 0. Then there is C}; > 0 such that
8% (g% 1) (&) = C (€)™
Lemma 15. Let 2 <y <0,£>0,0< p; <2and A > 0. Then
ITi0ss (8, h)|Loo<<%~ A obiE ) S |g|L§°|h|L§o(<s>x+ye§(g>m> + |h|L§°|8|L§o<<§>x+yeé<5)m), (2.38)
ITgain(g, h)ngo(@))Leg(g)pl) S |g|L§°<(E)HV’1e§(E>”1)|h|Lg°(<g)'\+V*1eé<$>”1)' (2.39)
In particular,
- < |glp Al
G Slelug bl (2.40)

198



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

Proof. It readily follows from Lemma 14 that

@) 7" T (g )|

(£) 5O f BW)IE — &Y My * [ gl 1h] + |g| 1]l dEnd e

R3xS2

<

S |g|L§° |h|L§c<(§>A+y6g(g>Pl) + |h|Lg° |g|L§o<<s>x+y6g(g)Pl) s

so that (2.38) holds. Since the conservation of energy implies that (§) < (§7)(€) and (£)7' <

(E ’)p "+ (S;)p ', we can obtain (2.39) by following the argument as in [4, Proposition 5.1]. Finally,
(2.40) follows by taking &€ = 0 and replacing A by A — y simultaneously in (2.38) and (2.39). The
proof of this lemma is completed. O

Lemma 16.

(£ T mM)e| SISz (|8|Lg e +1glLe |h|Lg>, (2.41)

‘v*‘r(g,h)

< 00 00
13 Sleliz Iz + lglz i (242)

Proof. The idea of the proof comes from [30, Lemma 3] and we give the complete proof in the
Appendix section. O

Lemma 17. Let A > 0. Then

V(g )|, S I8l | )7 hligs, (2.43)
E N
v P S el 1617 3 +1glz 6607 (2.44)
(fiTw (@M | S1F 12 (1812 [(E)P h| oo + 18110 |(E)P B2 ). (2.45)
E o a £ & o
where p > 1;
VT (.|, Sl 160 0@ i (2.46)
wa\&» Lgo)h ~ LE,)» LS.A ’ .

-1 &7 ,(€)F

7 Pus(a )] S e 607 €] +1glya 607 €] 2.47)

(f: Tus (. )| S 17122 (lgle, ©F T h| gl [(€)7 e Lz)’ (248)

where 0 < p <2 and the constant c, > 0 is the same as in Lemma 10;
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-1 < E(E)
T s STl 4970 (2.49)
& £
-1 < gl oo |F € &) ‘
VT Sleluge ¥ R| + gl | (2.50)

where 0 < p; <2.

Proof. Direct calculation shows that fori =1, 2, 3,

1—‘wi (g’ h) - F(g’ h)

zf/3(9)|g _ e M, [g/h; (3/ - 1) +hg ( L. 1) —gh ( Y 1)] dwdé,.
Wi Wi Wi

R3 §2

On the other hand, the conservation of energy implies that (£)f < (g;)ﬁ (E ! )ﬁ for B > 0. Using
these facts together with (2.40)—(2.42), Lemma 10 and Remark 12, we get the desired esti-
mates. O

3. Weighted linearized Boltzmann equation with a source term

In this section, we are concerned with the following inhomogeneous problem:

atu+$ 'qu - [8twi(tﬂ-xs€)+%— 'wai(taxvg)]wi_lu :Lwiu+rw,-(giahi),
3.1)
M(O,X,E) =77fw,~0’

fori =1, 2, where g; and h; are prescribed. The proofs are almost the same, so that we focus
on the case in which the weight function is w; and just state the result for the weight function
wy (see Theorem 26). Now, let p > 1. We are concerned with the following inhomogeneous
equation:

du+& - Viu+vu=Kyu+Ty (g1, h),
(3.2)
M(O,x, S) = rlfwlo

After choosing § > 0 and § M small enough, we have

P(t,x,§) = v(E) — [Bwi(t,x,6) +§ - Vawi (1,x, )] wy ' > %5)

due to (2.15). Let T > 0 and B > 3/2. Assume that f, 0 € Lgf’ﬁL)% N Lg% LS. Also assume the
source term I'y,, (g1, /1) satisfies

[ee) —A 2
Cgl,TZOSUP (I+1) ||g1||L§?ﬁL;c<oo, Cglj:oiuf

”ngLgoﬁL% < 00, (3.3)
<t<T t<T P

for some constant A > 1/2, and
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00 3 P
Ci¥r= sup (1+0)2 [(§) hi| oo ;o0 <00 (3.4)
0<t<T §.p7x

Here we mention that throughout this section we abbreviate “< C” to “<” in which all the
constants C are independent of 7.

Theorem 18. Let 8 > 3/2 and 0 < ¢ < 1. Assume that f,,0 € LE:X’IBL2 N LgoﬂLOo and that g1, h
satisfy (3.3) and (3.4), respectively. Then the solution u to the equation (3.2) satisfies

lleell Lge, 20 (3.5
3/24+A
§n||fw10||L?ﬂLgo+(l+t) Pravsce o
(1412, if —1<y <0,

[(1+5M)(n||fwl0||LooL2+Cg1Tc;f_T)]. I+, ify=-1,
5
A+0"7, if —2<y<—1,
0<t<T.

To prove this theorem, we design a Picard-type iteration, treating K, « as source term. Specif-
ically, the zeroth order approximation u©) is defined as

hu® +&-Vou® +5u@ =Ty, (g1, 1),
w0, x, &) = nfwo,
and the difference u — u@ satisfies
O —u®) +&- Vel —u®) + 5w —u®) = Ky, (= u®) + Ky u®,
(u - u(O))(Oa X, E) = 0'
We can define the i™h order approximation u®, i>1, inductively as
du® +& - Veu® + 5u® = Ky uli=D,
u®(0,x,8)=0.

Now, the wave part and the remainder part can be defined as follows:

W(m) — Z (l)’ R(m) —u— W(m) (3.6)
i=0

RYY solving the equation
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IRIV +&.-VRID 4 RUY = Ky RUY + Koy, u®™,

3.7
RUY(0,x,£) =0.
In the sequel, we shall estimate the wave part and remainder part in order.
3.1. Estimates on the wave part
Let us consider the time-related damped transport equation
oh+&-Vih4+vh =0,
3.8)

h(0,x,8) = ho(x, §),

and denote the solution operator of the time-related damped transport equation (3.8) by Sy, (¢),
namely,

1
Swy (Dho(x, &) = ho(x — 1§, &) exp —/Wr,x—(t—r)é,é)dr . (3.9
0

Next, consider the inhomogeneous problem

oh+& -Vih4+v(t,x,8h=q(t,x,§),

(3.10)
h(0,x,&) =0,
and then we have
t t
h(t,x,&) :/q(s,x —(t—s5)&,&)exp —/f)(r,x —(t —r)&, &)dr | ds.
0 K
Furthermore, we define the operator Sy, (; s) as
t
Sw, (t;8)q(s,x,8)=q(s,x — (@ —5)§, &) exp | — / vr,x —(t—r)§ &dr], (3.11)

N

for 0 < s <1, so that the solution % to (3.10) can be represented by

'
hit,x, &)= / Sw, @ 8)q(s, x,&)ds.
0

Under this notation, we as well have
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Sw; (£50) fo(x, &) = Su, (1) fo(x, ).

Thereupon, each item of the wave part W,Ej"f) =>", u® can be expressed as

u® =Sy, (1) fu0(x, £) + / Suw, (23 )T, (g1, h1) (5, X, E)ds,

t
u® = / Sw, (t;5) [leu(i_l)] (s,x,&)ds, i > 1,
0

in terms of the operator S, (¢; 5).

Through Lemma 19, it is easy to see some properties of the operators Sy, (t) and S, (¢; s)
O<s<t).
Lemma 19. /3, Lemma 12.1]

supe "IHED™ (1 piEpTr < c 1 1),
3

fort>0,a>0A>0.

Lemma 20. Let T > 0 and A > 0. Then

[Sui @hote, )] 1 1o S +)7 lhollzgs, 2o (3.12)
[Sun @3 9)q5, %, )| 5 10 SA+1=9)7 gl Mg, 1z (3.13)
|Sw, (7: )q(s. x, s)||Loo 2 SU+1—9)7 llgGs,-, Mg, 12 (3.14)

|Su, $)ho@. )] ;2 S A +07 |(€)7 hol 2 (3.15)
|Suy (55 9)q (5, %, 8) | ;2 S A +1 =57 [E) qs, )20 (3.16)

for0<s<t<T.

Now we are ready to prove the Lg"ﬂLgo estimate and L? estimate for the wave part W&Z’) =

Z:'n=o u®.

Lemma 21 (LgoﬁLC><J estimate of u®). Let B > 3/2, 0 < ¢ <« 1. Assume that Sfwo€LE

g, ﬁ ¥
and that g1 and h satisfy (3.3) and (3.4). Then for i € N U {0},

Hu(i)

)Lm s ST funoll e e + (1407 Pratsce o 3.17)
§.B7x ?
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Proof. In view of (2.43), (3.12), (3.13), together with the assumptions of (3.3) and (3.4), we have

(€ u® 2. 6)]

snl(&)ﬁswl(t>fw.o<x,s)|+/|<s>ﬁswl<r;s)rwl(gl,ho(s,x,snds (3.18)

t
Sl a1+ / (41—

-1
v )y, (g1, k) (s, - )| ds
! HLWLoo

<n waloULoo Lo +/(1 F1—8) 7 (14957 3HAC2 1 C° yds

Sl funoll g, 1 + [ +073 4 ma+n]cge e
S0l ol e + A+ O7FACE O

This completes the estimate for u(®.
For uD, it follows from (2.25), (3.13) and (3.18) that

t

©F Ve, x.9) s/)swl(r;s) &) Kuu (s, x, )| ds
0

5ft<1+t—s)27H<s> PR s

L LS
< fosmn o]

Sl fuol g, o0+ A +07 iratsc o,

LgpLee

Since fori > 2,

t
7.6 = | [ S0, 119 () KV, s .

we can prove

u® <n ||fw10||L00 et —}—t)—fn‘\ﬂcg1 rChy 1>

)Lg?ﬁLoo
by inductiononi >1. O

204



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

Lemma 22 (L? estimate of u”), i > 0). Let 8 > 3/2. Assume that Jwi0 € Lgf’ﬂLi N Lg?ﬂLio and
that g and h satisfy (3.3) and (3.4). Then fori € N U {0},

u®

w2 S ool 2 + A+ N~ Coy rCiv

0<t<T.

Proof. In view of (2.44) and the assumptions of (3.3) and (3.4),

4677 T (a5, 92 S N llage, o 14607 I ], o
3
SA+5)73C; 1CF (3.19)

Therefore, using (2.26), (3.15), and (3.16) gives

o

t
o= 18 O Funo .81+ [ Sr 9T (a1 5.x. 51 (3.20)
0

L2
t

_ _3
Sl fuol ;2 + /(1+t—s) "(+9)73ds | €5 1 C
0

<n ”fwlO”Lgf’ﬁL% +d +t)71C§1,TCi<1>?,T'

Note that
t
uD(t, x, ) :/Swl(t;s) [leu“))] (5, x, £)ds.
0
Using (2.26), (3.16) and (3.20) gives

u

t
27—
5/(1+r—s)7y u<°>(s,-,-)H ds
L2 L?
0

t
2=y _
§n||fw10||Lg?ﬁL%+ /(l—}-t—s) 7 (l+s)lds | €2 pC
0

S fuol g2 T D' CorCivr-

Similarly, for i > 2,

‘
u(i)(t,x, &)= f Sw, (t;5) [leu(i_l)] (s, x,&)ds,
0
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and thus we can prove

Hum

1,2
2~ S wal()”L00 L2 +A+0" Cgl,TCf?iT’
inductively for all i € N, by using (2.26), (3.16). O
3.2. Regularization estimate

In the previous subsection, we have carried out the L°° L (B >3/2)and L? estimates for

the wave part WIE,'T) To obtain the pointwise estimate on Rwl , we still need the H? regularization

estimate for R ). In light of (3.7), we turn to the H? regularization estimate for u " in advance.
To proceed, we introduce a differential operator:

D[ = t Vx + VE .
This operator D; is important since it commutes with the free transport operator, i.e.,

[Dtvat +$'Vx]=0,

where [A, B] = AB — BA is the commutator.

We remark that the crucial operator D, was firstly introduced in the paper by Gualdani,
Mischler and Mouhot [17], and Wu [33] applied it to reprove the Mixture Lemma used in
[20,25,27,28].

The following lemma will be used to prove the regularization estimate:

Lemma 23. For any t € R,

2—-y
HSwl(t’S) [vx’ le]q(svxvé)HLZ SJ (1 +t _S)7 ||‘](S, y ')”LZ ’ (321)

DS 19096, 2.6)] 12 S (A+1=9F +8MA+1=97 ) [€)7 a6 a2
(3.22)
Consequently,

2y 1
1Dt —sSuw, (13 ) Ky g (s, %, 8) | 12 S ((1 +1—9) 7 +IM(1+1— s)y) lg (s, )l 2.
(3.23)
Proof. The estimate of (3.21) immediately follows from (2.15), (2.26), (3.15), and the estimate

(3.23) is a consequence of (2.26), (2.27), and (3.22) by picking t = —y + 1. Thus, it remains to
prove (3.22). By the definition of S, (; 5),

Dt—sSwl (t; S)C](Sv)ﬁ ‘5)

t

— Dy (q(s.x — (1 — )€, E)exp | — / B x — (1 — )&, E)dr

N
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t
+{axx—o—maa(uﬂ(—/ﬁmx—a—waam))

- exp (—/f)(r,x — (t—r)fg‘,é)dr)j|.

N

Since

Ve (g(s,x — (t —5)§,8))
= (S - t)vxfI(S,x - (t _S)S,E) + VEQ(SaX - (t _S)E7§)7

we have
D5 (q(s,x — (t —)5,8)) =Veq(s,x — (t —5)§,§),

which implies that

t
DFAM&X—O—@&@Rm(—/ﬁmx—a—ﬂaﬁm)

N

L2
SU+1—5)7 [(6)7 Veq(s. )| 12

In view of (2.15),

1D D(r,x — (1 =&, E) S (1 —5) M (E) + (1 — r)SM (£)7 + (£)7 71,

t t
em(—/amx—a—ma@m)(uﬂ(—/ﬁmx—a—waam)ﬂ

N s

so that

s(a-—m<sv-‘+awut—sﬁ<sv)ema<—3§30-@).

It implies that

t
qu—a—ma@(uﬂ(—/amx—a—ma@W))

N

t
- exp (— / v(r,x — (t —r)€, E)dr)

N

L2

T+1-
Y

< <(1+t—s) FH +8M(1+t—s)%+2) 1€ g (s, 2
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Therefore, we can conclude

||Dt,sSw1(t;s)q(s,x,é)HLz
((l—i-t—s) F o SM(1+1—5) 7 )H(g TORS] e
The proof of this lemma is completed. O

Now, we are ready to get the H x2 regularization estimate. In fact, we find that it is enough to
get the H XZ regularization estimate by taking m = 6.

Lemma 24 ( sz regularization estimate on u‘® ). Let ¢ be any positive number with 0 < ¢ < 1.
Then there exists a constant C¢ ,, , > 0 such that

o)

L2 H2

<Ccyp-y (14+8M) n||fwlo||Loo G rCinr|A+0s,  ify=-

542
(1+8M) 77||fw10||LC>OLZ +Cg1 TC}??,T (1+t) +V, lf—2<]/<—l,

0<tr<T.

Proof. In view of Lemma 22,

Hu(ﬁ)(t,x,“g‘)‘

—1,-2 00
L25”’|fw10|’Lg?ﬂL§+(l+t) Cor.7Chy.1
Next, we prove the estimate for the first x-derivative of u(®. Note that

qu(6)(t7'x5 S)

t s1 82

e[ ] e () s v
00 0 §1=53
t s 85
+Vx///M]M2 (ﬂMg) @ (5. - Ydssdsads;
00 0 1= 43
r s 852

1
- f /,/ 1 — 83 M (Dsl_sz - Vf) M2M3”(3) (53, -, ) ds3dsads
| —
000

208



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

t s

1
* / // s1 — S3M1M2 (DSZ_S3 - VE) M3”(3) (s3, -, ) dszdsyds
0 0 0

t

+/T(S17x7$1t)dS1,

0
where M = Sy, (si-15 50 K Is» [Kuy Ly = wi (51, %, &) Kwy™! (s1.x,64), s =1, and

t

\/\T(Slaxaé,t)dS]

0

t 51 85

Z//./[Vx’gw' (15 51)] (K, Ty MoM3u® (s3, -, ) dszdsads

0 0 0
s 852

+f//8w|(t;sl) [VX7[Kw1]s1]M2M3u(3) (53, -, -)dszdsads;
000
t ST 85

+//[S1—S3Ml V’“Swl(sl’SZ)] [le]v2M3”(3) (53, -, ) ds3dsadsy

r s1 852

+//[s] — 53 MIS’”'(SI 52) [V, [Kw, 15y | M3u® (53, -, -) dszdsads.

Note that
2=y
[[Vx. Suy (si—1350) ] [Kwy L g (51, 2. 8) | 2 S (U sict = s0) 7 g (sis )l 2
and

2—
[Sw, (si—1:50) [V [Kuy s @ Csin % 8) | 2 S (1 + 521 — ) NlgGsin Mz,

fori =1, 2. By (2.26), (2.27), (3.16), (3.23) and Lemma 22, we obtain

H Vyu 6

tr s 85

<(1+8M)///{(1+t—s1) 7 (451 —s2)7 <1+S2—”)%< s11S3>}

' (’7 | fwl‘)“LgoﬂLg +A+s3)7'Cp ,C T) dszdsrds;

209



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

t s1 85

gA-///(Ht—sl)z%(Hsl—S2)$(1+s2—S3)%dS3dS2dsl
0 0 0
ros1 st
+A///(1+t—s1)2777(1+s1—sz)%(l+sz—S3)% dsrdssds)
0 0 s3 T
t s 8

2 . 1
SA///(]—H_SDTV(]""SI_SZ)?(1+S2—S3)7ds3ds2ds1
000

[ |
2— 1
+A//(1~|—t—sl)7y(1+sl — 53)7ds3ds
0 0
A, if —1<y <0,

Ad+0s,  ify=-—1,

A

2
Ad+D7 2 if —2<y <—1,

where A =(1+46M) (n || fw10||Loo 12 +C2 . C®. ). Here, the third inequality holds since
€8x

g1, T~ g.T
y <0and (1 +s1 —s2)(1+520—53)>1451 — 53 for sz <sp <s7.
For || V)%u@ (t,x,8) ||L2, rewrite

t s 82

u(ﬁ)Z///MleMwG)(S&-,')dS3dS2dS1
00 0

t S| 52 83 S4 S5

=//////MMNMMWMMmeM&
0 0 0

00 0

where ds = dsgdssdssdsidsydsy, and then we can obtain

[v2u90x.0)|

t S| 2 S4 S5 Se

SA-//f///(Ht—SDZ%(IJrM—Sz)%-'-(lJrss—sts)%
00 0

000

1 1
.Q+ >Q+ )ﬁ
1 — 83 sS4 — S

A, if —1<y <0,

< A(l+1)s, ify =-1,
5
A+, if —2<y <—1,
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by the same argument. The proof of this lemma is completed. O

3.3. Estimate of the remainder part

In this subsection, we return to deal with the remainder part 7'\’,,(1?1) .

Proposition 25 (Regularization estimate on R(G) ). Let ¢ be any positive number with 0 < ¢ < 1.
Then
|5

LZH?
(1+41)?, if —1<y<0,
2 .
S +5M) <n [ furoll s, 2 +C§1,Tcﬁf,r)~ (407, ify=—1,

5
(1+t)7+7, if —2<y<-—1

Proof. In view of Lemma 13,

1d o
g (©) (©6) (6)
2dt H L2H2N / Z 9 PoRy ‘ dédx—i—HR L}H} Ko LZH?

HPURD 1¥1=2 '

u©
Z Hw 2 T H "Lz mH? ‘LZHZ
< Hw HR“’ «©)
L§H2 L} H? L2H2
the last inequality being valid since
—1lqa
le a , = C le
h%z ' g

for some constant C > 0.

Now we need to estimate H wl_lRf,?l) .Letz= wl_lRffl) and then z solves the equation

LiH}

9z +E- sz—Lz—}—K( -1 <6>) (3.24)

By the energy estimate and (2.3), we have

1 d )
5 7 el _/szdsder |k wiu
R6
S lzllge o Szl fu
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since wy(t,x,&) >3 (5) > 1. Therefore,

d
Tzl S | (3.25)

Moreover, in view of (3.24),
0 (0,2) + 8 Vo (0,2) = L (0,2) + K (007" ) u@) + K (w7 0,4@).
() 55 () () () ()09
+K ((akal—l) ax,.u@) +K ( 102 u <6)) .

By the energy estimate and (2.3) again, together with Lemma 9, we deduce that

S agel e 5

|\2

22"
LEH

Since z (0, x, &) =0, it implies that

5 2ds.
LZH?

X Jortores

la|<2

w®c5)|

t
2 S Z ”3)?Z||L2 <
lor] <2 0

According to Lemma 24, whenever —1 < y < 0, we have

t
f oo
0

t
< / (1+48M) [n ||fw10||L§oﬁL§ +(1 +s)1C§]’TC}‘fiTi| ds
0

2
LIH?

SA+8M)(1+1) (n ||fwlo||Loo 2 +C, Tc;:?,T>,

and thus

2
2
LgHz <(1+1)? [(1 +8M) <n ||fw10||L§?ﬂL% + cglch;;f,T)}

an IR

+ |

(1+t)(1+8M) (n ||fw]o||Loo 12 +C . 7Ch )
E

As a consequence,
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2
2 <A+0>1+8M) (n ||fwlo||L§?ﬂL§ + Cgl,Tc;;f,T>

for —1 <y < 0. The other cases —2 < y < —1 and y = —1 can be obtained by the same argu-
ment and the proof of the proposition is completed. O

Therefore, in view of Proposition 25, the Sobolev inequality implies that

HR“” LELE®
3/4 1/4
(6)
S P ] (3.26)

(1412, if —1<y <0,
2 .
S A +8M) <n ||fw,o||L§QﬂL% +C§17TC,‘;T7T> A a+n?e, ity =-1,
S
(1+0)7, if —2<y <—1,

for any 0 < ¢ < 1. Together with Lemma 21, we obtain the estimate of | u|| L§ 1.00- Subsequently,
we shall get the estimate for ||u|| Lg,L% via the bootstrap argument and the details are given in
the proof of Theorem 18.

3.4. Proof of Theorem 18

Note that if i > 2, the solution « to (3.2) can be represented as
u(t,x, &) =wi) + / Suw, (t, ) K, REV (s)ds = W) +RY).

In view of Lemma 21, it remains to estimate HR,(L?

) for some i in order to obtain the

L, L®

e pl

estimate for ||u|| ;o ;. To obtain the estimate for Rff))
£.px 1

)Lw Lo’ we consider y in two different

§.p7x
cases: —2 <y <—3/2and -3/2 <y <O.

In the case —2 < y < —3/2, in view of (2.29), (2.30) and (3.13), together with the fact that

“Swl(S,SI)Q(SI,X7$)||L4L<>ON(l +S_S1) V ”CI(Sh s )||L4 VL;O’

we have

|

// wi (1, 8) [Kuy ] Sw (5, 51) [Kuy |, RS (s1)ds1ds
LE’OLoo

LELY
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t s iy iy
5//(1+r—s)7 (4s—s1) 7 )

00

dslds

S
: 14—y 1=y o
S (I+t—=s) 7 (I+s—s1) 7 (I+s1)" "7

0 0
2 o)
- (1+8M) <n [ fwroll g, 2 + Cgl‘rchl,r> dsds
7
S0 asm (nl fuolg, 2 + €3G )
Combining this with Lemma 21, it follows

i = [ ey [R]
lullzgers _H gLy LELE®

S ”fwlO”Loo L +(d+n" 3/2+A+§Cg1 TCZ?,T
+5 2 00
+1+07 (1 +8M) (n [ furoll e, 12 +Cgl’TCh1,T>.

Note that
ut,x,&)=u® ¢, x,& + / Sw, (t,8) Ky, u(s)ds. (3.27)

Hence, through (2.25), (3.13) and Lemma 21, we infer

el zge,nge S I fw10||ng>ﬁLoo + (140" 3/2+A+§cooTChl
743 2 00
+ 0" (1 +8M) <n [ fonoll e, 2 + Cglyrch,j>,

by the bootstrap argument.
In the case —3/2 < y < 0, we decompose u as u = ng) + RI(ZI) In view of (2.28) and (3.13),

t

RO = | | Su .9 [Ku, ], RO (s)ds
R =] [ 9 K] R

0 LELE

! 3
27r
5/(1+t—s) ’ H
0

ds.
L§L°°

Hence, we obtain the estimate of ||”||Lg° Lo by using (3.26) and Lemma 21. Again, through
(2.25), (3.13), (3.27), Lemma 21, we can conclude that
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3rA+
Il e ree S fwloungﬂLgo + (1 +n2HreC L CR
(1412, if —1<y<0,
2 245 ify = —
+(1+8M) (n [ ool e, 12 + cgl’Tc;;f,T> A+, ity =—1,
5

(A+0"r7, if 77% <y <-—1,
by the bootstrap argument. This completes the proof of Theorem 18. O
3.5. The result for the exponential weight function wy

For the exponential weight, we consider the inhomogeneous equation:

v +§&-Viv—e€[dp+E&-Vyiplv=Ly,v+Ty,(g2, h2),
(3.28)
U(O’xv %‘) = Tlfw20~

LetT >0, 8>3/2,and 0 < p <2. Assume that fy,,0 € LgoﬂLi N LgoﬂLio Also assume that
g2 and h» satisfy

CXr= sup (1+1)7" lg2lzge, 100 < 00, Cir= sup g2l g, 12 < oo, (3.29)
0<t<T 0<r<T

for some constant B > 0, and

~ 3
Ciyr= sup (1+1)2
’ 0<t<T

(E)P <)y HLOO o <O (3.30)

Here the constant ¢, > 0 is the same as in Lemma 10.

Under these assumptions, following a similar argument as in the previous subsections, one
can get the following theorem:

Theorem 26. Let 8 > 3/2 and 0 < ¢ K 1. Assume that fy,0 € Lé’oﬂL2 N LgoﬂLoo, and that
g2, hy satisfy (3.29) and (3.30), respectively. Then the solution v to (3.28) satisfies

3 ~ A

ol e S l fw20’|L§?ﬂLgo + (L4 3HBHS e 6o, (3.31)

(1+1)? if —1<y <0,

2 .
+(1+8M) (n I fwz()”Lw R ng Tc,;’;T) A A+, ify=-—1,
5

(1+t)7+7, if —2<y<-—1,

for0<t<T.
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4. Proof of Theorem 2

To demonstrate Theorem 2, we also need to study the large time behavior of the solution of
the Boltzmann equation (1.2) in suitable velocity weight. The result is stated in Theorem 1 but
we postpone its proof to the next section. With the help of Theorems 1, 18, and 26, we are in the
position to prove Theorem 2.
4.1. Proof of Theorem 2

In light of Theorem 18, we need to estimate | fu, ||« ;> and || fu, | o ;2. Let T > 0.In view

£B7x N
of (2.45) and (£)7/? <1, we get
/ / Swi Twy (fwy» fdxdv

R3R3

ST
S (1P oz + 1P i 3222 14607

S @ p | . <||P1fw. 2202+ Ch, ]2>

7 i+ ol iz 1607 £ 3.

E)prLngo

for0 <t < T, where C2

Foy T F= SUPO< <7 | finr ”L;}L%' By Theorem 1 with & =0,

+p+ /2 +8
GG N (LS RO s
Sn+073 (Wollez, oo+ 1ol 1)
SnA+07 I follix, re

&, p+B+3j

since fp (-, £) has compact support contained in the unit ball centered at the origin for all £. After
choosing §, n > 0 sufficiently small, D, M > 1 sufficiently large with § M < vy and D'« sM s
it follows from Lemma 13 and Theorem 1 that

d 2 2
ol fnlie == (0= 1D = Co8 = CasM = Conl il 1)
/ / (P fu,)’ dxde
R3R3
- <C48M — 28 — ch—Z) / [8 ((x) — MO [Po f, |* dxd
HY

+ (c10—2 + 28+ C58M> / IPo fu, |* dxd + C, D2 f IPo fou, | dxde

D D
H] HE

216



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

2
+Con(1+0)2 I follzge . 5L [wal ]

<Con(1+07 3 W follge 1o [CF ] + Gl 1%

& p 43 LT

< 2 3/2
<nd4+1)" 2”f0”LE s L [wal~ :| +n* (A +1)~ “fO”LE s L

the last inequality being valid since 8 > % and fy (-, &) has compact support contained in the unit
ball centered at the origin for all £. Therefore, for0 <t < T,

[ fr Ol 2 S0l fwoll 2 +0" 2 1ol oo €y r+nllfoligs,,ne A1)

§.p+B+3]

1/2

1/2
Snllfolleg ne+n ||f||Loo " 3Loocfw1,T'

P43
Next, in terms of the operator Sy, (¢; 5), f, can be rewritten as

t

fw| () = nSwl(t)fwlo +fSw1(t§ S)lefwl(s) +Sw|(t; S)le(pr f)(s)ds, 4.2)
0

for 0 <t < T. In the sequel, we shall utilize this representation to establish the estimate for
H Sw, @) ||L°° ;2 Intwo cases —3/2 <y <0and —2 <y < —3/2 separately.
§.px

CaseI: —3/2 <y <0. By (1.4), (2.28), (2.43), (3.14), and (4.1),

i ]
t

<0 [[Sur ) funo oz + / S, 15 99K Fun )] g+ Sy 12 0 Fins PO 2 s
0
t

= fuoll iz + G [ A 1= 0 | @ s
0

t
4 Cpp [ 1= | Ol 17 £ Oy 0
0

1/2
<n|lfwlo||LwL2+clypﬁ,[nufonL L2 +n1/2||f||/ 1= Cha }

Ep+p3] sl

+c1yp,s,f<1+r—s> 973 (1ol

§.p+p+3)

Lw) ds '02127 | fun (S)||LgOL§

1/2
<Clypﬂ,[n I foll oo ' fo ||/ L c%wl‘T}

£, +/3+3
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+C| ( ) - su s .
L (0l ) - SuP | fur ) o2

Since 5 > 0 is sufficiently small such that €}, ;1 (|| folls, ., Lm) < 1/2, it follows that

1/2
[ o o2 =2€15.p.5.5 [n I foll e "2 1l foll / L c}wl_T].

&, +/3+3

In view of (4.2), we use a bootstrap argument to obtain

1/2
Pkl cfwl}

for 0 <t < T, through (2.25), (2.43) and (3.14). Since n > 0 is sufficiently small, we have

|l 2 = oy | 11l e+

”fwl(t)HL?ﬂLz _wa T= i”ypﬂ/U”fO”L

ARy

Case II: —2 < y < —3/2. Utilizing (2.43) and (2.44) with 8 > 3/2 gives

lexp (=v&) ¢ =) Tuy (funs NS 212 4.3)
_ _ 1/2 _ _ 1/2
< lexp (W) Ly (fu ) exp (W) Fuy (fugs £)(5)
L3L} LL}
fcy,p,ﬁ(l‘H_S)i% | o “L?’ﬂ 2 oL

Therefore, through (4.2), we have

i ],

t
<1 [Su, @ waO”LgtL% +/ |Suw, @ S)lefwl(s)||LgL§ + || Suwy (@5 )Ty (funy f)(s)”LgL; ds

1—
<0l ol gz + Crop [0 =97 0] 3 5
0

t

‘*‘Cy’p/(] +1—5)7 (s ”Lg?ﬂL; | (E)prLg?ﬁLgo ds
0

E.p +ﬂ+3

1/2
<n|!fwlo||L4Lz+Clypﬂ](nnfonL ”2||f||/ pniL Cful)

+C1ypﬂ]/(1+t—s) V(1+s)_7ds ()7 ||f0||LE1}+ﬁ+’;] ° )wal

218



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

1/2
<c1ypﬁ,[n||fonL gt Pl e, rtn(Ifollex,,, 00) Ch }

& p+p+3

” ] 2 1/2 2
b (n I follge ot Plpolfs e cfwl,T>,

due to (1.4), (2.30), (4.1) and (4.3), whenever 5 > 0 is sufficiently small. That is,

[ fin a1z < 1ypﬂ/(’7||f0||L +0' 2 foll e 10 Ch, ) 4.4)

eprprajl pp+3iL

Through (4.2) again, we infer

” Juw @) ||L°°L§

<l ol iz + o / A4 0=9"7 iy 0 g s
t
+CV>P'/(1 +1 _S)i% | fon (S)“LgOLg I <E>pf(s)||L§°L§° ds
0
<ol iz + € / A+ 1=9" 5 35

+cly,,,3,/(1+t—s> A+ s (nlfoll Loo)ds-osupTwal 12
<t< *

&, p+B+3j X

1/2 1/2
<C1yp/3/|:77||f0"l_s gyl T ol Cfu] ]

+Clyps (1ol i) 590 | fun )] e
0<t<T § Tx

§.p+B+3j

by using (1.4), (2.29), and (4.4). Since n > 0 is chosen sufficiently small, we get

1/2 1/2 2
Lot I fo || a3 L Cf“’l’T> .

X

[ for 12 =2C15 055 (n I foll oo

&, p+B+3j

Using the bootstrap argument, we eventually get

/2 1/2 2
£ 1 12 = Ty s <n I follee ot IRIE o cfwlyT).

Since n > 0 is chosen sufficiently small, we get

2 "
“fm(””LS%L% Scfwl,T =Ciy.p.8 ]77||f0||L s L
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forO0<t<T.
Gathering Case I and Case II, we obtain

nfwl(t>||L§oﬁL2_cﬂ r<C1, g0 foll (4.5)

&, +/3+3

"

Ly.p.B.j

H S, (@) H 1 12> We choose a weight function wy satisfying €, § > 0 sufficiently small, M > 0
eptx

for —2 <y <0 and p > 1, where the constant C > 0 independent of 7. As for

sufficiently large such that ec, < &, 8M > 0 large and M < e~ !, After that, by the energy
estimate, we deduce that

[ Fun ] 2 S 1 Fuso o 1| fuoll % e Ch

E.p +ﬁ+3 sp+ﬁ+3] &

where w3 = exp (é (E)p), 0< p<2, and C%w 7 = SUPg<s<T ” Sw, ”L?ﬁL% . Following the above

bootstrap argument, we as well have

§.p+B+3j 7%

| fur O s, 12 = C o =Cyppinllfollie o, (4.6)

for —2 <y <0and 0 < p <2, where the constant C/”

LypBi ™ 0 is independent of T'.
Now, according to Theorem 18, if —1 <y <0,

A+n~4 | foor “LgéﬂL.?" <A+n74 (,7 [ fw10||L§?ﬁL§° + (1412 +A+§c<>o C;?T)

wlT

+( +t)2 A [(1 + M) (77 wal()HLOO 2 + Cle TCf T)i|
0 <t <T.Taking A =2 and choosing n > 0 sufficiently small, together with (4.5), we get

-2
Chrpr = 5w (407 ol e Sl folugs e (1 nlfolles,, )

§.p+B+3j7x

since C;’,?T (II Joll Lo (due to (1.4)). It implies that

&, +ﬂ+3 )

e (1l fol, 1)

§.p+p+3j7x

| for ULOO Lo SA+D7 01 foll e

£p+p+3iL
for 0 <t < T and then for 0 <t < oo since T can be arbitrarily large. Note that for (x) > 2M1t,

= and (x) — mr > S M

wi (1,x,8) 2 [8 ({x) — M1)] 3 3

so that
f(t,x 00
| ( )|l§,ﬁ

<n(l+102((x) + M) 7

p+B+3j H 1 H p+f3+3j H
(&) fo LOOLOO( +n fo L)
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for —1 <y <0 and p > 1. Likewise, we can obtain the estimate of | f (, X)ngoﬂ in other cases

by taking A =2 + ¢ whenever y = —1land A=7+ % whenever —2 < y < —1 respectively in
Theorem 18. This completes the proof of part (i). Imposing a certain exponential weight on the
initial data fp, we also note that for (x) > 2M¢,

_p Mt
p (1, 8) 215 (be) — MOIFHT and ) —me > 5 4 2L

where 0 < p < 2. Hence, part (ii) follows by taking B = 2 whenever —1 <y <0, B=2+¢

whenever y = —1,and B=7+ 2 whenever —2 < y < —1 respectively in Theorem 1, besides

choosing n > 0 sufficiently small in each case. The proof of the theorem is completed. O

5. Proof of Theorem 1

This section is devoted to the large time behavior of the solution f to (1.2) in certain weighted
normed spaces. Our strategy is to study the homogeneous/inhomogeneous linearized Boltzmann
equation in the first two subsections, and then to demonstrate the large time behavior via an
iteration scheme.

5.1. Linear Boltzmann equation

Let G’ be the solution operator of the linearized Boltzmann equation

dg+E-Vig=Lg, (t,x,&) eRT xR3 xR,

(5.1
g(0.x.6) =go(x,8), (x.£)eRI xR,
and let S’ be the solution operator of the damped transport equation
dh+&-Vih+vEh=0, (t,x,&) eRT xR xR3,
(5.2)

h(0,x,8) = ho(x, §), (x,6) e R3 x R3.
We will provide the estimate for the large time behavior of the solution g to (5.1).

Proposition 27. Let —2 <y <0, 0 < p; <2, p» > 3/2, & > 0 sufficiently small, and let j > 0

. oo oo 00 1
be any sufficiently large number. Assulzw that wigo € Lé,p2+j LY N Lg,p2+jo' Then there are
positive constants C; and C; 3 b1 pr.j» L = 1, 2, such that the solution g to (5.1)

satisfies

JV-8,P1,P2, ]

_3

1wsg Ol 12 = Ciyoprpn,j 0 +07F (lwsgollze 1y +llwsgollgs, 1), (53)
_3

||w3g(t)||Lg_0p2L;o <Cyyippj(1+072 <||w380||Lgf>p2+_,.L; + ||w3gol|Lg_0p2+ngo)- (5.4)

Moreover,
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<C o .

lwsg®lg, 12 = Cryepipn (IWsgole, o)+ lwsgolliz, i), (53

||w3g(t)||Loo e = Coy8.p1.pa.j <||w3go||L§f>p2+jL; + ||w3go||Lgé],2+ng°)- (5.6)

Proof. By assumption, go € L"O Lo<> N L‘X’p2 ILl Then, following a similar argument as in
[22, Propositions 7 and 15] (or see [29 30]), we see that

Lng) (5.7)

+]’ s
&

lg®)ll 25 S A+0)7 (H (€7 g0|

L2L1

S (T e e N |

and

+ H(S)f

le®l 20 S (0 +073 (”(E % s L Lw) (58)

L3L}

3
saso{@al, @ o], )
SAd+n (( goLle+ goLOOLOO

Now we prove (5.3) and the others are similar. In terms of the damped transport operator S/,
g can be written as

'
g(t):Stgo+fS[_SKg(s)ds. (5.9)
0

Let7T >0.Forany0 <t <T,

w3 |g(t)|L% < w3 |Stgo|L§ +w3/ |St7XKg(s)|L}2C ds=1+11.
0

It is easy to see that

I <sup (w3]S'g0l2) = <stélpe Ve <s>—f) lwsgoll 2,2 (5.10)

X

I 3
<C, (1417 ||w 2 <C, i(14+1t)"%|w 2,
=Gy jA+07 lwsgollrg, 12 =CyjA+07% llwsgollre, 1

since j is sufficiently large. For 71, it follows from (2.12), (2.13) and (2.25) that
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t— g(€)P1 _—(t—
ws |S SKg(s)|L% — FE = =5)v(®) |Kg(s)l.2

< (mE (gyr-t [sup (9" )7 Kg)I12)
lEl=t

+ sup ()71 " ()77 |Kg<s>|L;)}
|€l>7

iy o, _
<C,(l+t—s)7 (eemm ||Kg(s)”L§f’1_yL§ +1+7)7! ||w3Kg(S)||L§°2_yL§)

(5 Mgz + 1+ D wsg@llzers ) i 5 <y <0,

1—

<Cyep(I+t—s)7
(5 Mg sz + A+ wsg@llpers ) if =2 <y = 3,

for any v > 0. Whenever —2 <y < _73, in view of (2.14), (5.7) and (5.9), we have

lg)lp2r2 = (supe‘”@) <s>—~") lgollzs 12
X %' N X
A
+/Sup (e‘”@)(s‘“‘/) <$>‘“‘”) [KsGHlps,  r2ds’ (5.11)
-y X
)
X S
<1 L 1 _ FTV / d/
S ( +S)V||gO||ngL)2(+ ( +s S) ||g(s)“L§L§ s
0

A
SA+s)7 llgollze r2
/(1+s_s) 7 (1 +5)" 4(||go||Loo ot tligolly, x)ds/

SA+97 (Igoligs, oy +lgoliy, 1)

the last inequality being valid since j > 0 is sufficiently large. Using (5.7) and (5.11), we deduce

1= Cpoprpn ™" (Isolis, 1y + ol | /(1+r—s> (o tds

3 1oy 3
+Cyprpsj (147" sup [(1 +5)3 ||w3g(s)||L§oL§] : /(l +1—5)7 (14+5)"3ds
0<s<T
(5.12)
<C EO) -3
<Cy pipi€ (1+4+1) ||w3g0||Lg?p2+jL)1c + ||w380||L§f>pz+jL§0
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_ _3 3
F € 1+ DT AT sup. [ +9)F gl 22 ]

After selecting T > 0 sufficiently large with C ;/ PLpan (1+17)~! < 1/2, we obtain

3
sup [+ 08 wsg@liziz | < €yt (I038olizs, o1+ lesgolls,rse )

due to (5.10) and (5.12). It implies that

3
< A ; 4
lwsg @iz = Crpeoprpns (1407 (lwsgolliz, o+ lwsgollize 1)

for 0 <t < oo, since T > 0 is arbitrary.
Finally, through the bootstrap argument, we get

3
< ~ . — 3
1wsg Oz, 12 = Chiyoprpn i A +07F (lwsgole 11+ lwsgolligs, i)
as desired. The proof of this proposition is completed. O
5.2. The inhomogeneous Boltzmann equation

In this section, we further consider the inhomogeneous Boltzmann equation

g +&-Vig=Lg+T(hy,h2),
(5.13)
g0,x,8)=go(x,8).

Now, let 0 < p; <2, p» > 3/2, &€ > 0 sufficiently small, and j > O sufficiently large. We
assume that gg satisfies

”go||L§o((€_->pz+2je§(g)Pl )le + ”g()”Lgo((E)szijeg(g)Pl )L;" < by, (5.14)

and h; (i =1, 2) satisfies
3 3
Sl;lp {(1 + t)4 th (t)”Lgc((%.)pzeg(E)]’] )L)% 5 (1 + t)4 ||hi(t)||L%°_°<<§)l’26§(§>p] )Lgo s

”hi(l‘)||L§o(<§)p2+2je§<g>m )L)% s ”hi(t)||L§o(<$)p2+2je§<g>171 )L?f‘ } <b;, (5.15)

for some by, b1, by > 0. We will study the large time behavior of the solution g to (5.13) in some
suitable norms (see Proposition 31).

Before proving Proposition 31, we need some preliminary results (Lemmas 28 and 30) re-
garding the nonlinear term I" under the assumption (5.15).
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Lemma 28. Assume that hy and hy satisfy (5.15). Then

I Cioss (1, hz)(t)||L§o((é>p2+z,-fyeg@)m ! <Cy(1+1)"ibby,

ITtoss (1. IO o gyprsai-vaigm ) < Cr 1+ 1 biby,

IPtoss 1, RO o 21 i ) = 11+ 1 biby,

X

ITgain(h1, h2) (@) || L <<§),;2+z,>y+1eg<g>m )Lx < Cabiby,

where Ly =L}, L and L.
Proof. By Lemma 15,
IT10ss (h1, h2) (t)ngo (<§)pz+2j—yeé<§>1’1)
S |7y |L§>O |h2|Lgo(($)172+2jeé(s)Pl ) + |h2|Lg0 |71 |Lgo ((S)P2+2jeé(g>l’1 ) s
and

T gain(h1, hz)(t)\Lgo(@)pz+zj—y+1eé<s>”1 )
Slhi |L§c<(§>f’2+2fe§($)171 ) |h2|L§°((§>”2+2-/6§(’5)p1 )

Therefore, according to the assumption (5.15) and that p, > 0, we obtain the desired esti-
mates. [

To prove Lemma 30, we need an interpolation inequality:

Lemma 29.

IH (2, x, &) Ingo<<g>p2+,-eg<g>m )Lx

>

1 1
<2|H(x, &2 IH @ x, )17
L‘g X Lg

((g)pzﬂjeé(apl )L ((5)1?2&@)”' )LX
where Ly = L} and L.
Proof. For any &y > 0,

|H(z,x,&) ||L§c((5>p2+,‘eg(g>m )Lx

)2 O Ht, x, &)

< (%)’ sup

+ (50) ™ sup [(£)2H O H(r, x, 8)
&1 <&o Lx Lx

1§1>&0
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= (50)] | H(t, x, E)”Lgo((f)meg(‘é)pl )LX + <§0>_1 | H(t, x, %-)”Lgo (<§)1)2+2jeg<g)171 )LX .

We can get the desired result by choosing &y > 0 such that

1

2 . O
L§0<(g>pze§<§>p1 )LX

, 1
(§0)’ =||H(t,x,€)||zm((é . IH (@, x, )
g

yP2+2) 2 (€)P1 )L

Lemma 30. Assume that hy and hy satisfy (5.15). Then there exists a positive constant

C%ﬁpl,pz,/’ such that

3
”F(hla hZ)(Z)”Lgo((s)szrjeg(g)Pl)L < Cy,é,pl,pz,j(l + t)_“ble)

1
_3
PG B W (gt e < Crimopn i1 +07 b1
Proof. It readily follows from Lemma 15 that
_3
IT105s (h1, hZ)(t)”Lgo(@)pzeé(g)Pl )L)l( <Ci(1+1)"2biby,
_3
I Tross (A1, h2)(t)||Lgo<(é>pze§(é)Pl)Lio <Ci(14+1)"2b1b,
_3
T gain (1, h2) (1) ||L§o<<g>pry+1eg<g)m )Ll < Ca(1+1)"2b1by,
_3
ITgain(in, YO oo gyrarirgiim ) oo = C20+ 0720102,
Combining this with Lemmas 28 and 29, we obtain
IT(h1, ho) (1) ||L§° ((g)ﬂz-*-.ieé‘(é)pl )L)lc

1
IT(h1, b))

|
<2|T(hy1, h)(®)? _
=2 (h 2)()”L?((@pzﬂjeé(&)m)L}{ Lgo(@)zvze‘?“(é?)”l)L}Y

_3
=Cyiprp,j(L+1) " 4b1b2,

and

TG Bl (gt

X

1 1
<2|IP(h1, ) DII? IT(h1, b))
L,;. i L,;.

(12 s2rei )2 (1620 ) e
_3
<Cyapp, A+ %b1by. O
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Proposition 31. Assume that go satisfies (5.14) and that hy and hy satisfy (5.15). Then there

exists a number Cy, 3, p, i > 0 such that the solution g to (5.13) satisfies

3 3
max {(1 FOTIEO N (im0 T+ IO e s

”g(t)”l@o ((S)p2+2«fe§(5>pl )sz( 11 @) ||L§°((§)p2+2je§($)p‘ )L)C?O } = Cy,é,pl,pz,j(b() + b1by).

Proof. By Duhamel’s principle, g can be written as

t

(1) =G'go + / G~ T(hy, ha)(s)ds.
0

Hence, in view of Proposition 27 and Lemma 30,

g (@) ||L§o<(é>pze§(S)Pl )Lio
t
= ”Gtgo ”LgO((g)Pzeé(é)”l)L;o +/ ”GZ_SF(M,hz)(s)||Lgo(<E>,,2€§(g)pl)Lgo ds
0

3
< _3
SA+1n"2 (“g()||Lgo(<$)pz+_,‘eg(g)l’l )L)l( + ||g0||Lgo(<$)p2+_,‘eg(g)Pl )Lg") (5.16)
t

_3
—i—/(l +t—s5)72 IIF(hl,hz)(S)IIL?((@pzﬂ-eg@)m)L} ds
0

X

t
_3
+/(1 +1t —S) 2 Hr(hl’hz)(s)||L§°<(s)"2+fe§<$>”1)L°° ds
0

t
3 3 3 3
< +l)_7bo+/(1 +1 =973 (4975 + (1 +9)77) bibads
0

3
S +1)"3(bg+b1b2),

ie.,
_3
||g(t)||L§c((S>p2eW1)L;c S (L4171 (bo + b1by).

This completes the estimate for | g(?)]| L0 and the estimate for
3

(@r2et@n g
llg(®) ||L§O (<$>P26§(E>pl )LE can be obtained via the same argument.
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On the other hand, regarding (5.13) as the damped transport equation with the source term
Kg +T'(h1, h?), g can be rewritten as

t

g (t)=S'go + / S5 [Kg(s) + T(h1, ha)(s)]ds.
0

Let T > 0. Hence, forany 0 <t < T,

80l < |5'g0] o + / S (Kg(s) + (1 h) ()] ds
0

t

<oV 180l p00 + / e VU= | Ko(s) + L(h1, h2)(s)| o dss.
0

By assumption (5.14), it immediately follows that
O () P2¥2T VO | gg] 0 < by, (5.17)
Next, in view of (2.9) and (2.25),
LN <é§>172+2j e VE—s) |Kg(s)|

< sup [0 T OO ()77 ()17 ()P K g(o)] 0|
l§l<t !

+ sup [ O ()7 ()7 ()7 ()7 O Kl ) |
[El>7

<Ci+r=97 (0¥ EO RO I |

-1
+ (1+71) ||Kg(s)||L§o(<§>pz+21+2ﬂeé<5>” )Lgo>
-y
<Cl(4i—s) << 127 g8 ”g(s)“Loo Lt (1+7)7! g, ( pz+21'e5(f>p')L°°>

for any t > 0. Picking 7 > O such that (1 + 1)~ IC/ 4, we get

t
fe§<§)”1 <§>P2+2j eV —s) |Kg(s)|L§o ds (5.18)
0

4 0<s<T

1oy 1
/ (I41—5)7 (Cz I8 ngs, 1o+ 3 30 18I e 2+2,eg<g>pl)m) ds
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1
=Cs(bo+bib2) + 5 sup [Ig(s)ll

0<s<T LE (@22l Lo

here the estimate for [|g(s)|| Ly, Ly following the same argument as (5.16). Finally, we split "
sp2 X

into two parts I'joss and I'g4is. Then, it follows from Lemma 28 that

t

/ O (g2 eV OUI D i (hy, h2) (5)] oo ds (5.19)
0

t

1—
< / Call+1—=9)7 | Tgain(hi, h2)(s) ||Lgo<(§>,,2+zj+1,yeg<g>m)Lgo ds
0

t
1—
5/c5(1 4 1—5) 7 bibads < Csbibs
0

and

t
[ R Oy ) ds (5.20)
0

x

t
< fai-s Tl 1 BN - i 45
0

t
= C6b1b2/(1 +1r— S)_l(l +S)_%ds < Cgb1bs.
0

Combining (5.17)-(5.20) gives

t - <C,; i(bg + b1by),
OiltlgT ”g( )||L§o(<§>p2+2165<5)P1)L$Q = y,s,pl,pz,j( o0+ b1b2)

which implies that
”g([) ||L§o<(é>p2+2je§(g>p1 )LSO = Cy,é,pl,pz,j(bo + b1b2)

for 0 <t < oo, since T > 0 is arbitrary. The estimate for ||g(?)]| can be

Lgo ((5)112+2je§(5>”1 )L%
obtained via the same argument as well. The proof of this proposition is completed. O
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5.3. Proof of Theorem 1

Define a norm as
h lh in
AT = 50p § (1 4+-0% O (g riom )z + 105 RO oy ) o

||h(t)”L§°((E)P2+2/e€ )L2 , ”h(t)" ( ”2+2jeé<5)pl)L§0} .

Now, we consider the iteration { £} for which f© (r,x,&) =0and 0D, i e NU{0},is
a solution to the equation

alf(i-H) +E£- fo(i+1) — Lf(i-H) + F(f(i), f(i)),
) (5.21)
FODO,x,8) = nfolx, §),

where 1 > 0 is sufficiently small such that

2
(1+Cyoprpnj) n <||follLé,o((wﬁzjegmpl)LJZ + ”fo||Lgo(<%.)p2+2jeg(g>l71)L;O) <1/8.

Denote

by:=n (||f0||L§o <<§)p2+2je§<g>m )L}( + ||f0||L§O <<§>p2+2je§<g>m )L€C> .
According to Proposition 31,

(D . . R .
LA = Cy e, prpa, jP0 < 2Cy 2, py s, jD0s

and then
2
FO =yt [P0+ 2yt 1 sbo) ]

1
=2Cy,p1,pr.jbo [5 + ch,é,pl,pz,jbo}

<2C bo.

v.€,p1.02.]

By induction on i, we get

£ <20 bo.

V.E.p1.02.]

through Proposition 31. Hence, we get the boundedness of { £} in the norm ||| - |-
Next, we demonstrate the convergence of { f (i)} and uniqueness of its limit. Set A(+D =
FE+D — £@ and then A1 D satisfies the equation

230



Y.-C. Lin, M.-J. Lyu, H. Wang et al. Journal of Differential Equations 322 (2022) 180-236

ath(i-i-l) +E- Vxh(i-i-l) — Lh(i-i-l) + F(h(i), f(i)) + F(f(i_l), h(i)),

(5.22)
R0, x, &) =0.
According to Proposition 31, we get
1RV <4(Cytpy. o) DOl
for all i € N. Since 4 (Cy’g’p]’pz,j)zbo < 1/2, {f(i)} is a Cauchy sequence in the norm ||| - |||,

so that it converges and its limit f will satisfy

_3
lws f Ol 12 <nCid+07F (lwsfollz o +lwsfollx L ix).  (523)

,pp+2j X

3
lws fOllzge, 1o =nCa(l+1)7% <||w3f0||Lg?p2+2jL}{ + llws follLge 2+2ng°>’ (5.24)

N2

” 3 ( )” i e 2]_1)2( = 1 ” 3 0”15,]72 2]'1)1( ” 3fb||l Eopn Zjl < ( )
llws f( )||[svp2 oL =12 l 370”[%.1)2 5Lt + | 3f()||[§w2 2L (5.26)

Therefore, (1.4), (1.5), (1.6) are obtained.
Finally, we will use a bootstrap argument to improve the estimate (5.24). Write f as

t

F=nG'fo+ f G T(f, f)(s)ds.

0

and then we have

lws f(OllLge, 1o
t
5’7||w3th0HL°° Loo+/“w3Gtisr(f’ f)(s)“Loo Lo ds
§.pp X Epy X
0
_3
Sn+07F (lwsfolliz, o+ lwsfollig, o)
t
_3
A= (lal G DOz, oy + 0l OO, 1) ds
0
_3
Sn+07F (lwsfollz, o+ lwsfollig, )
t
3
l41—s)2 2 ix e ])d
[ari-g (nwgfnLWjL%+||w3f||L&p2HLx) 5
0

3
Sn(l+t _7< w oo w )
Snd+n7z (lwsfollpge, ot +lwsfolliy, 1
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t
_3 _3
+77/(1+t—s) 2(1+5) 2dS-(||w3fo||L§f>pz+3jLi+||w3f0||Loo
0

3
< B % e lE
Snd+1) <||w3fo||LE,p2+3,L; Flws follegs,, e )

pp+3j X
by using (2.49), Proposition 27, and (5.24). This completes the proof.
6. Appendix
6.1. Proof of (2.41) and (2.42)

We claim that
5 1/2
([ v 2OrE n©)| dé) Slgloge hliz + 18l 1hirg

2 1/2
(/(v—l(@r(g,h)@\ ds) S glize 1l 2 + g2 Ihlpge
Recall that we split I" into two parts I'g4i, and I'jps as below:

(g, h) = Fgain (g, h) —Tioss(g, h)

1 !/ 1./ 1./
-2 / BO)E — &7 MY [glh + g'h.| dEsdo

R3xS?

1
-3 / BO)E — £ M [guh + ghy] désdo.

R3xS?
In the sequel, we shall estimate I'g;, and I'og¢ individually.

Estimate on I',5,(g, /). It readily follows from Lemma 14 that

Closs (8. 1)1 50 (I8l 1h1+ gl 1l 20 )

Therefore, we have

b\ 12
( [ @t ne)| dé) S 18lege 1hliz + 1812z Ihlige

5 172
(/\v‘(é)rm(g,h)(a\ dé) S lgloge 1l 2 + g2 Ihlpe

Estimate on I'g,;,, (g, h). By the Cauchy-Schwartz inequality and Lemma 14,
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T gain (g, ) ()]

2
svol [ |B<ﬁ)||s—s*|yexp<—'52' )[}g;|2|h’\2+|g’}2|h;!2]ds*dw . (©66)

3xS?

so that

[ @ ante e ae
gain\§,

S/B(z?) / V()7 IE — &l exp(~ 'E* )LL)+ [&| |1 dseds | doo.

S? 3xR3

We split the (&, £)-space into three regions: I = {IS*I > %} = [|§*| < 'iz‘, €] < 1}, and
n={lel< 1= 1}

Case 1: On I = {|&] > €] /2). Since |& — & = [€' — &I, 161> + &% = [¢']” + &%, an
vl () S(E) 7 (EL) 7, we have

[ 3| [ver e s e EE [ PP ol P i Pasae | a0 o)

S2 Ul

2
s [son| [ver e e ) [l 12+ P 12 ] | s

N Ul

’ 1y |$>i/<|2 ’$/|2 712 (1712 123712 I el
sl | [ —gree(—( S+ 5 ) ) [Jeif W] +1g P n ] aglag’ | do

S? v ()

< y &2 161 2R 2 2

S B [1e—arre (= S5+ 2 ) ) [l 107 + 18P 1he? | dsdt | do
S?2

<|g|Loc |h| 2 +|g| 2 |h|Loo,
L; L; £

by change of the variables (&, &) i) (¢,,&") and Lemma 14.
Case 2: On I = {|&| < |£] /2, |&] < 1}. In this region, |§ — &] > |&]/2, 1 <v~ (&) <2, and

/2 /2
] ¢ <va (g +[e?) " =vE (P +1eR) <201 <2
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Hence,

2
[ | [vertie—arew=0) [l 0P + 1P 1] deas | a0 63)

S2 I

2
5/3(:9) /Elyexp(—%)[lg;lz!hﬂﬁ|g’|2|h;|2]ds*ds do
S2 I

5/8(&) /|s;|V[|g;|2|h’|2+}g/|2|h;|2]ds*ds do
S2 I

s [sor| [ [lef P+ g ] aeia | do
S?2 v (I2)

5/8(19) /Ew[|g*|2|h|2+|g|2|h*|2]ds*ds do
S? I

<ol 1h2 2 2
~ |8|Lgo |h|L<2, +|g|L<2, |h|L§o

The last inequality is valid since ji £i<1/2 |Ex|” dEy < 00,

|h|*dg = / v E)v @) hPdE <C, / v(§) > d§ < Cy 1hl}

|&1=<1 [&1=<1 £1<1
f|g|2ds= f v L&) glPde <G, f v (&) |h*dE < Crlgl,
|£1<1 |£1<1 |£1<1

for some C,, > 0.

Case 3: On I3 = {|&| < |&| /2, |€] > 1}. In this region, |§ —&,| > |&|/2 > (1 4 |&|) /4; more-
over,

’ ’ 1+ 712 1+ 712 1/2 2 *2 1/2 1/2
%%E< 2|(s|+ 2|s*|> =(1+|s| +2|5|> <(1+1p)”,

which implies that v (§) < (¢')", (£1)" (used in the proof of (6.12)). Hence,

2
[Bor| [vertie—arew=0 [l P + 1P 1P deas | a0 ©9)

S2 I3
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5/309) /[|g;|2 0+ || [ dg.ds | deo

S? I3

s [sor| [ [laf P+l P ] asias | do
S? Vv (13)

S/B(z?) /[Ig*|2|h|2+Ig|2|h*|2]d%‘*d$ do

S? I3
2 2 2 2
S lglye 1h13 +1gl3 [hl (6.10)
Gathering (6.7)-(6.9) yields
) 1/2
(/‘V_I(E)Fgmn(g,h)(é)‘ ds) Slelz il + gl lhle . (6.11)
Similarly, we have
2 1/2
( [ [Tt @) ds) (6.12)
1/2

2
s /B(ﬂ) / 6 — &l exp— 20 [ |+ o' 1] dddo

S?2 LULULR

< |8|Lg° |h|Lg + |8|Lg |h|L§° ,

by following the same argument.
As a consequence, combining (6.5) and (6.11), we obtain (6.2). Combining (6.4) and (6.12),

we obtain (6.1) and thus

172 1/2

(£ g, ) | < /v(é)lflzdé /v‘l ) IT(g. ) d&
R? R?

S 1122 (1glege Vhlzz +1gl22 iz ).
The proof is completed. O
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