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Abstract We study the quantitative pointwise behavior of the solutions of the linearized
Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with
Grad’s angular cutoff assumption.More precisely, for solutions inside the finiteMach number
region (time like region), we obtain the pointwise fluid structure for hard potentials and
Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time
decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number
region (space like region),we obtain sub-exponential decay in the space variable. The singular
wave estimate, regularization estimate and refined weighted energy estimate play important
roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl
Math 57:1543–1608, 2004), (Bull Inst Math Acad Sin 1:1–78, 2006), (Bull Inst Math Acad
Sin 6:151–243, 2011) and Lee et al. (CommunMath Phys 269:17–37, 2007) to hard and soft
potentials by imposing suitable exponential velocity weight on the initial condition.
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1 Introduction

1.1 The Models

In this paper, we consider the following Boltzmann equation:{
∂t F + ξ · ∇x F = Q(F, F),

F(0, x, ξ) = F0(x, ξ),
(t, x, ξ) ∈ R

+ × R
3 × R

3, (1)

where F(t, x, ξ) is the distribution function for the particles at time t > 0, position x =
(x1, x2, x3) ∈ R

3 and microscopic velocity ξ = (ξ1, ξ2, ξ3) ∈ R
3. The left-hand side of this

equation models the transport of particles and the operator on the right-hand side models the
effect of collisions on the transport

Q(F,G) =
∫
R3×S2

|ξ − ξ∗|γ B(ϑ)
{
F(ξ ′∗)G(ξ ′) − F(ξ∗)G(ξ)

}
dξ∗dω.

In this paper, we consider the Maxwellian molecules (γ = 0), hard potentials (0 < γ < 1)
and soft potentials (−2 < γ < 0); and B(ϑ) satisfies the Grad cutoff assumption

0 < B(ϑ) ≤ C | cosϑ |,
for some constant C > 0. Moreover, the post-collisional velocities satisfy

ξ ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ ′∗ = ξ + [(ξ − ξ∗) · ω]ω,

and ϑ is defined by

cosϑ = |(ξ − ξ∗) · ω|
|ξ − ξ∗| .

It is well known that the Maxwellians are steady state solutions to the Boltzmann equation.
Thus, it is natural to linearize the Boltzmann equation (1) around a global Maxwellian

M(ξ) = 1

(2π)3/2
exp

(−|ξ |2
2

)
,

with the standard perturbation f (t, x, ξ) to M as

F = M + M1/2 f.

After substituting the above ansatz into (1) and dropping the nonlinear term, we then have
the linearized Boltzmann equation:{

∂t f + ξ · ∇x = L f,
f (0, x, ξ) = f0(x, ξ).

(t, x, ξ) ∈ R
+ × R

3 × R
3, (2)

where
L f := M−1/2 [Q(M,M1/2 f ) + Q(M1/2 f,M)

]
.

The existence theorem of the linearized Boltzmann equation (2) can be found in [17]. It is
well-known that the null space of L is a five-dimensional vector space with the orthonormal
basis {χi }4i=0, where

Ker(L) = {χ0, χi , χ4} =
{
M1/2, ξiM1/2,

1√
6
(|ξ |2 − 3)M1/2

}
, i = 1, 2, 3.
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Quantitative Pointwise Estimate of the Solution… 929

Based on this property, we can introduce the macro-micro decomposition: let P0 be the
orthogonal projection with respect to the L2

ξ inner product onto Ker(L), and P1 ≡ Id − P0.

1.2 Main Results

Before the presentation of the main theorem, let us define some notation in this paper. We
denote 〈ξ 〉s = (1 + |ξ |2)s/2, s ∈ R. For the microscopic variable ξ , we denote

|g|L2
ξ

=
( ∫

R3
|g|2dξ

)1/2
, |g|L∞

ξ
= sup

ξ∈R3
|g(ξ)|,

and the weighted norms can be defined by

|g|L2
ξ (m) =

( ∫
R3

|g|2mdξ
)1/2

, |g|L∞
ξ (m) = sup

ξ∈R3
{|g(ξ)|m} ,

here m = m(t, x, ξ) is a weight function. The L2
ξ inner product in R

3 will be denoted by〈·, ·〉
ξ

:
〈 f, g〉ξ =

∫
f (ξ)g(ξ)dξ.

For the space variable x , we have similar notation. In fact,

|g|L2
x

=
( ∫

R3
|g|2dx

)1/2
, |g|L∞

x
= sup

x∈R3
|g(x)|.

The standard inner product will be denoted by (a, b) or a · b for any vectors a, b ∈ R
3. For

the Boltzmann equation, the natural norm in ξ is | · |L2
σ
, which is defined by

|g|2L2
σ

= | 〈ξ 〉 γ
2 g|2

L2
ξ

.

Moreover, we define

‖g‖2L2 =
∫
R3

|g|2
L2

ξ

dx, ‖g‖2L2(m)
=
∫
R3

|g|2
L2

ξ (m)
dx,

and

‖g‖L∞
x L∞

ξ (m) = sup
(x,ξ)∈R6

{|g(x, ξ)|m} , ‖g‖L1
x L

2
ξ (m) =

∫
R3

|g|L2
ξ (m)dx .

Finally, we define the high order Sobolev norms: let s1, s2 ∈ N and let α1, α2 be any multi-
indexes with |α1| ≤ s1 and |α2| ≤ s2,

‖g‖Hs1
x L2

ξ (m)
=

∑
|α1|≤s1

∥∥∂α1
x g

∥∥
L2(m)

, ‖g‖L2
x H

s2
ξ (m)

=
∑

|α2|≤s2

‖∂α2
ξ g‖L2(m).

The domain decomposition plays an important role in our analysis, hence we need to
define a cut-off function χ : R → R , which is a smooth non-increasing function, χ(s) = 1
for s ≤ 1, χ(s) = 0 for s ≥ 2 and 0 ≤ χ ≤ 1. Moreover, we define χR(s) = χ(s/R).

For simplicity of notation, hereafter, we abbreviate “ ≤ C” to “ �” , where C is a positive
constant depending only on fixed numbers.

The precise description of our main result is as follows.
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Theorem 1 Let f be a solution to (2) with initial data f0 compactly supported in x-variable
and bounded in the weighted ξ -space:

f0(x, ξ) ≡ 0, for |x | ≥ 1.

There exists a positive constant M such that the following hold:

(1) As 0 ≤ γ < 1, for any given positive integer N, any given 0 < p ≤ 2 and any sufficiently
small α, ε > 0, there exist positive constants C, CN , c0 and cε such that f satisfies

(a) For 〈x〉 ≤ 2Mt,

| f (t, x, ·)|L2
ξ

≤ CN

⎡
⎣(1 + t)−2

(
1 + (|x | − vt)2

1 + t

)−N

+ (1 + t)−3/2

(
1 + |x |2

1 + t

)−N

+1{|x |≤vt} (1 + t)−3/2

(
1 + |x |2

1 + t

)−3/2

+e
−c0

(
t+α

1−γ
p+1−γ |x |

p
p+1−γ

)

+ e−t/C

⎤
⎥⎦ ||| f0|||.

(b) For 〈x〉 ≥ 2Mt,

| f (t, x, ·)|L2
ξ

≤ C

⎛
⎜⎝e

−c0

(
t+α

1−γ
p+1−γ |x |

p
p+1−γ

)

+ t5e−cε (〈x〉+t)
p

p+1−γ

⎞
⎟⎠ ||| f0|||.

(2) As −2 < γ < 0, for any given 0 < p ≤ 2 and any sufficiently small α, ε > 0, there
exist positive constants C, c, c0 and cε such that f satisfies

(a) For 〈x〉 ≤ 2Mt,

| f (t, x, ·)|L2
ξ

≤ C

⎡
⎣ (1 + t)−3/2 + e−cα

−γ
p−γ t

p
p−γ

+e
−c0

(
α

−γ
p−γ t

p
p−γ +α

1−γ
p+1−γ |x |

p
p+1−γ

)⎤
⎥⎦ ||| f0|||.

(b) For 〈x〉 ≥ 2Mt,

| f (t, x, ·)|L2
ξ
≤C

⎡
⎣e−c0

(
α

−γ
p−γ t

p
p−γ +α

1−γ
p+1−γ |x |

p
p+1−γ

)

+ t5e−cε (〈x〉+t)
p

p+1−γ

⎤
⎥⎦ ||| f0|||.

Here 1{·} is the indicator function and

||| f0||| ≡ max
{
‖ f0‖L2

(
e7α|ξ |p ) , ‖ f0‖L1

x L
2
ξ
, ‖ f0‖L2

(
eε|ξ |p ) , ‖ f0‖L∞

x L∞
ξ

(
e8α|ξ |p )

}
.

The constantv = √
5/3 is the sound speedassociatedwith the normalized globalMaxwellian.
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1.3 Method of Proof

The pointwise behavior of the solutions of the linearized Boltzmann equation has been
investigated in [11–13] for the hard sphere case and [10] for the hard potential case. On the
other hand, we are aware that a stronger velocity weight yields not only faster time decay
(see Caflisch [2] and Strain-Guo [15] ), but also space decay (see Golse-Poupand [6]). In this
regard, we are interested in the pointwise behavior of the solution of the linearized Boltzmann
equation with hard, Maxwellian and soft potentials, under an exponential velocity weight
assumption on the initial condition.

In this paper, as in [10–13], we assume the initial condition is compactly supported in the
space variable. This means that we want to understand the detailed propagation of localized
perturbation. Furthermore, we assume an extra exponential velocity weight (eα|ξ |p , α > 0
small and 0 < p ≤ 2) on the initial data. Under this assumption, we get an accurate
relationship between decay rates and weight functions.

The main idea of this paper is to combine the long wave-short wave decomposition,
the wave-remainder decomposition, the weighted energy estimate and the regularization
estimate together to analyze the solution. The long wave-short wave decomposition, which
is based on the Fourier transform, gives the fluid structure or time decay estimate of the
solution. The wave-remainder decomposition is used for extracting the singular waves. The
weighted energy estimate is used for the pointwise estimate of the remainder term, in which
the regularization estimate is used. We explain the idea in more details as below.

Inside the finite Mach number region (time like region), the solution is dominated by the
long wave part. In order to obtain its decay rate, we devise different methods for 0 ≤ γ ≤ 1
and −2 < γ < 0 respectively. For 0 ≤ γ ≤ 1, it is well known that taking advantage of
the spectrum information of the Boltzmann collision operator [4], the complex analysis (for
γ = 1) and Fourier multiplier (for 0 ≤ γ < 1) techniques can be applied to obtain the
pointwise structure of the fluid part. However, for −2 < γ < 0, the spectrum information
is missing due to the weak damping for large velocity. Instead, we use similar arguments as
those in the papers by Kawashima [9], Strain [14] and Strain-Guo [15] to get optimal decay
in time. It is shown that the L2 norm of the short wave exponentially decays in time for
0 ≤ γ < 1 essentially due to the spectrum gap, while it decays only sub-exponentially for
−2 < γ < 0 if imposing an exponential velocity weight on the initial data.

As mentioned before, we use the wave-remainder decomposition to extract the singular
waves in the short wave. This decomposition is based on a Picard-type iteration. Such an
iteration is manipulated to construct the increasingly regular particle-like waves; in other
words, the first several terms in the iteration (indeed, the first seven terms of the iteration)
contain themost singular part of the solution, the so-calledwavepart. In virtue of the pointwise
estimate of the damped transport equation, we have a rather accurate pointwise estimate for
the wave part. On the other hand, the regularization estimate enables us to show the remainder
becomes regular, and together with the L2 decay of the short wave yields the L∞ decay of the
short wave. Combining this with the long wave, we establish the pointwise structure inside
the finite Mach number region.

As for the structure outside the finite Mach number region (space like region), it remains
to estimate the remainder part since we have already gained an explicit estimate for the wave
part. The weighted energy estimate plays an essential role here. The weight functions not
only are chosen delicately for different γ and p, but also takes the domain decomposition
into account. It is noted that the sufficient understanding of the structure of the wave part,
which has been obtained previously, is needed in the estimate. The regularization estimate
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932 Y. -C. Lin et al.

makes it possible to do the higher order weighted energy estimate. Then the desired pointwise
estimate follows from the Sobolev inequality.

1.4 Significant Points of the Paper

We point out some significant points of this paper as follows:

• Singularwaves: Thewave-remainder decomposition plays an important role in this paper.
The significant points of the remainder part will be discussed later. To comprehend the
wave part (singular waves), we have to establish a quantitative estimate of the damped
transport operator St (see Lemma 8) first, since the singular waves can be represented
by the combination of operators S

t and integral operator K (the definition of K can
be found in (3)). For the hard sphere case (γ = 1), one can get the space and time
decay of the wave part precisely without assuming any velocity weight on the initial data
(see [11]). However, for the hard potential case (0 < γ < 1, see [10]), the Gaussian
velocity weight is required to get the decay estimate. How the decay rate depends on
the weight function is not well understood. In this regard, we reinvestigate the hard
potential case, as well as Maxwellian molecules and soft potentials, assuming the initial
condition is compactly supported in x and has a L∞

ξ (eα|ξ |p ) bound, here 0 < p ≤ 2.
Under this assumption,we get exponential time decay for 0 ≤ γ < 1 and sub-exponential
time decay for −2 < γ < 0 . Simultaneously, we get sub-exponential space decay for
−2 < γ < 1. This wave structure reveals accurate dependence of decay rates on initial
weights, as opposed to the classical hard sphere case ([11]). There are some interesting
observations:

(a) For the soft potential case, we get sub-exponential time decay with rate e−α
−γ
p−γ t

p
p−γ

,
which coincides with the results of Caflisch [2] and Strain-Guo [15]. These rates
should be consistent since they studied the torus case with zero moment, and our
wave part excludes the fluid part of the solution.

(b) We give a very precise relation between initial velocity weights and the asymptotic
behavior of the solution (|x | large), i.e., if the initial condition is with weight eα|ξ |p ,

then we have sub-exponential decay e−α
1−γ

p+1−γ |x |
p

p+1−γ
. Moreover, the asymptotic

behavior of the wave part (Lemma 8) and the remainder part (Equation (64)) are
matched with our estimate.

• Regularization estimate: The regularization estimate plays a crucial role in this paper
(see Lemma 14), which enables us to obtain the pointwise estimate without regularity
assumptionon the initial data.Wehere emphasize that there are two types of regularization
estimates: in the standard L2 norm and L2 norm with weight (see Lemma 14). For
the hard sphere case [11,12,13], the regularization estimate in the standard L2 norm is
enough to control the solution both inside and outside the finite Mach number regions.
However, for other cases ( −2 < γ < 1), in addition to the standard L2 regularization
estimate to control the solution inside the finite Mach number region, one also needs
the regularization in the weighted (in both velocity and space) L2 space to control the
solution outside the finite Mach number region.
In the proof of Lemma 14, it reveals that the mixture of the two operators St and K
transports the regularity in the microscopic velocity ξ from K to the regularity in the
space x . Note that K is an integral operator from L2

ξ to H1
ξ only when γ > −2, that is

why we restrict ourselves to the case γ > −2 in this paper. This notion (in the standard
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L2 space) was firstly introduced by Liu and Yu for the hard sphere case [11–13] and
they call it as Mixture Lemma. However, their machinery is specifically designed for
the hard sphere case. When naively applying to hard potentials, it will result in e∞·α|ξ |p

weight imposed on the initial data. To resolve this difficulty, we introduce the differential
operatorDt = t∇x +∇ξ , which commutes with the free transport operator. This operator
is crucial since it is a bridge between the x derivative and the ξ derivative. We remark
that the crucial operatorDt was firstly introduced in the paper by Gualdani, Mischler and
Mouhot [8], and Wu [19] applied it to give an alternative proof of the Mixture Lemma
used in [10–13]. Through this operator Dt , mixing the operator St with K enough times
will help the ξ regularity transfer to the x regularity (here “enough times” depends on
how many ξ regularities we want to transfer) without any regularity assumption in ξ on
the initial data. In other words, mixing operators St and K enough times will lead to x
regularity automatically.

• Weighted energy estimate: The pointwise estimate of the solution outside the finite Mach
number region is constructed by the weighted energy estimate. The time dependent
weight functions are chosen accordingly to different γ (interactions between particles)
and p (initial velocity weight). For the hard sphere case γ = 1 (see Liu-Yu [11–13]),
the weight function depends only on the time and the space variables, and exponentially
grows in space (it takes the form exp{ |x |−Mt

D }). Since it commutes with the integral
operator K , the estimate is relatively simple. However, for this paper −2 < γ < 1 , the
weight function is much more complicated. Indeed, it depends on the velocity variable
as well and thus does not commute with the integral operator K . This results in that
the coercivity of linearized collision operator cannot be applied straightforwardly. The
difficulty is eventually overcome by fine tuning the weight functions, introducing refined
space-velocity domain decomposition and analyzing the integral operator K with weight
accordingly (see Lemma 16).

The rest of this paper is organized as follows:We first prepare some basic properties of the
collision operator in Sect. 2. After that, we construct the longwave-short wave decomposition
in Sect. 3 and the wave-remainder decomposition in Sect. 4. Finally, we establish the global
wave structures in Sect. 5.

2 Basic Properties of the Collision Operator

For the linearizedBoltzmann equation (2) , the collision operator L consists of amultiplicative
operator ν(ξ) and an integral operator K :

L f = −ν(ξ) f + K f,

where

ν(ξ) =
∫

B(ϑ)|ξ − ξ∗|γM(ξ∗)dξ∗dω,

and
K f = −K1 f + K2 f (3)
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934 Y. -C. Lin et al.

is defined as [5,7]:

K1 f :=
∫

B(ϑ)|ξ − ξ∗|γM1/2(ξ)M1/2(ξ∗) f (ξ∗)dξ∗dω,

K2 f :=
∫

B(ϑ)|ξ − ξ∗|γM1/2(ξ∗)M1/2(ξ ′) f (ξ ′∗)dξ∗dω

+
∫

B(ϑ)|ξ − ξ∗|γM1/2(ξ∗)M1/2(ξ ′∗) f (ξ ′)dξ∗dω.

In this section we will present a number of properties and estimates of the operators L , ν(ξ)

and K . To begin with, we list some fundamental properties of these operators, which can be
found in [2,6,7,15].

Lemma 2 For any g ∈ L2
σ , we have the coercivity estimate of the linearized collision

operator L:
〈g, Lg〉ξ � − |P1g|2L2

σ
.

For the multiplicative operator ν(ξ), there exist positive constants ν0 and ν1 such that

ν0(1 + |ξ |)γ ≤ ν(ξ) ≤ ν1(1 + |ξ |)γ . (4)

Moreover, for each multi-index α,

|∂α
ξ ν(ξ)| � 〈ξ 〉γ−|α| . (5)

For the integral operator K ,

K f = −K1 f + K2 f =
∫
R3

−k1(ξ, ξ∗) f (ξ∗)dξ∗ +
∫
R3

k2(ξ, ξ∗) f (ξ∗)dξ∗,

the kernels k1(ξ, ξ∗) and k2(ξ, ξ∗) satisfy

k1(ξ, ξ∗) � |ξ − ξ∗|γ exp

{
−1

4

(|ξ |2 + |ξ∗|2
)}

,

and

k2(ξ, ξ∗) = a (ξ, ξ∗, κ) exp

(
− (1 − κ)

8

[(|ξ |2 − |ξ∗|2
)2

|ξ − ξ∗|2
+ |ξ − ξ∗|2

])
,

for any 0 < κ < 1, together with

a(ξ, ξ∗, κ) ≤ Cκ |ξ − ξ∗|−1(1 + |ξ | + |ξ∗|)γ−1.

In addition, their derivatives as well have similar estimates, i.e.,

|∇ξ k1(ξ, ξ∗)|, |∇ξ∗k1(ξ, ξ∗)| � |ξ − ξ∗|γ−1 exp

{
−1

4

(|ξ |2 + |ξ∗|2
)}

,

|∇ξ k2(ξ, ξ∗)|, |∇ξ∗k2(ξ, ξ∗)| � |∇ξa (ξ, ξ∗) | exp
(

− (1 − κ)

8

[(|ξ |2 − |ξ∗|2
)2

|ξ − ξ∗|2
+ |ξ − ξ∗|2

])
.

According to the above estimates of the integral operator K , it follows that for any g1, g2 ∈
L2

σ ∩ L2
ξ ,

∣∣〈g1, Kg2〉ξ
∣∣ �

⎧⎪⎨
⎪⎩

|g1|L2
ξ
|g2|L2

ξ
for 0 ≤ γ < 1,

|g1|L2
σ

|g2|L2
σ

for − 2 < γ < 0,
(6)
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and for any g0 ∈ L2,

‖Kg0‖H1
ξ L

2
x

� ‖g0‖L2 . (7)

Next, we will provide the sup norm estimate for the integral operator K , which extends
(6.2) in Proposition 6.1 of Caflisch [2] to the case −2 < γ < 1.

Lemma 3 Let 0 < p ≤ 2. For any β1 ≥ 0 and 0 ≤ β2 < 1
4 , the operator K satisfies

|Kg (ξ)| =
∣∣∣∣
∫

k (ξ, ξ∗) g (ξ∗) dξ∗
∣∣∣∣ � 〈ξ 〉−β1+γ−2 e−β2|ξ |p |g|

L∞
ξ

(
〈ξ〉β1 eβ2 |ξ |p

) . (8)

Proof We first give an estimate on the kernel k, which extends Proposition 5.1 in [2] to the
case −2 < γ < 1. For any 0 < κ < 1, we have

k1 (ξ, ξ∗) � |ξ − ξ∗|γ exp

{
−1

4

(|ξ |2 + |ξ∗|2
)}

≤ Cκ |ξ − ξ∗|−2 (1 + |ξ | + |ξ∗|)γ−1 exp

{
−1

4
(1 − κ)

(|ξ |2 + |ξ∗|2
)}

,

for some constant Cκ > 0. Since

1

4

(|ξ |2 + |ξ∗|2
) ≥ 1

8

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
)

,

we deduce

k1 (ξ, ξ∗) � |ξ − ξ∗|−2 (1 + |ξ | + |ξ∗|)γ−1

× exp

{
− (1 − κ)

8

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
)}

.

Together with k2 (ξ, ξ∗) , it follows that for any 0 < κ < 1,

|k (ξ, ξ∗)| � |ξ − ξ∗|−2 (1 + |ξ | + |ξ∗|)γ−1

× exp

{
− (1 − κ)

8

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
)}

. (9)

Now, in view of (9),

∣∣∣∣
∫

k (ξ, ξ∗) g (ξ∗) dξ∗
∣∣∣∣

�
∫
R3

1

|ξ − ξ∗|2
(1 + |ξ | + |ξ∗|)γ−1

× exp

(
− (1 − κ)

8

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
))

|g (ξ∗)| dξ∗

� e−β2|ξ |p (1 + |ξ |)γ−1 |g|
L∞

ξ

(
〈ξ〉β1 eβ2 |ξ |p

) · A(ξ),
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where

A(ξ) =
∫
R3

1

|ξ − ξ∗|2
exp

{
− (1 − κ)

8

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
)

+ β2 |ξ |p − β2 |ξ∗|p
}

(1 + |ξ∗|)−β1 dξ∗.

Notice that

|ξ − ξ∗|2 +
∣∣|ξ |2 − |ξ∗|2

∣∣2
|ξ − ξ∗|2

≥ 2
∣∣|ξ |2 − |ξ∗|2

∣∣ ,
and ∣∣|ξ |p − |ξ∗|p

∣∣ ≤ ∣∣|ξ |2 − |ξ∗|2
∣∣ p
2 .

Picking κ = 1−4β2
2 and � = 1−4β2

16 yields

A(ξ) �
∫
R3

(1 + |ξ∗|)−β1

|ξ − ξ∗|2
exp

{
−�

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
)

− β2
∣∣|ξ |2 − |ξ∗|2

∣∣ + β2
∣∣|ξ |2 − |ξ∗|2

∣∣ p
2

}
dξ∗

�
∫
R3

1

|ξ − ξ∗|2
(1 + |ξ∗|)−β1 exp

{
−�

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
)}

dξ∗

≡I,

since

exp

(
−β2

∣∣|ξ |2 − |ξ∗|2
∣∣ + β2

∣∣|ξ |2 − |ξ∗|2
∣∣ p
2

)
< eβ2 ,

uniformly in ξ, ξ∗ and p. We split I into two parts: I1, with |ξ∗| < 1
3 |ξ | , and I2, with

|ξ∗| > 1
3 |ξ | . Then

I1 � e− �
4 |ξ |2 (10)

since |ξ − ξ∗|2 ≥ 4
9 |ξ |2 in that domain. In the domain integration for I2,wehave (1 + |ξ∗|) >

1
3 (1 + |ξ |) , so that

I2 � (1 + |ξ |)−β1

∫
|ξ∗|> 1

3 |ξ |
1

|ξ − ξ∗|2
exp

{
−�

(
|ξ − ξ∗|2 +

∣∣|ξ |2 − |ξ∗|2
∣∣2

|ξ − ξ∗|2
)}

dξ∗

� (1 + |ξ |)−β1−1 , (11)

due to Proposition 5.3 in [2]. Combining (10) and (11), we find

I � (1 + |ξ |)−β1−1 ,

and hence
|Kg (ξ)| � 〈ξ 〉−β1+γ−2 e−β2|ξ |p |g|

L∞
ξ

(
〈ξ〉β1 eβ2 |ξ |p

) .

��
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In fact, in the course of the proof of this lemma, one can also infer that k (ξ, ξ∗) is integrable
in ξ∗ with ∫

R3
|k (ξ, ξ∗)| dξ∗ � (1 + |ξ |)γ−2 , (12)

for −2 < γ < 1.
Regarding the weighted energy estimate, the following weight functions μ(x, ξ) will be

taken into account:
μ(x, ξ) = 1, or exp (εθ(x, ξ)) , (13)

where

θ(x, ξ) = 5
(
δ 〈x〉

) p
p+1−γ (

1 − χ
(
δ 〈x〉 〈ξ 〉γ−p−1))

+
[ (

1 − χ
(
δ 〈x〉 〈ξ 〉γ−p−1

))
[δ 〈x〉] 〈ξ 〉γ−1 + 3 〈ξ 〉p

]
χ
(
δ 〈x〉 〈ξ 〉γ−p−1) ,

with 0 < p ≤ 2; the constants ε and δ > 0 will be chosen sufficiently small later on. Among
them, the choices of the functions θ are motivated by [3]. Under these considerations, we
need the estimates of K as below.

Lemma 4 Let 0 < p ≤ 2 and g1, g2 ∈ L2
σ ∩ L2

ξ . Then for any ε ≥ 0 sufficiently small,

∣∣∣∣
〈
g1, e

εθ(x,ξ)Ke−εθ(x,ξ)g2
〉
ξ

− 〈g1, Kg2〉ξ
∣∣∣∣ �

⎧⎪⎨
⎪⎩

ε |g1|L2
ξ
|g2|L2

ξ
for 0 ≤ γ < 1,

ε |g1|L2
σ

|g2|L2
σ

for − 2 < γ < 0.
(14)

In particular,

∣∣∣∣
〈
g1, e

εθ(x,ξ)Ke−εθ(x,ξ)g2
〉
ξ

∣∣∣∣ �

⎧⎪⎨
⎪⎩

|g1|L2
ξ
|g2|L2

ξ
for 0 ≤ γ < 1,

|g1|L2
σ

|g2|L2
σ

for − 2 < γ < 0.
(15)

Consequently, for g0 ∈ L2 (μ) ,

‖Kg0‖L2(μ) � ‖g0‖L2(μ). (16)

Proof It suffices to show that for j = 1 and 2,

∣∣∣eεθ(x,ξ)K je
−εθ(x,ξ) − K j

∣∣∣
L2

ξ

� ε. (17)

By the Cauchy-Schwartz inequality,

(|ξ |2 − |ξ∗|2
)2

|ξ − ξ∗|2
+ |ξ − ξ∗|2 ≥ 2

∣∣|ξ |2 − |ξ∗|2
∣∣ . (18)
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938 Y. -C. Lin et al.

Further, we rewrite

eεθ(x,ξ)k2 (ξ, ξ∗) e−εθ(x,ξ∗) − k2 (ξ, ξ∗)

=
{
ã (ξ, ξ∗) exp

(
− 1

32

[(|ξ |2 − |ξ∗|2
)2

|ξ − ξ∗|2
+ |ξ − ξ∗|2

])}

×
{
exp

(
− 1

32

[(|ξ |2 − |ξ∗|2
)2

|ξ − ξ∗|2
+ |ξ − ξ∗|2

])
× (exp {ε (θ (x, ξ) − θ (x, ξ∗))} − 1)

}

≡ p (ξ, ξ∗) s (ε, ξ, ξ∗) ,

where ã (ξ, ξ∗) = a
(
ξ, ξ∗, 1

2

)
. We claim that

sup
ξ,ξ∗

|s (ε, ξ, ξ∗)| → 0 as ε → 0.

Since
∣∣∣ ∂
∂|ξ |θ (x, ξ)

∣∣∣ � 〈ξ 〉p−2 |ξ | uniformly in x for ξ �= 0 and p ∈ (0, 2], we obtain

|θ (x, ξ) − θ (x, ξ∗)| = |θ (x, |ξ |) − θ (x, |ξ∗|)| �
〈
ξ∗〉p−2 ∣∣ξ∗∣∣ ||ξ | − |ξ∗||

≤ c1
∣∣|ξ |2 − |ξ∗|2

∣∣ , (19)

for some |ξ∗| between |ξ | and |ξ∗|, and some constant c1 > 0 depending only upon γ and
p. Together with (18), whenever ε > 0 is sufficiently small with 0 ≤ εc1 < 1

32 ,

sup
ξ,ξ∗

|s (ε, ξ, ξ∗)| ≤ εc1 sup
ξ,ξ∗

(∣∣|ξ |2 − |ξ∗|2
∣∣ exp

[
− 1

32

∣∣|ξ |2 − |ξ∗|2
∣∣]) .

In other words,
sup
ξ,ξ∗

|s (ε, ξ, ξ∗)| → 0 as ε → 0.

Since p (ξ, ξ∗) is also a kernel of a bounded operator on L2
ξ (L

2
σ ) for 0 ≤ γ < 1 (−2 < γ <

0), this completes the estimate for K2. As to the case K1, it is easy and we omit the details.
According to the above discussion, we readily obtain that for g0 ∈ L2 (μ) ,

‖Kg0‖L2(μ) � ‖g0‖L2(μ).

Precisely,

‖Kg0‖L2(μ) = sup
g1∈L2(μ),‖g1‖L2(μ)

≤1

∫
(Kg0) g1μdxdξ

= sup
g1∈L2(μ),‖g1‖L2(μ)

≤1

∫ 〈
μ1/2Kμ−1/2 (μ1/2g0

)
, μ1/2g1

〉
L2

ξ
dx

≤ C‖μ1/2g0‖L2 = C‖g0‖L2(μ).

��
We here remark that this lemma also includes the following weighted estimate: for any

g0 ∈ L2
(
eα|ξ |p ) with α > 0 small and 0 < p ≤ 2,

‖Kg0‖L2
(
eα|ξ |p ) � ‖g0‖L2

(
eα|ξ |p ). (20)
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Beforewe end this section, we recall the spectrumSpec(η), η ∈ R, of the operator−iξ ·η+L ,
in preparation for estimating the Green function of the linearized Boltzmann equation in the
next section.

Lemma 5 [4] Set η = |η|ω. For any 0 ≤ γ < 1, there exist δ > 0 and τ = τ(δ) > 0 such
that

(1) For any |η| > δ,
Spec(η) ⊂ {z ∈ C : Re(z) < −τ }.

(2) For any |η| < δ, the spectrumwithin the region {z ∈ C : Re(z) > −τ } consists of exactly
five eigenvalues {� j (η)}4j=0,

Spec(η) ∩ {z ∈ C : Re(z) > −τ } = {� j (η)}4j=0,

associated with corresponding eigenvectors {e j (η)}4j=0. They have the expansions

� j (η) = −i a j |η| − A j |η|2 + O(|η|3),

e j (η) = E j + O(|η|),
with A j > 0 and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 =
√

5
3 , a1 = −

√
5
3 , a2 = a3 = a4 = 0,

E0 =
√

3
10χ0 +

√
1
2ω · χ +

√
1
5χ4,

E1 =
√

3
10χ0 −

√
1
2ω · χ +

√
1
5χ4,

E2 = −
√

2
5χ0 +

√
3
5χ4,

E3 = ω1 · χ,

E4 = ω2 · χ,

where χ = (χ1, χ2, χ3), and {ω1, ω2, ω} is an orthonormal basis ofR3. Here {e j (η)}4j=0

can be normalized by
〈
e j (−η), el(η)

〉
ξ

= δ jl , 0 ≤ j, l ≤ 4.

Moreover, the semigroup e(−iξ ·η+L)t can be decomposed as

e(−iξ ·η+L)t g = e(−iξ ·η+L)t�⊥
η g + 1{|η|<δ}

4∑
j=0

e� j (η)t 〈e j (−η), g
〉
ξ
e j (η),

where 1{·} is the indicator function and there exists C > 0 such that∣∣∣e(−iξ ·η+L)t�⊥
η g

∣∣∣
L2

ξ

≤ e−Ct |g|L2
ξ
.

3 Long Wave-Short Wave Decomposition

In order to study the large time behavior, we introduce the long wave-short wave decompo-
sition. By the Fourier transform, the solution of the linearized Boltzmann equation can be
written as

G
t f0 = f (t, x, ξ) =

∫
R3

eiηx+(−iξ ·η+L)t f̂0(η, ξ)dη, (21)
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940 Y. -C. Lin et al.

where f̂ means the Fourier transform in the space variable and G
t is the solution operator

(or Green function) of the linearized Boltzmann equation. We can decompose the solution f
into the long wave part fL and the short wave part fS given respectively by

fL =
∫

|η|<δ

eiηx+(−iξ ·η+L)t f̂0(η, ξ)dη,

fS =
∫

|η|>δ

eiηx+(−iξ ·η+L)t f̂0(η, ξ)dη,

(22)

here the positive number δ is defined as in Lemma 5.
For the case 0 ≤ γ < 1, we further decompose the long wave part as the fluid part and

non-fluid part, i.e., fL = fL;0 + fL;⊥, where

fL;0 =
∫

|η|<δ

4∑
j=0

e� j (η)t eiηx
〈
e j (−η), f̂0

〉
ξ
e j (η)dη,

fL;⊥ =
∫

|η|<δ

eiηx e(−iξ ·η+L)t�⊥
η f̂0dη.

(23)

Taking advantage of the spectrum information of the Boltzmann collision operator
(Lemma 5), we will obtain the L2 estimates of the non-fluid long wave part and short wave
part directly. On the other hand, the Fourier multiplier techniques can be applied to obtain
the pointwise structure of the fluid part. The estimate of this part is exactly the same as in the
Landau case [18] and hence we omit the details.

Proposition 6 Let 0 ≤ γ < 1 and let f be the solution of the linearized Boltzmann equation.
(a) (Fluid wave fL;0) Let v = √

5/3 be the sound speed associated with the normalized
global Maxwellian. For any given positive integer N and any given Mach number M > 1,
there exists CN > 0 such that if |x | ≤ (M + 1) vt , then

∣∣ fL;0
∣∣
L2

ξ
≤CN

⎡
⎣(1 + t)−2

(
1 + (|x | − vt)2

1 + t

)−N

+ (1 + t)−3/2

(
1 + |x |2

1 + t

)−N

(24)

+1{|x |≤vt} (1 + t)−3/2

(
1 + |x |2

1 + t

)−3/2
⎤
⎦ ‖ f0‖L1

x L
2
ξ
.

(b) (Non-fluid long wave fL;⊥) There exists a constant c > 0 such that

‖ fL;⊥‖Hs
x L

2
ξ

� e−ct‖ f0‖L2 (25)

for any s > 0.
(c) (Short wave fS) There exists a constant c > 0 such that

‖ fS‖L2 � e−ct‖ f0‖L2 . (26)

Alternatively, for−2 < γ < 0, the spectrum information ismissing due to theweak damp-
ing for large velocity. Instead, we use similar arguments as those in the papers by Kawashima
[9], Strain [14] and Strain-Guo [15] to get optimal time decay. All related estimates have
been done in [15] and thereby we simply sketch the proof.

123



Quantitative Pointwise Estimate of the Solution… 941

Proposition 7 Let −2 < γ < 0 and let f be the solution of the linearized Boltzmann
equation. For 0 < p ≤ 2 and α > 0 small, we have

(a) (Long wave fL )

‖ fL‖L∞
x L2

ξ
� (1 + t)−

3
2 ‖ f0‖L1

x L
2
ξ (eα|ξ |p ) . (27)

(b) (Short wave fS) There exists cp,γ > 0 such that

‖ fS‖L2 � e−cp,γ α
−γ
p−γ t

p
p−γ ‖ f0‖L2(eα|ξ |p ) . (28)

Proof Following the same argument as in [14], we find that there exists a time-frequency
functional E (t, η) such that

E (t, η) ≈ ∣∣ f̂ (t, η)
∣∣2
L2

ξ
, (29)

where for any t > 0 and η ∈ R
3, we have

∂tE (t, η) + σ ρ̂ (η)
∣∣ f̂ (t, η)

∣∣2
L2

σ
≤ 0, (30)

for some constant σ > 0. Here we use the notation ρ̂ (η) = min{1, |η|2}. Moreover, there
exists a weighted time-frequency functional Eα,p (t, η) such that

Eα,p (t, η) ≈
∣∣∣∣e α|ξ |p

2 f̂ (t, η)

∣∣∣∣
2

L2
ξ

, (31)

where for any t > 0 and η ∈ R
3, we have

∂tEα,p (t, η) ≤ 0. (32)

For the long wave part, the argument basically follows the paper [14]. In fact, by (30) and
(32), we have

‖ fL‖Hk
x L

2
ξ

� (1 + t)−
3
4− k

2 ‖ f0‖L1
x L

2
ξ (eα|ξ |p ) . (33)

With the aid of the Sobolev inequality, (27) holds. For the short wave fS , applying the same
argument as in [15, Sect. 5], together with (30) and (32), we get (28). ��

4 Wave-Remainder Decomposition

In this section we introduce the wave-remainder decomposition, which is the key decompo-
sition in our paper. The strategy is to design a Picard-type iteration, treating K f as a source
term. Specifically, the zero order approximation h(0) of the linearized Boltzmann equation
(2) is defined as {

∂t h(0) + ξ · ∇xh(0) + ν(ξ)h(0) = 0,
h(0)(0, x, ξ) = f0(x, ξ),

(34)

and thus the difference f − h(0) satisfies{
∂t ( f − h(0)) + ξ · ∇x ( f − h(0)) + ν(ξ)( f − h(0)) = K ( f − h(0)) + Kh(0),

( f − h(0))(0, x, ξ) = 0.

We can define the j th order approximation h( j), j ≥ 1 , as{
∂t h( j) + ξ · ∇xh( j) + ν(ξ)h( j) = Kh( j−1),

h( j)(0, x, ξ) = 0.
(35)
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942 Y. -C. Lin et al.

Now, the wave part and the remainder part can be defined as follows:

W (6) =
6∑
j=0

h( j), R(6) = f − W (6), (36)

R(6) solving the equation:{
∂tR(6) + ξ · ∇xR(6) = LR(6) + Kh(6),

R(6)(0, x, ξ) = 0.
(37)

In fact, R(6) can be solved by using Green function G
t for the full linearized Boltzmann

equation, namely

R(6) =
∫ t

0
G

t−s Kh(6)(s)ds. (38)

4.1 Estimates on the Wave Part

We denote the solution operator of the damped transport equation{
∂t h + ξ · ∇xh + ν(ξ)h = 0,
h(0, x, ξ) = h0,

(39)

by S
t , i.e., h(t) = S

t h0. By the method of characteristics, the solution S
t h0 can be written

down explicitly; that is,

S
t h0(x, ξ) = h(t, x, ξ) = e−ν(ξ)t h0(x − ξ t, ξ). (40)

In addition, it is easy to see that h( j) can be represented by the combination of operators St

and K .
In the sequel, we will find the pointwise decay of the solution S

t h0 in both time variable
t and space variable x upon imposing some weights on the velocity variable ξ . Through
the pointwise decay of the solution S

t h0 and Duhamel’s principle, we thereby obtain the
pointwise estimate of the wave part W (6). Moreover, we will provide the L2 estimate for
S
t h0 with an exponential weight as well, which leads us to obtain the L2 estimates for h( j)

(0 ≤ j ≤ 6) and R(6).

Lemma 8 Let α > 0, 0 < p ≤ 2 and β > 3/2. Then for 0 ≤ γ < 1,

∣∣St h0(x, ·)∣∣L∞
ξ

(〈ξ〉β ) ≤ sup
y

e
−c0

(
t+α

1−γ
p+1−γ |x−y|

p
p+1−γ

)

|h0 (y, ·)|L∞
ξ

(
eα|ξ |p 〈ξ〉β ) , (41)

and for −2 < γ < 0,

∣∣St h0(x, ·)∣∣L∞
ξ

(〈ξ 〉β ) ≤ C (α, γ ) sup
y

e
−c0

(
α

−γ
p−γ t

p
p−γ +α

1−γ
p+1−γ |x−y|

p
p+1−γ

)

|h0 (y, ·)|L∞
ξ

(
eα|ξ |p 〈ξ 〉β ) ,

(42)
where c0 = c (γ ) > 0 and C (α, γ ) > 0 are constants.

Proof In view of (40), let x − ξ t = y and then it suffices to find the lower bound of

ν0(t + |x − y|)γ t1−γ + α |x − y|p t−p.

Case 1. Hard potentials 0 ≤ γ < 1:
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Case 1a. As p > γ. We discuss the lower bound separately in the two regions

|x − y| ≤ α
1

γ−p t
p+1−γ
p−γ and |x − y| > α

1
γ−p t

p+1−γ
p−γ .

If |x − y| ≤ α
1

γ−p t
p+1−γ
p−γ

(
⇔ t ≥ α

1
p+1−γ |x − y| p−γ

p+1−γ

)
, then

(t + |x − y|)γ t1−γ ≥
{
t,

|x − y|γ t1−γ ≥ α
1−γ

p+1−γ |x − y| p
p+1−γ ,

which implies that

(t + |x − y|)γ t1−γ ≥ 1

2

(
t + α

1−γ
p+1−γ |x − y| p

p+1−γ

)
.

If |x − y| > α
1

γ−p t
p+1−γ
p−γ

(
⇔ t < α

1
p+1−γ |x − y| p−γ

p+1−γ

)
, then we have

(t + |x − y|)γ t1−γ ≥ t,

and
α |x − y|p t−p ≥ α

1−γ
p+1−γ |x − y| p

p+1−γ .

As a consequence,

ν0(t + |x − y|)γ t1−γ + α |x − y|p t−p ≥ c0

(
t + α

1−γ
p+1−γ |x − y| p

p+1−γ

)
,

for some c0 = c (γ ) > 0, so that

|h(t, x, ·)|L∞
ξ

(〈ξ〉β ) ≤ sup
y

e
−c

(
t+α

1−γ
p+1−γ |x−y|

p
p+1−γ

)

|h0 (y, ·)|L∞
ξ

(
eα|ξ |p 〈ξ〉β ) .

Case 1b. As 0 < p < γ. We can apply a similar argument in Case 1a to obtain (41) as well.
Case 1c. As 0 < p = γ, it is easy to see that

ν0(t + |x − y|)γ t1−γ + α |x − y|p t−p

≥ (
ν0 |x − y|γ t1−γ

) p
p + (

α |x − y|p t−p) 1−γ
1−γ

≥ ν
γ
0 α1−γ |x − y|p ,

due to Young’s inequality. Therefore,

ν0(t + |x − y|)γ t1−γ + α |x − y|p t−p ≥
{

ν0t,

ν
γ
0 α1−γ |x − y|p ,

which follows that

ν0(t + |x − y|)γ t1−γ + α |x − y|p t−p ≥ c0
(
t + α1−γ |x − y|p) ,

for some c0 = c (γ ) > 0, as desired.
Case 2. Soft potentials −2 < γ < 0:
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Case 2a. |x − y| ≤ α
1

γ−p t
p+1−γ
p−γ

(
⇔ t ≥ α

1
p+1−γ |x − y| p−γ

p+1−γ

)
and |x − y| ≥ t. In this case

we have t ≥ α and

(t + |x − y|)γ t1−γ ≥

⎧⎪⎨
⎪⎩

(
t + α

1
γ−p t

p+1−γ
p−γ

)γ

t1−γ ≥ 2γ α
−γ
p−γ t

p
p−γ ,

2γ |x − y|γ t1−γ ≥ 2γ α
1−γ

p+1−γ |x − y| p
p+1−γ ,

so that

(t + |x − y|)γ t1−γ ≥ 2γ−1
(

α
−γ
p−γ t

p
p−γ + α

1−γ
p+1−γ |x − y| p

p+1−γ

)
.

Thus, (42) holds.

Case 2b. |x − y| ≤ α
1

γ−p t
p+1−γ
p−γ

(
⇔ t ≥ α

1
p+1−γ |x − y| p−γ

p+1−γ

)
and |x − y| ≤ t. In this case

we have
|x − y| ≤ min{α 1

γ−p t
p+1−γ
p−γ , t}.

If α
1

γ−p t
p+1−γ
p−γ ≥ t, then t ≥ α and

(t + |x − y|)γ t1−γ ≥

⎧⎪⎨
⎪⎩

(
t + α

1
γ−p t

p+1−γ
p−γ

)γ

t1−γ ≥ 2γ α
−γ
p−γ t

p
p−γ

,

2γ t = 2γ t
1−γ

p+1−γ t
p

p+1−γ ≥ 2γ α
1−γ

p+1−γ |x − y| p
p+1−γ ,

which implies that

(t + |x − y|)γ t1−γ ≥ 2γ−1
(

α
−γ
p−γ t

p
p−γ + α

1−γ
p+1−γ |x − y| p

p+1−γ

)
.

Hence, (42) holds.

If α
1

γ−p t
p+1−γ
p−γ ≤ t, then we deduce t ≤ α and thus |x − y| ≤ α. Since

(t + |x − y|)γ t1−γ ≥ 2γ t ≥ 2γ α
1

p+1−γ |x − y| p−γ
p+1−γ ,

we have
(t + |x − y|)γ t1−γ ≥ 2γ−1

(
t + α

1
p+1−γ |x − y| p−γ

p+1−γ

)
.

Together with the fact that t ≤ α and |x − y| ≤ α, we deduce

|h(t, x, ξ)| ≤ e−ν0(t+|x−y|)γ t1−γ |h0(y, ξ)|

≤ e−2γ−1ν0t · e−2γ−1ν0α
1

p+1−γ |x−y|
p−γ

p+1−γ |h0(y, ξ)|

≤
[
C1e

−2γ−1ν0α
−γ
p−γ t

p
p−γ

][
C1e

−2γ−1ν0α
1−γ

p+1−γ |x−y|
p

p+1−γ

]
|h0(y, ξ)|

= Ce
−2γ−1ν0

(
α

−γ
p−γ t

p
p−γ +α

1−γ
p+1−γ |x−y|

p
p+1−γ

)

|h0(y, ξ)| , C = C2
1 ,

where
exp

(
2γ−1ν0

(
α

−γ
p−γ t

p
p−γ − t

))
≤ exp

[
2γ ν0α

] = C1 (α, γ ) ,

and

exp

[
2γ−1ν0

(
α

1−γ
p+1−γ |x − y| p

p+1−γ − α
1

p+1−γ |x − y| p−γ
p+1−γ

)]
≤ exp

(
2γ ν0α

) = C1 (α, γ ) .

123



Quantitative Pointwise Estimate of the Solution… 945

Thus, (42) holds.

Case 2c. |x − y| > α
1

γ−p t
p+1−γ
p−γ

(
⇔ t < α

1
p+1−γ |x − y| p−γ

p+1−γ

)
. In this case we have

α |x − y|p t−p ≥
⎧⎨
⎩

α
−γ
p−γ t

p
p−γ ,

α
1−γ

p+1−γ |x − y| p
p+1−γ ,

so that

|h(t, x, ·)|L∞
ξ

(〈ξ〉β ) ≤ sup
y

e
− 1

2

(
α

−γ
p−γ t

p
p−γ +α

1−γ
p+1−γ |x−y|

p
p+1−γ

)

|h0 (y, ·)|L∞
ξ

(
eα|ξ |p 〈ξ〉β ) .

��

Immediately from Lemmas 3 and 8, we get the pointwise estimate of h( j), 0 ≤ j ≤ 6, as
below.

Lemma 9 (Pointwise estimate of h( j), 0 ≤ j ≤ 6) Let f0 (x, ·) ∈ L∞
ξ

(
e7α|ξ |p 〈ξ 〉β

)
with

compact support in variable x, where 0 < p ≤ 2, β > 3/2 and α > 0 is small. Then there
exists c0 = c (γ ) > 0 such that for 0 ≤ γ < 1,

∣∣∣h( j)(t, x, ·)
∣∣∣
L∞

ξ

(〈ξ〉β ) � t j e
−c0

(
t+α

1−γ
p+1−γ |x |

p
p+1−γ

)

‖ f0‖L∞
x L∞

ξ

(
e( j+1)α|ξ |p 〈ξ〉β ) ,

and for −2 < γ < 0,

∣∣∣h( j)(t, x, ·)
∣∣∣
L∞

ξ

(〈ξ〉β ) � t j e
−c0

(
α

−γ
p−γ t

p
p−γ +α

1−γ
p+1−γ |x |

p
p+1−γ

)

‖ f0‖L∞
x L∞

ξ

(
e( j+1)α|ξ |p 〈ξ〉β ) .

Remark 10 It is noted that the pointwise structure of singular waves for hard potentials [10]
implicitly assumed the Gaussian velocity weight eα|ξ |2 on the initial condition.

In order to get the L2 estimate of h( j), we need the L2 estimate of the damped transport
operator St .

Lemma 11 Let α > 0 and 0 < p ≤ 2. Then for 0 ≤ γ < 1,
∥∥St h0∥∥L2 � e−ν0t ‖h0‖L2 ,

and for −2 < γ < 0,

∥∥St h0∥∥L2 � e−cα
−γ
p−γ t

p
p−γ ‖h0‖L2

(
eα|ξ |p ) ,

where the constant c > 0 depends only upon γ and p.

Proof We only prove the case −2 < γ < 0 since the case 0 ≤ γ < 1 is obvious. In view of
(4) and (40), ∥∥St h0∥∥L2 ≤

(
sup
ξ

e−ν0t(1+|ξ |)γ −α|ξ |p
)

‖h0‖L2
(
eα|ξ |p ) ,
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946 Y. -C. Lin et al.

since h0 has compact support in x . As for −2 < γ < 0,

∥∥St h0∥∥L2 ≤
(
sup
ξ

e−ν0t(1+|ξ |)γ −α|ξ |p
)

‖h0‖L2
(
eα|ξ |p )

≤
(
sup
|ξ |≤1

e−ν0t(1+|ξ |)γ −α|ξ |p + sup
|ξ |>1

e−ν0t(1+|ξ |)γ −α|ξ |p
)

‖h0‖L2
(
eα|ξ |p )

≤
(
e−2γ ν0t + sup

|ξ |>1
e−2γ ν0t |ξ |γ −α|ξ |p

)
‖h0‖L2

(
eα|ξ |p )

≤
⎛
⎜⎝e−2γ ν0t + e

−
(

p−γ
−γ

(−γ 2γ ν0
p

) p
p−γ

α
−γ
p−γ

)
t

p
p−γ

⎞
⎟⎠ ‖h0‖L2

(
eα|ξ |p )

� e−cα
−γ
p−γ t

p
p−γ ‖h0‖L2

(
eα|ξ |p )

for some constant c = c (γ, p) > 0, since 2γ ν0t |ξ |γ + α |ξ |p attains a minimum at |ξ | =(−γ 2γ ν0t
αp

) 1
p−γ

. ��

Combining Lemma 11 and (20), we thereby get the L2 estimates of h( j), 0 ≤ j ≤ 6.

Lemma 12 (L2 estimate of h( j), 0 ≤ j ≤ 6) Let f0 (x, ·) ∈ L2
(
e7α|ξ |p

)
,where 0 < p ≤ 2

and α > 0 is small. Then there exists a constant c > 0 such that for 0 ≤ γ < 1 ,∥∥∥h( j)
∥∥∥
L2

� t j e−ν0t ‖ f0‖L2 ,

and for −2 < γ < 0,
∥∥∥h( j)

∥∥∥
L2

� t j e−cα
−γ
p−γ t

p
p−γ ‖ f0‖L2

(
e( j+1)α|ξ |p ) .

4.2 Regularization Estimate

In the previous subsection, we have carried out the pointwise estimate of the wave part
and the L2 estimates of R(6). To obtain the pointwise estimate on R(6), we still need the
regularization estimate for R(6). In light of (38), we turn to the regularization estimate for
h(6) in advance. To proceed, we introduce a differential operator:

Dt = t∇x + ∇ξ .

This operator Dt is important since it commutes with the free transport operator, i.e.,

[Dt , ∂t + ξ · ∇x ] = 0,

where [A, B] = AB − BA is the commutator.

Lemma 13 For any g0 ∈ L2
x H

1
ξ (μ), we have

‖Kg0‖L2
x H

1
ξ (μ) � ‖g0‖L2(μ), ‖K (∇ξ g)‖L2(μ) � ‖g0‖L2(μ), (43)

‖St g0‖L2(μ) � e−cγ t‖g0‖L2(μ), (44)

‖DtS
t g0‖L2(μ) � (1 + t) e−cγ t‖g0‖L2

x H
1
ξ (μ), (45)
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Quantitative Pointwise Estimate of the Solution… 947

here cγ > 0 for 0 ≤ γ < 1 and cγ = 0 for −2 < γ < 0.
Consequently,

‖DtS
t Kg0‖L2(μ) � (1 + t) e−cγ t‖g0‖L2(μ). (46)

Proof The estimate of (43) can follow the same procedure as in Lemma 4 and hence we omit
the details.

Denote g (t) = S
t g0. Direct Computation shows that

1

2

d

dt
‖g‖2L2(μ)

=
∫

(−ξ · ∇x g − ν (ξ) g) gμdxdξ

= 1

2

∫
(ξ · ∇xμ) |g|2 dxdξ −

∫
ν (ξ) |g|2 μdxdξ

≤ εδc
∫

〈ξ 〉γ |g|2 μdxdξ −
∫

ν (ξ) |g|2 μdxdξ,

since |∇xμ| � εδ 〈ξ 〉γ−1. After choosing ε, δ > 0 sufficiently small with cεδ < ν0, we have

1

2

d

dt
‖g‖2L2(μ)

≤ −c′
∫

〈ξ 〉γ |g|2 μdxdξ = −c′‖g0‖2L2
σ (μ)

,

for some constant c′ = c (γ ) > 0. As a result,

‖g‖L2(μ) ≤ e−cγ t‖g0‖L2(μ), (47)

here the constant cγ > 0 for 0 ≤ γ < 1 and cγ = 0 for −2 < γ < 0.
Furthermore, set y = DtS

t g0 = Dt g and then y satisfies the equation

{
∂t y + ξ · ∇x y = −ν (ξ) y − (∇ξ ν (ξ)

)
g,

y (0, x, ξ) = (∇ξ g0
)
(x, ξ) .

Immediately, by Duhamel’s principle and (47)

∥∥DtS
t g0

∥∥
L2(μ)

= ‖y‖L2(μ) � e−cγ t‖∇ξ g0‖L2(μ) +
∫ t

0
e−cγ (t−s)‖g (s) ‖L2(μ)ds

� e−cγ t
(‖∇ξ g0‖L2(μ) + t‖g0‖L2(μ)

)
� (1 + t) e−cγ t‖g0‖L2

x H
1
ξ (μ).

��

We are now in the position to get the regularization estimate of h(6). We find that without
any regularity assumption on the initial condition, h(6) has H2

x regularity automatically.

Lemma 14 (Regularization estimate on h(6))

‖h(6)‖H2
x L

2
ξ (μ) � t4 (1 + t)2 e−cγ t‖ f0‖L2(μ),

here cγ > 0 for 0 ≤ γ < 1 and cγ = 0 for −2 < γ < 0.

Proof It follows immediately from Lemma 13 that

‖h(6)‖L2(μ) � t6e−cγ t‖ f0‖L2(μ).
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948 Y. -C. Lin et al.

Next, we prove the estimate for the first x-derivative of h(6). Notice that

∇x h
(6)(t)

= ∇x

∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

∫ s5

0

s1 − s2
s1 − s3

S
t−s1KS

s1−s2KS
s2−s3KS

s3−s4 KS
s4−s5KS

s5−s6KS
s6 f0 ds

+ ∇x

∫ t

0

∫ s1

0

∫ s2

0

s2 − s3
s1 − s3

S
t−s1KS

s1−s2KS
s2−s3KS

s3−s4 KS
s4−s5KS

s5−s6KS
s6 f0 ds

=
∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

∫ s5

0

1

s1 − s3
A (s1, s2, . . . , s6, x, ξ, t) ds,

where ds = ds6ds5ds4ds3ds2ds1 and

A (s1, s2, . . . , s6, x, ξ, t)

= S
t−s1K

(Ds1−s2 − ∇ξ

)
S
s1−s2KS

s2−s3KS
s3−s4 KS

s4−s5KS
s5−s6KS

s6 f0

+ S
t−s1KS

s1−s2K
(Ds2−s3 − ∇ξ

)
S
s2−s3KS

s3−s4 KS
s4−s5KS

s5−s6KS
s6 f0.

From Lemma 13, it follows that

∥∥∥∇xh
(6)(t)

∥∥∥
L2(μ)

� e−cγ t
∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

∫ s5

0

(
1

s1 − s3
+ 1

)
‖ f0‖L2(μ) ds

� e−cγ t

[∫ t

0

∫ s1

0

∫ s1

s3

s33
s1 − s3

ds2ds3ds1 + t6
]

‖ f0‖L2(μ)

�
(
t6 + t5

)
e−cγ t‖ f0‖L2(μ).

Similarly, we have

∇2
x h

(6)(t)

= ∇2
x

∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

∫ s5

0[
(s1 − s2 + s2 − s3)

s1 − s3

(s4 − s5 + s5 − s6)

s4 − s6

S
t−s1KS

s1−s2KS
s2−s3KS

s3−s4 KS
s4−s5KS

s5−s6KS
s6 f0

]
ds

=
∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

∫ s5

0

1

(s1 − s3)(s4 − s6)
B (s1, s2, . . . , s6, x, ξ, t) ds

where ds = ds6ds5ds4ds3ds2ds1 and

B (s1, s2, . . . , s6, x, ξ, t)

= S
t−s1K

(Ds1−s2 − ∇ξ

)
S
s1−s2KS

s2−s3KS
s3−s4 K

(Ds4−s5 − ∇ξ

)
S
s4−s5KS

s5−s6KS
s6 f0

+ S
t−s1KS

s1−s2K
(Ds1−s2 − ∇ξ

)
S
s2−s3KS

s3−s4 KS
s4−s5K

(Ds5−s6 − ∇ξ

)
S
s5−s6KS

s6 f0

+ S
t−s1KS

s1−s2K
(Ds2−s3 − ∇ξ

)
S
s2−s3KS

s3−s4 K
(Ds4−s5 − ∇ξ

)
S
s4−s5KS

s5−s6KS
s6 f0

+ S
t−s1KS

s1−s2K
(Ds2−s3 − ∇ξ

)
S
s2−s3KS

s3−s4 KS
s4−s5K

(Ds5−s6 − ∇ξ

)
S
s5−s6KS

s6 f0.
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Quantitative Pointwise Estimate of the Solution… 949

By Lemma 13 again, we deduce∥∥∥∇2
x h

(6)(t)
∥∥∥
L2(μ)

� e−cγ t ‖ f0‖L2(μ)

∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

∫ s5

0

(
1 + 1

s1 − s3

)(
1 + 1

s4 − s6

)
ds

� e−cγ t
(
t6 + t5 + t4

)
‖ f0‖L2(μ).

Therefore, ‖h(6)‖H2
x L

2
ξ (μ) � t4 (1 + t)2 e−cγ t‖ f0‖L2(μ). ��

As a consequence, owing to (38) and Lemma 14, we find

‖R(6)‖H2
x L

2
ξ (μ) ≤

∫ t

0
‖h(6) (s) ‖H2

x L
2
ξ (μ)ds �

{{
t5 ∧ 1}‖ f0

∥∥
L2(μ)

, 0 ≤ γ < 1,

t5(1 + t)2 ‖ f0‖L2(μ) , −2 < γ < 0.
(48)

Here {a ∧ b} = min{a, b}.

5 Global Wave Structures

In this section we will complete the proof of Theorem 1 by discussing the global wave
structures inside the finite Mach number region and outside the finite Mach number region
separately.

5.1 Inside the Finite Mach Number Region

By the long wave-short wave decomposition and wave-remainder decomposition, we have

f = fL + fS = W (6) + R(6).

We now define the tail part as fR = R(6) − fL = fS − W (6). Therefore f can be rewritten
as f = fL + W (6) + fR .

From Propositions 6, 7 and Lemma 9, the pointwise estimate of the long wave part fL and
the wave part W (6) are completed. It remains to study the tail part fR . It is easy to see that

‖ fR‖
H2
x L2

ξ

= ‖(R(6) − fL)‖H2
x L

2
ξ

�

⎧⎨
⎩

‖ f0‖L2 , for 0 ≤ γ < 1,

(1 + t)7‖ f0‖L2 , for − 2 < γ < 0,

due to (48), and using Propositions 6–7 and Lemma 12 gives

‖ fR‖L2 = ‖ fS − W (6)‖L2 �

⎧⎪⎨
⎪⎩
e−Ct‖ f0‖L2 , for 0 ≤ γ < 1,

e−cα
−γ
p−γ t

p
p−γ ‖ f0‖L2

(
e7α|ξ |p ) for − 2 < γ < 0,

for some constants C, c > 0. The Sobolev inequality [1, Theorem 5.8] implies

| fR |L2
ξ

≤ ‖ fR‖L2
ξ L

∞
x

� ‖ fR‖3/4
H2
x L

2
ξ

‖ fR‖1/4
L2

�

⎧⎪⎪⎨
⎪⎪⎩
e− 1

4Ct‖ f0‖L2 , for 0 ≤ γ < 1,

e− 1
8 cα

−γ
p−γ t

p
p−γ ‖ f0‖L2

(
e7α|ξ |p ) , for − 2 < γ < 0.

(49)
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950 Y. -C. Lin et al.

Combining Propositions 6–7, Lemma 9 and (49), we obtain the pointwise estimate for the
solution inside the finite Mach number region.

Proposition 15 Let f be the solution to the linearized Boltzmann equation (2) and let v =√
5/3 be the sound speed associated with the normalized global Maxwellian. Then

(1) As 0 ≤ γ < 1, for any given positive integer N, and any given 0 < p ≤ 2, β > 3/2,
sufficiently small α > 0, there exist positive constants CN , C and c0 such that

| f (t, x, ·)|L2
ξ

≤ CN

⎡
⎣ (1 + t)−2

(
1 + (|x | − vt)2

1 + t

)−N

+ (1 + t)−3/2

(
1 + |x |2

1 + t

)−N

+1{|x |≤vt} (1 + t)−3/2

(
1 + |x |2

1 + t

)−3/2

+e
−c0

(
t+α

1−γ
p+1−γ |x |

p
p+1−γ

)

+ e−t/C

⎤
⎥⎦ || f0||I .

(2) As −2 < γ < 0, for any given 0 < p ≤ 2, β > 3/2 and sufficiently small α > 0, there
exist positive constants C, c and c0 such that

| f (t, x, ·)|L2
ξ

≤C

⎡
⎣ (1 + t)−3/2 + e−cα

−γ
p−γ t

p
p−γ

+e
−c0

(
α

−γ
p−γ t

p
p−γ +α

1−γ
p+1−γ |x |

p
p+1−γ

)⎤
⎥⎦ || f0||I .

Here 1{·} is the indicator function and

|| f0||I ≡ max
{
‖ f0‖L2

(
e7α|ξ |p ) , ‖ f0‖L1

x L
2
ξ
, ‖ f0‖L∞

x L∞
ξ

(
e7α|ξ |p 〈ξ〉β )

}
.

5.2 Outside the Finite Mach Number Region

In the previous section we have well investigated the pointwise behavior for the wave part
W (6) (see Lemma 9). To clarify the wave structure outside the finite Mach number region,
we still need to estimate the remainder part R(6). Here, the weighted energy estimate plays
a decisive role. We remark that the estimate for −2 < γ < 1 is nontrivial in the sense that a
subtle space-velocity domain decomposition and delicate estimates of the integral operator
K with weights are needed. In this subsection, the analysis has been carried out in detail.

Consider the weight
w (t, x, ξ) = exp (ερ (t, x, ξ) /2) , (50)
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Quantitative Pointwise Estimate of the Solution… 951

with

ρ (t, x, ξ) = 5 (δ (〈x〉 − Mt))
p

p+1−γ

(
1 − χ

(
δ (〈x〉 − Mt)

〈ξ 〉p+1−γ

))

+
[(

1 − χ

(
δ (〈x〉 − Mt)

〈ξ 〉p+1−γ

))
[δ (〈x〉 − Mt)] 〈ξ 〉γ−1 + 3 〈ξ 〉p

]

× χ

(
δ (〈x〉 − Mt)

〈ξ 〉p+1−γ

)
.

where ε, δ > 0 will be chosen sufficiently small and M > 0 large enough later on.We define

H+ = {(x, ξ) : δ (〈x〉 − Mt) > 2 〈ξ 〉p+1−γ },
H0 = {(x, ξ) : 〈ξ 〉p+1−γ ≤ δ (〈x〉 − Mt) ≤ 2 〈ξ 〉p+1−γ },

and
H− = {(x, ξ) : δ (〈x〉 − Mt) < 〈ξ 〉p+1−γ }.

Togo further,weneed to estimate
∣∣∫ 〈g, (Kε − K ) g〉ξ dx

∣∣,where Kε = eερ(t,x,ξ)Ke−ερ(t,x,ξ).

This estimate will be used in the weighted energy estimate ofR(6) (Proposition 17). For sim-
plicity of notation, let P0g = ∑4

j=0 b jχ j , b j = 〈
g, χ j

〉
ξ
.

Lemma 16 Let 0 < p ≤ 2. There exists a constant C = C (γ, p) > 0 such that for any
0 < ε � 1,∣∣∣∣

∫
〈g, (Kε − K ) g〉ξ dx

∣∣∣∣ ≤Cε

∫
〈ξ 〉γ |P1g|2 dξdx

+ Cε

[∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0g|2 dξdx

+
∫
H0∪H−

|P0g|2 dξdx

]
. (51)

Consequently,
∫

〈g, Lεg〉ξ dx ≤
∫

〈g, Lg〉ξ dx + Cε

∫
〈ξ 〉γ |P1g|2 dξdx

+ Cε

[∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0g|2 dξdx

+
∫
H0∪H−

|P0g|2 dξdx

]
, (52)

where Lε = eερ(t,x,ξ)Le−ερ(t,x,ξ).

Proof We split the integral into several pieces:
∫

〈g, (Kε − K ) g〉ξ dx =
∫

〈P1g, (Kε − K )P1g〉ξ dx +
∫

〈P0g, (Kε − K )P0g〉ξ dx

+
∫

〈P1g, (Kε − K )P0g〉ξ dx +
∫

〈P1g, (K−ε − K )P0g〉ξ dx .
(53)
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Firstly, following the same procedure as in Lemma 4, we have that for any ε > 0 sufficiently
small, ∣∣∣∣

∫
〈P1g, (Kε − K )P1g〉ξ dx

∣∣∣∣ � ε ‖P1g‖2L2
σ

. (54)

Next, we estimate
∫ 〈P0g, (Kε − K )P0g〉ξ dx .

Estimate on
∫ 〈P0g, (Kε − K )P0g〉ξ dx . We split the integral∫

〈P0g, (Kε − K )P0g〉ξ dx

=

⎡
⎣

∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

+ ∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≥2〈ξ∗〉p+1−γ

+ ∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

+ ∫
δ(〈x〉−Mt)≤0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

⎤
⎥⎥⎥⎦

P0g (ξ) k (ξ, ξ∗) Aε (t, x, ξ, ξ∗) P0g (ξ∗) dξ∗dξdx

= Ia + Ib + Ic + I I,

where Aε (t, x, ξ, ξ∗) = [
eε(ρ(t,x,ξ)−ρ(t,x,ξ∗)) − 1

]
. We remark here that Aε (t, x, ξ, ξ∗) = 0

whenever δ (〈x〉 − Mt) > 2 〈ξ 〉p+1−γ and δ (〈x〉 − Mt) > 2 〈ξ∗〉p+1−γ ; in other words,
there is no contribution to the integral in this region. Note that ρ (t, x, ξ) also satisfies

|ρ (t, x, ξ) − ρ (t, x, ξ∗)| ≤ c1
∣∣|ξ |2 − |ξ∗|2

∣∣ ,
whose proof is similar to Lemma 4, hence

|Aε (t, x, ξ, ξ∗)| � ε
∣∣|ξ |2 − |ξ∗|2

∣∣ ec1ε∣∣|ξ |2−|ξ∗|2
∣∣
.

Now, for Ia, we have

|Aε (t, x, ξ, ξ∗)P0g (ξ∗)| � ε
∣∣|ξ |2 − |ξ∗|2

∣∣ ec1ε∣∣|ξ |2−|ξ∗|2∣∣
⎛
⎝ 4∑

j=0

∣∣χ j (ξ∗)
∣∣2
⎞
⎠

1/2⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2

,

and thus
∫

δ(〈x〉−Mt)>2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

|P0g (ξ) k (ξ, ξ∗) Aε (t, x, ξ, ξ∗)P0g (ξ∗)| dξ∗dξ

� ε

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

|P0g (ξ)|
⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2 ∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

|k (ξ, ξ∗)| e−c|ξ∗|2dξ∗dξ

� ε

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

⎛
⎝ 4∑

j=0

∣∣χ j (ξ)
∣∣2
⎞
⎠

1/2⎛
⎝ 4∑

j=0

b2j

⎞
⎠ exp

(
−c′ [δ (〈x〉 − Mt)]

2
p+1−γ

)
dξ

� ε exp
(
−c′ [δ (〈x〉 − Mt)]

2
p+1−γ

) ∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

|P0g|2 dξ

+ ε

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

|P0g|2 dξ.

The first inequality is valid since |ξ | < |ξ∗| and
(∑4

j=0

∣∣χ j (ξ)
∣∣2)1/2 decays exponentially;

the second inequality holds due to the fact that e−c|ξ∗|2 � exp
(
−c′ [δ (〈x〉 − Mt)]

2
p+1−γ

)
for

123



Quantitative Pointwise Estimate of the Solution… 953

some constant c′ > 0 whenever δ (〈x〉 − Mt) ≤ 2 〈ξ∗〉p+1−γ and that |k (ξ, ·)| is integrable.
Hence,

|Ia | � ε

[∫
H+

[(δ (〈x〉 − Mt))]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx

]
.

Similarly for Ib, it follows

|Ib| � ε

[∫
H+

[(δ (〈x〉 − Mt))]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx

]
.

On the other hand, by symmetry

|Ic| ≤ 2c1ε
∫

δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ ,|ξ |≤|ξ∗|

|P0g (ξ) k (ξ, ξ∗)P0g (ξ∗)|
∣∣|ξ |2 − |ξ∗|2

∣∣ ec1ε∣∣|ξ |2−|ξ∗|2
∣∣
dξ∗dξdx,

applying a similar argument for Ia gives

|Ic| � ε

[∫
H+

[(δ (〈x〉 − Mt))]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx

]
,

as well.
Following the same argument as the proof of (14) in Lemma 4, it is easy to see that

|I I | � ε

∫
δ(〈x〉−Mt)≤0

∫
|P0g|2 dξdx

= ε

∫
δ(〈x〉−Mt)≤0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

|P0g|2 dξdx

≤ ε

∫
H−

|P0g|2 dξdx .

Gathering the estimates for Ia , Ib, Ic and I I yields∣∣∣∣
∫

〈P0g, (Kε − K )P0g〉ξ dx
∣∣∣∣ � ε

[∫
H+

[(δ (〈x〉 − Mt))]
γ−1

p+1−γ |P0g|2 dξdx

+
∫
H0∪H−

|P0g|2 dξdx

]
. (55)

Estimate on
∫ 〈P1g, (Kε − K )P0g〉ξ dx + ∫ 〈P1g, (K−ε − K )P0g〉ξ dx . We split the inte-

gral ∫
〈P1g, (Kε − K ) P0g〉ξ dx +

∫
〈P1g, (K−ε − K ) P0g〉ξ dx

=

⎡
⎣

∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

+ ∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≥2〈ξ∗〉p+1−γ

+ ∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

+ ∫
δ(〈x〉−Mt)≤0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

⎤
⎥⎥⎥⎦

P1g (ξ) k (ξ, ξ∗) Bε (t, x, ξ, ξ∗) P0g (ξ∗) dξ∗dξdx

= I a + I b + I c + I I ′,
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954 Y. -C. Lin et al.

where Bε (t, x, ξ, ξ∗) = Aε (t, x, ξ, ξ∗) + Aε (t, x, ξ∗, ξ) . It readily follows from the defi-
nition of Bε that

|Bε (t, x, ξ, ξ∗)| � ε
∣∣|ξ |2 − |ξ∗|2

∣∣ ec1ε∣∣|ξ |2−|ξ∗|2
∣∣
. (56)

According to the above discussion, we obtain

∣∣I a∣∣ � ε

∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

|P1g (ξ)| exp
(
−c′ (δ (〈x〉 − Mt))

2
p+1−γ

)

×
⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2

dξdx

� ε

∫
〈ξ 〉γ |P1g|2 dξdx

+ ε

∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

〈ξ 〉−γ exp
(
−2c′ (δ (〈x〉 − Mt))

2
p+1−γ

)

×
⎛
⎝ 4∑

j=0

b2j

⎞
⎠ dξdx .

For 0 ≤ γ < 1,

∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

〈ξ 〉−γ exp
(
−2c′ (δ (〈x〉 − Mt))

2
p+1−γ

)⎛⎝ 4∑
j=0

b2j

⎞
⎠ dξdx

�
∫

δ(〈x〉−Mt)>0
[(δ (〈x〉 − Mt))]

3
p+1−γ exp

(
−2c′ (δ (〈x〉 − Mt))

2
p+1−γ

)⎛⎝ 4∑
j=0

b2j

⎞
⎠ dx

�
∫
H+

[(δ (〈x〉 − Mt))]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx,

and for −2 < γ < 0,

∫
δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

〈ξ 〉−γ exp
(
−2c′ (δ (〈x〉 − Mt))

2
p+1−γ

)⎛⎝ 4∑
j=0

b2j

⎞
⎠ dξdx

�
∫

δ(〈x〉−Mt)>0
[(δ (〈x〉 − Mt))]

3−γ
p+1−γ exp

(
−2c′ (δ (〈x〉 − Mt))

2
p+1−γ

)⎛⎝ 4∑
j=0

b2j

⎞
⎠ dx

�
∫
H+

[(δ (〈x〉 − Mt))]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx .

Hence, we conclude

∣∣I a∣∣ � ε

(∫
〈ξ 〉γ |P1g|2 dξdx +

∫
H+

[(δ (〈x〉 − Mt))]
γ−1

p+1−γ |P0g|2 dξdx

+
∫
H0∪H−

|P0g|2 dξdx

)
.
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Quantitative Pointwise Estimate of the Solution… 955

For I I ′, similar to Lemma 4,

∣∣I I ′∣∣ � ε

∫
δ(〈x〉−Mt)≤0

∣∣〈ξ 〉γ /2 P1g
∣∣
L2

ξ

∣∣〈ξ 〉γ /2 P0g
∣∣
L2

ξ
dx

� ε

∫
〈ξ 〉γ |P1g|2 dξdx + ε

∫
δ(〈x〉−Mt)≤0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

〈ξ 〉γ |P0g|2 dξdx

� ε

∫
〈ξ 〉γ |P1g|2 dξdx + ε

∫
H−

|P0g|2 dξdx .

For I b, we observe that |ξ∗| ≤ |ξ | in this region. Further, note that

k1 (ξ, ξ∗) |Bε (t, x, ξ, ξ∗)P0g (ξ∗)|
� |ξ − ξ∗|γ exp

(
−1

4
|ξ |2 − 1

4
|ξ∗|2

)
|Bε (t, x, ξ, ξ∗)P0g (ξ∗)|

= p̃ (ξ, ξ∗) ×
[
exp

(
−1

8
|ξ |2 − 1

8
|ξ∗|2

)
|Bε (t, x, ξ, ξ∗)P0g (ξ∗)|

]

satisfies ∣∣∣∣exp
(

−1

8
|ξ |2 − 1

8
|ξ∗|2

)
Bε (t, x, ξ, ξ∗) P0g (ξ∗)

∣∣∣∣

�

⎡
⎣ε exp

(
− 1

16
|ξ |2

)⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2
⎤
⎥⎦ exp

(−c2 |ξ∗|2
)
,

and

k2 (ξ, ξ∗) Bε (t, x, ξ, ξ∗)P0g (ξ∗)

= p (ξ, ξ∗)
{
exp

(
− 1

32

[(|ξ |2 − |ξ∗|2
)2

|ξ − ξ∗|2
+ |ξ − ξ∗|2

])
× Bε (t, x, ξ, ξ∗)P0g (ξ∗)

}

satisfies ∣∣∣∣∣exp
(

− 1

32

[(|ξ |2 − |ξ∗|2
)2

|ξ − ξ∗|2
+ |ξ − ξ∗|2

])
Bε (t, x, ξ, ξ∗) P0g (ξ∗)

∣∣∣∣∣

� ε exp

(
− 1

32

∣∣|ξ |2 − |ξ∗|2
∣∣)

⎛
⎝ 4∑

j=0

∣∣χ j (ξ∗)
∣∣2
⎞
⎠

1/2⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2

�

⎡
⎣ε exp

(
− 1

32
|ξ |2

)⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2
⎤
⎥⎦ exp

(−c2 |ξ∗|2
)
,

for some c2 > 0,where p̃ (ξ, ξ∗) and p (ξ, ξ∗) are kernels of bounded operators on L2
ξ . Since

e−c2|ξ∗|2 ∈ L2
ξ∗ and

〈ξ 〉− γ
2 e− 1

32 |ξ |2 � exp
(
−c3 [δ (〈x〉 − Mt)]

2
p+1−γ

)
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956 Y. -C. Lin et al.

for some constant c3 > 0 as δ (〈x〉 − Mt) ≤ 2 〈ξ 〉p+1−γ , we obtain

∣∣∣I b
∣∣∣ � ε

∫
〈ξ〉γ |P1g|2 dξdx + ε

∫
δ(〈x〉−Mt)>0

exp

(
−2c3 [δ (〈x〉 − Mt)]

2
p+1−γ

)⎛
⎝ 4∑

j=0

b2j

⎞
⎠ dx

� ε

∫
〈ξ〉γ |P1g|2 dξdx

+ ε

[∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx

]
.

Finally, we split the integral

I c =
∫

δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ ,|ξ∗|≤|ξ |

+
∫

δ(〈x〉−Mt)>0

∫
δ(〈x〉−Mt)≤2〈ξ〉p+1−γ δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ ,|ξ∗|>|ξ |

≡I c1 + I c2 .

Similar to I b,

∣∣I c1 ∣∣ � ε

∫
〈ξ 〉γ |P1g|2 dξdx

+ ε

[∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx

]
.

In view of (56),

∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ , |ξ |<|ξ∗|

|k (ξ, ξ∗) Bε (t, x, ξ, ξ∗)P0g (ξ∗)| dξ∗

� ε

⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2 ∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

|k (ξ, ξ∗)| |ξ∗|2 ec1ε|ξ∗|2
⎛
⎝ 4∑

j=0

∣∣χ j (ξ∗)
∣∣2
⎞
⎠

1/2

dξ∗

� ε

⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2 ∫
δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ

|k (ξ, ξ∗)| e−c′|ξ∗|2dξ∗

� ε

⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2

exp

(
−c′′

2
[δ (〈x〉 − Mt)]

2
p+1−γ

)

×
∫

δ(〈x〉−Mt)≤2〈ξ∗〉p+1−γ
|k (ξ, ξ∗)| e− c′

2 |ξ∗|2dξ∗

� ε

⎛
⎝ 4∑

j=0

b2j

⎞
⎠

1/2

exp

(
−c′′

2
[δ (〈x〉 − Mt)]

2
p+1−γ

)
e− c′

2 |ξ |2 (by ( 8))
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for some constants 0 < c′ < 1/2 and c′′ > 0, and then by the Cauchy inequality,

∣∣I c2 ∣∣ � ε

∫
〈ξ 〉γ |P1g|2 dξdx

+ ε

∫
〈ξ 〉−γ e− c′

2 |ξ |2dξ ·
∫

δ(〈x〉−Mt)>0
exp

(
−c′′ [δ (〈x〉 − Mt)]

2
p+1−γ

) 4∑
j=0

b2j dx

� ε

∫
〈ξ 〉γ |P1g|2 dξdx

+ ε

[∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0g|2 dξdx +
∫
H0∪H−

|P0g|2 dξdx

]
.

Consequently, we obtain
∣∣∣∣
∫

〈P1g, (Kε − K )P0g〉ξ dx +
∫

〈P1g, (K−ε − K )P0g〉ξ dx
∣∣∣∣

� ε

[∫
〈ξ 〉γ |P1g|2 dξdx +

∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0g|2 dξdx

+
∫
H0∪H−

|P0g|2 dξdx

]
. (57)

Combining (54), (55) and (57), we get our result. ��

Now, we are ready to get the weighted energy estimate of R(6).

Proposition 17 (Weighted energy for R(6)) Consider the weight

w (t, x, ξ) = exp (ερ (t, x, ξ) /2) , (58)

with

ρ (t, x, ξ) = 5 (δ (〈x〉 − Mt))
p

p+1−γ

(
1 − χ

(
δ (〈x〉 − Mt)

〈ξ 〉p+1−γ

))

+
[(

1 − χ

(
δ (〈x〉 − Mt)

〈ξ 〉p+1−γ

))
[δ (〈x〉 − Mt)] 〈ξ 〉γ−1 + 3 〈ξ 〉p

]

× χ

(
δ (〈x〉 − Mt)

〈ξ 〉p+1−γ

)
,

where ε, δ > 0 are sufficiently small, M > 0 sufficiently large, and 0 < p ≤ 2. Then we
have ∥∥∥wR(6)

∥∥∥
H2
x L

2
ξ

� {t5 ∧ t} ‖ f0‖L2(μ) , 0 ≤ γ < 1,

and ∥∥∥wR(6)
∥∥∥
H2
x L

2
ξ

� t5 (1 + t)3 ‖ f0‖L2(μ), −2 < γ < 0.

Proof Let u = wR(6) = e
ερ
2 R(6), and then u solves the equation

∂t u + ξ · ∇xu − ε

2
(∂tρ + ξ · ∇xρ)u − e

ερ
2 L

(
e− ερ

2 u
)

= e
ερ
2 Kh(6).
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The energy estimate gives

1

2

d

dt

∫
R3

〈u, u〉ξ dx −
∫
R3

〈
u, e

ερ
2 Kh(6)

〉
ξ
dx

=
∫
R3

ε

2
〈u, (∂tρ + ξ · ∇xρ)u〉ξ dx +

∫
R3

〈
u, e

ερ
2 L

(
e− ερ

2 u
)〉

ξ
dx .

In view of Lemma 16,
∫
R3

〈
u, e

ερ
2 L

(
e− ερ

2 u
)〉

ξ
dx ≤ − μ

∫
R3

| 〈ξ 〉 γ
2 P1u|2

L2
ξ

dx

+ C1ε

[∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0u|2 dξdx

+
∫
H0∪H−

|P0u|2 dξdx

]
,

for some constants μ > 0 and C1 > 0. One can easily check that

∂tρ = − δM 〈ξ 〉γ−1
(

5p

p + 1 − γ

[
(δ (〈x〉 − Mt)) 〈ξ 〉γ−p−1] γ−1

p+1−γ (1 − χ) + χ(1 − χ)

)

+ δM

(
5
[
(δ (〈x〉 − Mt)) 〈ξ 〉γ−p−1] p

p+1−γ − (1 − 2χ)
[
(δ (〈x〉 − Mt)) 〈ξ 〉γ−p−1]

− 3

)
〈ξ 〉γ−1 χ ′ ≤ 0

(the constants 5 and 3 are chosen intentionally such that the quantity in the latter bracket is
nonnegative on H0), and

∇xρ = δ (∇x 〈x〉) 〈ξ 〉γ−1
(

5p

p + 1 − γ

[
δ (〈x〉 − Mt) 〈ξ 〉γ−p−1] γ−1

p+1−γ (1 − χ) + χ(1 − χ)

)

− δ (∇x 〈x〉)
(
5
[
δ (〈x〉 − Mt) 〈ξ 〉γ−p−1] p

p+1−γ

− (1 − 2χ)
[
(δ (〈x〉 − Mt)) 〈ξ 〉γ−p−1] − 3

)
〈ξ 〉γ−1 χ ′.

Hence,

∂tρ = ξ · ∇xρ = 0 on H−,

|∂tρ| � δM 〈ξ 〉γ−1 and |ξ · ∇xρ| � δ 〈ξ 〉γ on H0,

and we have

∂tρ = − 5pδM

p + 1 − γ
[δ (〈x〉 − Mt)]

γ−1
p+1−γ ,

ξ · ∇xρ = 5pδ

p + 1 − γ

ξ · x
〈x〉 [δ (〈x〉 − Mt)]

γ−1
p+1−γ ,

on H+. Direct calculation together with the Cauchy inequality show that
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ε

∣∣∣∣
∫
R3

〈u, (ξ · ∇xρ) u〉ξ dx
∣∣∣∣

≤ C2εδ

⎡
⎣
∫
R3 | 〈ξ 〉 γ

2 P1u|2
L2

ξ

dx

+ ∫
H+ [δ (〈x〉 − Mt)]

γ−1
p+1−γ |P0u|2dξdx + ∫

H0
|P0u|2dξdx

⎤
⎦ ,

and

ε

∫
R3

〈u, (∂tρ) u〉ξ dx ≤ εδMC3

∫
R3

| 〈ξ 〉 γ
2 P1u|2

L2
ξ

dx

− εδMC4

∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0u|2dξdx

+ εδMC5

∫
H0

|P0u|2dξdx .

In conclusion, we get

1

2

d

dt

∫
R3

〈u, u〉ξ dx −
∫
R3

〈
u, wKh(6)

〉
ξ
dx

≤ −(μ − εδC2 − εδMC3)

∫
R3

| 〈ξ 〉 γ
2 P1u|2

L2
ξ

dx

− ε (δMC4 − δC2 − C1)

∫
H+

[δ(〈x〉 − Mt)]
r−1

p+1−γ |P0u|2dξdx

+ ε(δC2 + δMC5 + C1)

∫
H0

|P0u|2dξdx + εC1

∫
H−

|P0u|2dξdx .

Choosing δ, ε > 0 small and M > 0 large enough, we have

d

dt
‖u‖2L2 � ‖u‖L2‖wKh(6)‖L2 +

∫
H0∪H−

|P0u|2dξdx

� ‖u‖L2‖wKh(6)‖L2 + ‖u‖L2 ‖R(6)‖L2 .

Moreover, since ∂tρ ≤ 0, the weight w is decreasing in t, so that

‖wKh(6)‖L2 ≤ ‖μ1/2Kh(6)‖L2 = ‖Kh(6)‖L2(μ) � ‖h(6)‖L2(μ),

due to (16). It implies
d

dt
‖u‖L2 � ‖h(6)‖L2(μ) + ‖R(6)‖L2 .

For the x-derivative estimate, we only need to control the commutator terms:

ε

∫
R3

〈
∂xi u, ∂xi (∂tρ + ξ · ∇xρ) u

〉
ξ
dx, (59)

ε

∫
R3

〈
∂xi u, e

ερ
2 K

(
e− ερ

2 ∂xi ρu
)〉

ξ
dx = ε

∫
R3

〈(
∂xi ρ

)
u, e− ερ

2 Ke
ερ
2
(
∂xi u

)〉
ξ
dx, (60)

ε

∫
R3

〈
∂xi u, ∂xi ρe

ερ
2 Ke− ερ

2 u
〉
ξ
dx = ε

∫
R3

〈
∂xi ρ∂xi u, e

ερ
2 Ke− ερ

2 u
〉
ξ
dx, (61)

and ∫
R3

〈
∂xi u, ∂xi

(
wKh(6)

)〉
ξ
dx . (62)

123



960 Y. -C. Lin et al.

It is obvious that the decay of ∂xi (∂tρ + ξ · ∇xρ) is faster than (∂tρ + ξ · ∇xρ), hence the

first term (59) is easy to control. Since ∂xi ρ = 0 on H−,
∣∣∂xi ρ∣∣ � δ [δ (〈x〉 − Mt)]

γ−1
p+1−γ on

H+ and
∣∣∂xi ρ∣∣ � δ 〈ξ 〉r−1 on H0, we have

ε

∣∣∣∣
∫
R3

〈(
∂xi ρ

)
u, e− ερ

2 Ke
ερ
2
(
∂xi u

)
,
〉
ξ
dx

∣∣∣∣
� εδ

(∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ

∣∣∣ue− ερ
2 Ke

ερ
2
(
∂xi u

)∣∣∣ dξdx

+
∫
H0

〈ξ 〉γ−1
∣∣∣ue− ερ

2 Ke
ερ
2
(
∂xi u

)∣∣∣ dξdx

)
.

Similar to (15), e− ερ
2 Ke

ερ
2 and e

ερ
2 Ke− ερ

2 are bounded operators on L2
ξ . Notice that

δ (〈x〉 − Mt) ≥ 1 and [δ (〈x〉 − Mt)]
γ−1

p+1−γ ≤ 〈ξ 〉r−1 on H+ ∪H0, hence direct computation
shows that

∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ

∣∣∣ue− ερ
2 Ke

ερ
2
(
∂xi u

)∣∣∣ dξdx

�
∫

δ(〈x〉−Mt)≥1
[δ (〈x〉 − Mt)]

γ−1
p+1−γ

(∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

|u|2 dξ

)1/2

×
(∫

R3

∣∣∂xi u∣∣2 dξ

)1/2

dx

�
∫

δ(〈x〉−Mt)≥1
[δ (〈x〉 − Mt)]

γ−1
p+1−γ

(∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

|u|2 dξ

)1/2

×
(∫

δ(〈x〉−Mt)>2〈ξ〉p+1−γ

∣∣∂xi u∣∣2 dξ

)1/2

dx

+
∫

δ(〈x〉−Mt)≥1
[δ (〈x〉 − Mt)]

γ−1
p+1−γ

(∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

|u|2 dξ

)1/2

×
(∫

〈ξ〉p+1−γ ≤δ(〈x〉−Mt)≤2〈ξ〉p+1−γ

∣∣∂xi u∣∣2 dξ

)1/2

dx

+
∫

δ(〈x〉−Mt)≥1
[δ (〈x〉 − Mt)]

γ−1
p+1−γ

(∫
δ(〈x〉−Mt)>2〈ξ〉p+1−γ

|u|2 dξ

)1/2

×
(∫

δ(〈x〉−Mt)<〈ξ〉p+1−γ

∣∣∂xi u∣∣2 dξ

)1/2

dx

�
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |u|2 dξdx +
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ
∣∣∂xi u∣∣2 dξdx

+
∫
H0∪H−

∣∣∂xi u∣∣2 dξdx

�
∥∥∥〈ξ 〉 γ

2 P1∂xi u
∥∥∥2
L2

+
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ
∣∣P0∂xi u∣∣2 dξdx
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+
∫
H0∪H−

∣∣P0∂xi u∣∣2 dξdx

+
∥∥∥〈ξ 〉 γ

2 P1u
∥∥∥2
L2

+
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0u|2 dξdx,

and similarly,

∫
H0

〈ξ 〉γ−1
∣∣∣ue− ερ

2 Ke
ερ
2
(
∂xi u

)∣∣∣ dξdx

�
∫
H0

[δ (〈x〉 − Mt)]
γ−1

p+1−γ

∣∣∣ue− ερ
2 Ke

ερ
2
(
∂xi u

)∣∣∣ dξdx

�
∫
H0

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |u|2 dξdx +
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ
∣∣∂xi u∣∣2 dξdx

+
∫
H0∪H−

∣∣∂xi u∣∣2 dξdx

�
∥∥∥〈ξ 〉 γ

2 P1∂xi u
∥∥∥2
L2

+
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ
∣∣P0∂xi u∣∣2 dξdx

+
∫
H0∪H−

∣∣P0∂xi u∣∣2 dξdx

+
∥∥∥〈ξ 〉 γ

2 P1u
∥∥∥2
L2

+
∫
H0

|P0u|2 dξdx .

Therefore,

ε

∣∣∣∣
∫
R3

〈(
∂xi ρ

)
u, e− ερ

2 Ke
ερ
2
(
∂xi u

)
,
〉
ξ
dx

∣∣∣∣
� εδ

(∥∥∥〈ξ 〉 γ
2 P1∂xi u

∥∥∥2
L2

+
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ
∣∣P0∂xi u∣∣2 dξdx

+
∫
H0∪H−

∣∣P0∂xi u∣∣2 dξdx

)

+ εδ

(∥∥∥〈ξ 〉 γ
2 P1u

∥∥∥2
L2

+
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0u|2 dξdx +
∫
H0

|P0u|2 dξdx

)
.

Likewise,

ε

∫
R3

〈
∂xi ρ∂xi u, e

ερ
2 Ke− ερ

2 u
〉
ξ
dx

� εδ

(∥∥∥〈ξ 〉 γ
2 P1∂xi u

∥∥∥2
L2

+
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ
∣∣P0∂xi u∣∣2 dξdx

+
∫
H0

∣∣P0∂xi u∣∣2 dξdx

)

+ εδ

(∥∥∥〈ξ 〉 γ
2 P1u

∥∥∥2
L2

+
∫
H+

[δ (〈x〉 − Mt)]
γ−1

p+1−γ |P0u|2 dξdx

+
∫
H0∪H−

|P0u|2 dξdx

)
.
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On the other hand,∣∣∣∣
∫
R3

〈
∂xi u, ∂xi

(
wKh(6)

)〉
ξ
dx

∣∣∣∣ �
∥∥∂xi u∥∥L2

∥∥∥∂xi
(
wKh(6)

)∥∥∥
L2

.

The second derivative estimate is similar and hence we omit the details. We then deduce that

d

dt
‖u‖2

H2
x L

2
ξ

� ‖u‖H2
x L

2
ξ
‖wKh(6)‖H2

x L
2
ξ
+
∫
H0∪H−

|P0u|2 + |P0∇xu|2 + ∣∣P0∇2
x u
∣∣ dξdx

� ‖u‖H2
x L

2
ξ
‖wKh(6)‖H2

x L
2
ξ
+ ‖u‖H2

x L
2
ξ
‖R(6)‖H2

x L
2
ξ

� ‖u‖H2
x L

2
ξ

(
‖h(6)‖H2

x L
2
ξ (μ) + ‖R(6)‖H2

x L
2
ξ

)
,

the last inequality holds since |∇xρ| , ∣∣∇2
xρ
∣∣ � 〈ξ 〉γ−1 and the weight w is decreasing in t.

It follows that
d

dt
‖u‖H2

x L
2
ξ

� ‖h(6)‖H2
x L

2
ξ (μ) + ‖R(6)‖H2

x L
2
ξ
.

In view of Lemma 14 and (48),

d

dt
‖u‖H2

x L
2
ξ

�
{ {t4 ∧ 1} (‖ f0‖L2(μ) + ‖ f0‖L2

)
, 0 ≤ γ < 1,

t4 (1 + t)3
(‖ f0‖L2(μ) + ‖ f0‖L2

)
, −2 < γ < 0.

This completes the proof of the proposition. ��
Through Proposition 17 and the Sobolev inequality, we will establish the pointwise esti-

mate for R(6) in the following. Combining this with the wave part W (6) (see Lemma 9), we
complete the wave structure of the solution outside the finite Mach number region.

Proposition 18 LetR(6) be the remainder part of the linearized Boltzmann equation (2)with
−2 < γ < 1, and 0 < p ≤ 2. There exists a positive constant M such that for 〈x〉 > 2Mt,
we have ∣∣∣R(6)(t, x, ·)

∣∣∣
L2

ξ

≤ Ct5e−cε (〈x〉+t)
p

p+1−γ ‖ f0‖L2
(
eε|ξ |p ) , (63)

where the constant ε > 0 is sufficiently small and C, cε are some positive constants.

Proof Let w be the weight function defined as (50). Observe that for 〈x〉 > 2Mt ,

ρ(t, x, ξ) � (δ(〈x〉 − Mt))
p

p+1−γ .

Applying Proposition 17, it follows from the Sobolev inequality [16, Proposition 3.8] that

eε(δ(〈x〉−Mt))
p

p+1−γ
∣∣∣R(6)(t, x, ·)

∣∣∣
L2

ξ

≤
∣∣∣wR(6)

∣∣∣
L2

ξ

≤
∥∥∥wR(6)

∥∥∥
L2

ξ L
∞
x

�
∥∥∥∇2

x

(
wR(6)

)∥∥∥1/2
L2

∥∥∥∇x

(
wR(6)

)∥∥∥1/2
L2

�
∥∥∥wR(6)

∥∥∥
H2
x L

2
ξ

�
{ {t5 ∧ t} ‖ f0‖L2(μ) , 0 ≤ γ < 1,
t5 (1 + t)3 ‖ f0‖L2(μ) , −2 < γ < 0.

Here ε > 0 can be chosen as small as we want. Note that for 〈x〉 > 2Mt ,

〈x〉 − Mt >
〈x〉
3

+ Mt

3
,
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and
‖ f0‖L2(μ) � ‖ f0‖L2(eε|ξ |p ),

due to the fact that f0 has compact support in variable x . Therefore there exist positive
constants C and cε such that

∣∣∣R(6)(t, x, ·)
∣∣∣
L2

ξ

≤ Ct5e−cε (〈x〉+t)
p

p+1−γ ‖ f0‖L2(eε|ξ |p ). (64)

��

6 Conclusion

In this paper, we obtain the quantitative pointwise behavior of the solutions of the linearized
Boltzmann equation for hard potentials (0 < γ < 1), Maxwellian molecules (γ = 0) and
soft potentials (−2 < γ < 0), with Grad’s angular cutoff assumption, by assuming the
exponential velocity weight eα|ξ |p on the initial data. Here α is a small positive number and
0 < p ≤ 2. For hard potentials, we extend the result [10] with the Gaussian velocity weight
eα|ξ |2 to more general exponential velocity weights eα|ξ |p , 0 < p ≤ 2. For Maxwellian
molecules and soft potentials, our result is the first attempt aiming at the pointwise structure
of the solution.

It would also be interesting to consider the quantitative pointwise behavior for other
kinetic equations. In fact, our approach is applicable to the Landau kinetic equation [18].
Furthermore, it has potential to be adapted to the Boltzmann equation with non cut-off hard
potentials, where the regularization mechanism is analogous to Landau type equations rather
than cut-off cases. The study of the non cut-off Boltzmann equation is in progress.
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