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Abstract
In this paper, we consider the Boltzmann equation with angular-cutoff for very soft
potential case −3 < γ ≤ −2. We prove a regularization mechanism that transfers
the microscopic velocity regularity to macroscopic space regularity in the fractional
sense. The result extends the smoothing effect results of Liu–Yu (see “mixture lemma”
in Comm Pure Appl Math 57:1543–1608, 2004), and of Gualdani–Mischler–Mouhot
(see “iterated averaging lemma” in Mém Soc Math Fr 153, 2017), both established
for the hard sphere case. A precise pointwise estimate of the fractional derivative of
collision kernel, and a connection between velocity derivative and space derivative
in the fractional sense are exploited to overcome the high singularity for very soft
potential case. As an application of fractional regularization estimates, we prove the
global well-posedness and large time behavior of the solution for non-smooth initial
perturbation.
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1 Introduction

1.1 Themodel

In this paper, we consider the following Boltzmann equation:

{
∂t F + ξ · ∇x F = Q(F, F) ,

F(0, x, ξ) = F0(x, ξ) ,
(t, x, ξ) ∈ R

+ × R
3 × R

3 , (1)

where F(t, x, ξ) is the velocity distribution function for the particles at time t > 0,
position x = (x1, x2, x3) ∈ R

3 and microscopic velocity ξ = (ξ1, ξ2, ξ3) ∈ R
3. The

left-hand side of this equation models the transport of particles and the operator on
the right-hand side models the effect of collisions during the transport,

Q(F,G) =
∫
R3×S2

|ξ − ξ∗|γ B(ϑ)
{
F(ξ ′∗)G(ξ ′) − F(ξ∗)G(ξ)

}
dξ∗dω.

We consider the very soft potential (−3 < γ ≤ −2) case and B(ϑ) satisfies the Grad
cutoff assumption

0 < B(ϑ) ≤ C |cosϑ |,

for some constant C > 0. Moreover, the post-collisional velocities satisfy

ξ ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ ′∗ = ξ + [(ξ − ξ∗) · ω]ω,

and ϑ is defined by

cosϑ = |(ξ − ξ∗) · ω|
|ξ − ξ∗| .

It iswell known that the globalMaxwellians are steady-state solutions to theBoltzmann
equation (1). Therefore, it is natural to consider the Boltzmann equation (1) around a
global Maxwellian

M(ξ) = 1

(2π)3/2
exp

(−|ξ |2
2

)
,

with the standard perturbation f (t, x, ξ) toM as

F = M + M1/2 f , F0 = M + ηM1/2 f0,
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where η > 0 is sufficiently small. After substituting F and F0 into (1), the equation
for the perturbation f is

⎧⎨
⎩

∂t f + ξ · ∇x f = L f + 	( f , f ),

f (0, x, ξ) = η f0(x, ξ) = F0 − M√M ,
(2)

where L is the linearized collision operator defined as

L f = M−1/2
[
Q(M,M1/2 f ) + Q(M1/2 f ,M)

]
,

and 	 is the nonlinear operator defined as

	( f , f ) = M−1/2Q(M1/2 f ,M1/2 f ).

It is well-known that the null space of L is a five-dimensional vector space with the
orthonormal basis {χi }4i=0, where

Ker(L) = {χ0, χi , χ4} =
{
M1/2, ξiM1/2,

1√
6
(|ξ |2 − 3)M1/2, i = 1, 2, 3

}
.

Based on this property, we can introduce the macro-micro decomposition: let P0 be
the orthogonal projection with respect to the L2

ξ inner product onto Ker(L), and P1 ≡
Id − P0.

The collision operator L consists of a multiplicative operator ν(ξ) and an integral
operator K :

L f = −ν(ξ) f + K f ,

where

ν(ξ) =
∫

B(ϑ)|ξ − ξ∗|γM(ξ∗)dξ∗dω,

and
K f = −K1 f + K2 f (3)

is defined as [5, 8]:

K1 f :=
∫

B(ϑ)|ξ − ξ∗|γM1/2(ξ)M1/2(ξ∗) f (ξ∗)dξ∗dω,

K2 f :=
∫

B(ϑ)|ξ − ξ∗|γM1/2(ξ∗)M1/2(ξ ′) f (ξ ′∗)dξ∗dω

+
∫

B(ϑ)|ξ − ξ∗|γM1/2(ξ∗)M1/2(ξ ′∗) f (ξ ′)dξ∗dω.
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In the next section,wewill present a number of properties and estimates of the operators
L , ν(ξ) and K .

1.2 Notations

Before the presentation of the main theorem, let us define some notations used in this
paper. We denote 〈ξ 〉s = (1 + |ξ |2)s/2, s ∈ R. For the microscopic variable ξ , we
denote the Lebesgue spaces

|g|Lq
ξ

=
(∫

R3
|g|qdξ

)1/q

if 1 ≤ q < ∞, |g|L∞
ξ

= sup
ξ∈R3

|g(ξ)|,

and the weighted norms can be defined by

|g|Lq
ξ,β

=
(∫

R3

∣∣〈ξ 〉β g
∣∣q dξ

)1/q

if 1 ≤ q < ∞, |g|L∞
ξ,β

= sup
ξ∈R3

∣∣〈ξ 〉β g(ξ)
∣∣ ,

and

|g|L∞
ξ (m) = sup

ξ∈R3
{|g(ξ)|m(ξ)} ,

where β ∈ R and m is a weight function. The L2
ξ inner product in R3 will be denoted

by
〈·, ·〉

ξ
, i.e.,

〈 f , g〉ξ =
∫

f (ξ)g(ξ)dξ.

For the Boltzmann equation with cut-off potential, the natural norm in ξ is | · |L2
σ
,

which is defined as

|g|2L2
σ

=
∣∣∣〈ξ 〉 γ

2 g
∣∣∣2
L2

ξ

.

For the space variable x , we have similar notations, namely,

|g|Lq
x

=
(∫

R3
|g|qdx

)1/q

if 1 ≤ q < ∞, |g|L∞
x

= sup
x∈R3

|g(x)|.

Furthermore, we define the high order Sobolev norm: let s ∈ N and define

|g|Hs
ξ

=
∑
|α|≤s

∣∣∣∂α
ξ g
∣∣∣
L2

ξ

, |g|Hs
x

=
∑
|α|≤s

∣∣∂α
x g
∣∣
L2
x
,

where α is any multi-index with |α| ≤ s.
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Next, we introduce two equivalent definitions of the fractional derivative (−�y)
s
2

for 0 < s < 2, and the interested reader is referred to [16] for other equivalent
definitions. Let f (y) : R3 → R be a function in the Lebesgue space L p (1 ≤ p < ∞),
then we have the following two equivalent definitions:

Definition 1 (Singular integral definition). Let 0 < s < 2. The fractional derivative
of f of order s is defined as

(−�y)
s
2 f (y) = p.v.

∫
R3

f (y + z) − f (y)

|z|3+s
dz = lim

r→0+

∫
|z|>r

f (y + z) − f (y)

|z|3+s
dz,

provided that the limit exists.

Definition 2 (Fourier transform definition). Let 0 < s < 2. The fractional derivative
of f of order s is defined as

(−�y)
s
2 f (y) = F−1{|ŷ|s f̂ (ŷ)},

where

f̂ (ŷ) =
∫
R3

eiy·ŷ f (y)dy

is the Fourier transform of f (y) and F−1 is its corresponding inverse transform.

Finally, with X and Y being norm spaces, we define

‖g‖XY = ∣∣|g|Y ∣∣X .

We also denote

‖g‖L2 = ‖g‖L2
ξ L

2
x

=
(∫

R3
|g|2L2

x
dξ

)1/2

.

For simplicity of notations, hereafter, we abbreviate “≤ C ” to “�”, where C is a
positive constant depending only on fixed numbers.

1.3 Main result I: mixture estimate in fractional sense

Denote the solution operator of the damped transport equation

{
∂t h + ξ · ∇xh + ν(ξ)h = 0,
h(0, x, ξ) = h0,

(4)

by S
t
γ , i.e., h(t) = S

t
γ h0. Moreover, if ν(ξ) = 0, we denote the solution operator as

S
t . By the method of characteristics, the solutions Stγ h0 and S

t h0 can be written down
explicitly,

S
t
γ h0(x, ξ) = e−ν(ξ)t h0(x − ξ t, ξ) (5)
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and
S
t h0(x, ξ) = h0(x − ξ t, ξ). (6)

The Mixture Estimate reveals the mechanism that the mixture of two operators
S
t
γ and K will transfer the regularity in microscopic velocity ξ coming from K to

the regularity in space x . The precise statement of the Mixture Estimate is stated as
follows.

Theorem 1 (Mixture Estimate) Let −3 < γ ≤ −2, 0 < s < 3 + γ . If h0 ∈ L2, then

∥∥∥(−�x )
s
2 KS

t
γ Kh0

∥∥∥
L2

� t−s ‖h0‖L2 . (7)

Furthermore, let Mn be a multiple-mixture operator defined inductively as below

M1(h) =
(
S
t
γ K

)
∗t h =

∫ t

0
(St−τ

γ Kh)(τ, x, ξ)dτ,

and

Mn(h) = M1(Mn−1(h)) =
(
S
t
γ K

)
∗t Mn−1(h)

=
∫ t

0
(St−τ

γ KMn−1(h))(τ, x, ξ)dτ, for n ≥ 2.

where h(t, ·) ∈ L2
(
R
3 × R

3
)
. Iterating the Mixture Estimate enough times, it is

shown that the spatial regularity can be improved as many as one desires:

Corollary 2 Let −3 < γ ≤ −2, 0 < s < 3 + γ , k ∈ N. If h ∈ L2 uniformly in time,
then

‖M2k(h)(t)‖L2
ξ H

ks
x

� (1 + t)k(2−s) sup
τ∈[0,t]

‖h(τ )‖L2 . (8)

The Mixture Estimate plays a crucial role in Theorem 3, which enables us to obtain
the well-posedness and large time behavior of the Boltzmann equation without any
regularity assumption on the initial data.

Since the Mixture Estimate has its own independent mathematical interest, we
present it as Theorem 1 separately. In the literature, there are several papers regarding
“ regularization effect” for the Boltzmann equation. Among them, two works which
are most relevant to the current research are by Liu and Yu [21], and by Gualdani,
Mischler andMouhot [9]. The reader is also referred to other variants of “regularization
effects” for the Boltzmann equation, such as the “Averaging Lemma” by Golse, Lions,
Perthame and Sentis [7], the “A-smoothing Property” by Glassey and Strauss [6], and
the “L2-L∞ approach” by Guo [12].

In [21], the authors introduced “Mixture Lemma” (Lemma 4.9) to extract the
particle-like wave in construction of Green’s function for Boltzmann equation with
hard sphere. On the other hand, in [9], the authors obtained “Iterated Averaging
Lemma” (Lemma 4.19) for factorization and enlargement theory of the Boltzmann
equation with hard sphere on the torus. Roughly speaking, both “Mixture Lemma”
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and “Iterated Averaging Lemma” reveal the following mechanism: let SB be a trans-
port type semigroup andA be a smoothing integral operator in ξ , then mixing SB and
Awill transfer the ξ regularity coming fromA to the space regularity x . Interestingly,
the proofs of these two lemmas are quite different. The proof of “Mixture Lemma” is
based on the Fourier transform with respect to the space variable x , combing with H1

ξ

smoothing effect of the integral operatorA.While the key idea in the proof of “Iterated
Averaging Lemma” is to build up a bridge between x derivative and ξ derivative by
introducing a crucial differential operator Dt = t∇x + ∇ξ , which commutes with the
free transport operator. Later, Wu [28] gave an alternative proof of “Mixture Lemma”
by employing the operator Dt . This method is then adapted to prove variant versions
of “Mixture Lemma” for the Boltzmann equation with −2 < γ ≤ 1 [18, 19].

However, all the aforementioned proofs are not applicable to the very soft case, due
to the weak smoothing effect of integral operator K when −3 < γ ≤ −2. In fact, the
kernel function of K has a singularity |ξ −η|−1∧γ , so that one can have full derivative
estimate ∇ξ K only when −2 < γ ≤ 1.

The above restriction gives rise to some fundamental and interesting questions for
the higher singularity region −3 < γ ≤ −2:

(i) Instead of the derivative estimate of ∇ξ K , can we still gain some fractional
regularity in velocity (−�ξ)

s/2K for appropriate s > 0?
(ii) Given the fractional derivative estimate for K , is it still possible to transfer the

microscopic velocity regularity to macroscopic space regularity in the fractional
case by mixture?

(iii) Oncewe establish theMixture Estimate, canwe apply it to get thewell-posedness
of Boltzmann equation with very soft potential for non-smooth initial perturba-
tions?

Wewill answer the question (i) in Sect. 2, the question (ii) in Sect. 3 (seeTheorem1),
and the question (iii) in Sect. 4 (see Theorem 3) sequentially.

Ashintedby the singularity |ξ−η|γ in the kernel functionof K when−3 < γ ≤ −2,
one may expect for a fractional regularity (−�ξ)

s/2K for 0 < s < 3 + γ . However,
it is nontrivial to achieve this goal. Firstly, the kernel function of K is given by an
integral expression for very soft potential rather than a closed form for hard sphere.
Secondly, the fractional derivative is a non-local operator, which brings more com-
plexities when acting on an integral expression. Furthermore, a uniform upper bound
of fractional derivative is insufficient for the Mixture Estimate, and what we need is a
pointwise estimate. To this end, we adopt the singular integral definition of the frac-
tional derivative (Definition 1) and obtain a precise pointwise estimate for (−�ξ )

s/2K .
In the course of calculations, we need to control the singularity (for |ξ −η| small) and
maintain the decay estimates of K (for |ξ | or |η| large) simultaneously. The former
one is important in the regularization estimate as it is. While the decay estimates are
also indispensable to ensure the integrability. We decompose the integral domain into
different regions by recognizing the dominant term, and the whole proof is finished
based on refined estimates for each of them (see Sects. 2.2, 2.3, 2.4 and 5). To the best
of our knowledge, this is the first result regarding the pointwise estimate of fractional
derivative of the integral part of the linearized Boltzmann collision operator. As corol-
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laries of the pointwise estimates, some function space inequalities for (−�ξ)
s/2K are

followed immediately (see Corollary 15).
With the fractional regularity of K in velocity ξ , we are able to develop theMixture

Estimate. Since we are dealing with the fractional derivative, it is natural to use the
Fourier transform as a tool to clarify the mechanism of regularization effect, rather
than using the differential operator Dt as in [9]. Taking the Fourier transform of the
free transport equation with respect to both the x and ξ variables, together with the
Fourier transform definition of the fractional derivative (Definition 2), we set up a
connection (34) between (−�x )

s/2 and (−�ξ)
s/2 for the free transport equation in

terms of Fourier variables. This actually can be viewed as a fractional version analogue
of the connection given by the operator Dt . To complete the proof of the Mixture
Estimate, one also needs to bound (−�ξ)

s/2[e−ν(ξ)t k(ξ, η)], which is induced by the
extra damping term ν(ξ) in the damped transport equation, and the integration by
parts to absorb the ξ derivative. We obtain its estimate mainly through the Kato-Ponce
inequality or “fractional Leibniz rule” (see Proposition 16). It is exactly the Mixture
Estimate that enables us to obtain the global well-posedness without imposing any
regularity on the initial data. Worthy of mention is that at first glance we seemingly
employ two different definitions of fractional derivative in the proof of the Mixture
Estimate, but they are in fact equivalent in the Lebesgue space L p for 1 ≤ p < ∞.

1.4 Main result II: well-posedness of the Boltzmann equation

With the help of the Mixture Estimate, we are able to obtain the well-posedness and
large time behavior of the Boltzmann equation for −3 < γ ≤ −2 with non-smooth
initial perturbations, the result is stated as follows.

Theorem 3 Let −3 < γ ≤ −2, 0 < p ≤ 2, β > 3/2, α > 0 sufficiently
small, and j > 0 sufficiently large. Assume that the initial data η f0 satisfies
f0 ∈ L∞

ξ,β+3 j (e
α〈ξ〉p )(L1

x ∩ L∞
x ) where η > 0 is sufficiently small. Then there is

a unique solution f to (2) in L∞
ξ,β+2 j (e

α〈ξ〉p )L2
x ∩ L∞

ξ,β+2 j (e
α〈ξ〉p )L∞

x with

‖ f (t)‖L∞
ξ,β (eα〈ξ〉p )L2

x
≤ ηC1(1 + t)−

3
4 ‖ f0‖L∞

ξ,β+2 j (e
α〈ξ〉p )(L1

x∩L∞
x ) , (9)

‖ f (t)‖L∞
ξ,β (eα〈ξ〉p )L∞

x
≤ ηC2(1 + t)−

3
2 ‖ f0‖L∞

ξ,β+3 j (e
α〈ξ〉p )(L1

x∩L∞
x ) , (10)

‖ f (t)‖L∞
ξ,β+2 j (e

α〈ξ〉p )L2
x

≤ ηC̄1 ‖ f0‖L∞
ξ,β+2 j (e

α〈ξ〉p )(L1
x∩L∞

x ) , (11)

‖ f (t)‖L∞
ξ,β+2 j (e

α〈ξ〉p )L∞
x

≤ ηC̄2 ‖ f0‖L∞
ξ,β+2 j (e

α〈ξ〉p )(L1
x∩L∞

x ) , (12)

for some positive constants C1,C2, C̄1, C̄2 depending on γ , α, p, β, and j .

In this theorem, we generalize the Green function approach of Liu and Yu [21] from
hard sphere case to very soft potential case (−3 < γ ≤ −2) and then establish the
well-posedness and large time behavior for non-smooth initial perturbations. In the
literature, there are several energy methods for the study of the Boltzmann equations
near Maxwellian in the whole space, for instance [11, 14, 22, 26]. In these works,
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people are aware that the large time behavior is governed by the long wave part
in terms of the Fourier variables of the linearized equation. Meanwhile, in order to
close the nonlinear problem, some suitable Sobolev regularity assumptions on the
initial condition are necessarily required. By contrast, in the current paper we further
employ the wave-remainder decomposition to analyze the solution, which enables us
to remove the regularity assumption of the initial condition. Indeed, there exist several
works concerning the L∞

x initial data. For whole space problem, the time decay result
is proved in [27] for hard potential by investigating the L2 − L∞ smoothing effect of
Mixture operator. In [3], the global existence for some type large amplitude data is
established, whereas no decay estimate in whole space. In the bounded domain, the
initial-boundary value problem associated with non-smooth initial perturbations has
been considered as well. An L2-L∞ theory was developed in [12] to obtain the global
existence and the exponential decay rate of the solution around a globalMaxwellian for
hard potentials associatedwith appropriate boundary conditions. Then, its extension to
soft potential in a bounded domain is proved by [20] in which a sub-exponential decay
rate is obtained, and the reader is also referred to [4, 13, 15] for recent advancements
of this theory. All the above-mentioned results are dealing with cut-off case. See [23]
for the global smooth solution in torus for L∞ data and non-cutoff hard potential.

In what follows, we discuss the strategy of the proof of Theorem 3. By using
the long wave-short wave decomposition and the wave-remainder decomposition, we
first obtain the large time behavior of the linearized equation in the normed spaces
L2

ξ L
2
x and L

2
ξ L

∞
x . Note that the combination of these two decompositions was initially

investigated by Liu and Yu [21] for hard sphere case and then generalized to hard and
soft potentials (i.e., −2 < γ < 1) in [18, 19]. The restriction of −2 < γ < 1 is due
to the absence of regularization estimate for the remainder part when γ ≤ −2. This
crucial difficulty can be resolved by the Mixture Estimate in this paper and then we
can generalize the L2

ξ L
2
x and L2

ξ L
∞
x estimate of the linearized problem to the case

−3 < γ ≤ −2. To solve the nonlinear problem, we need the L∞
ξ weighted estimate of

the linearized problem. Inspired by Ukai’s bootstrap argument to the integral equation,
we can improve the L2

ξ estimates to the L∞
ξ weighted spaces. It worth mentioning

that when −3 < γ ≤ −2, the singularity of the integral operator K is too high to
bootstrap the solution from L2

ξ to L∞
ξ directly. Fortunately, it can be obtained by

applying finite steps of bootstrap argument with the aid of the interpolation result
of the integral operator K (see Sect. 4.1, Step 2). Furthermore, given a source term
	 (h1, h2) with prescribed time decay (see (60)), we establish the large time behavior
for the inhomogeneous linearized equation. The large time behavior of the nonlinear
problem (2) then follows from an iteration scheme.

The rest of this paper is organized as follows: In Sect. 2, we first review some basic
properties of the operators L , ν(ξ) and K , then provide the fractional derivative esti-
mates of K and ν(ξ). The lengthy proof of the estimate (−�)s/2k2(ξ, η) is postponed
to Sect. 5 for the sake of readability. Then, we prove theMixture estimate (Theorem 1)
in Sect. 3 and demonstrate the well-posedness and large time behavior of the solution
(Theorem 3) in Sect. 4.
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2 Revisit of the linearized collision operator

In this section we will present a number of properties and estimates of the operators
L , ν(ξ) and K . To begin with, we list some fundamental properties of these operators,
which can be found in [1, 8, 25]. The rest of this section is devoted to the estimate
of the fractional derivative for ν(ξ) and K , here we use singular integral definition
(Definition 1) to define the fractional derivative.

2.1 Basic estimates of L, �(�) and K

Lemma 4 For any g ∈ L2
σ , we have the coercivity estimate of the linearized collision

operator L:
〈g, Lg〉ξ � − |P1g|2L2

σ
.

Lemma 5 For the multiplicative operator ν(ξ), there exist positive constants ν0 and
ν1 such that

ν0 〈ξ 〉γ ≤ ν(ξ) ≤ ν1 〈ξ 〉γ . (13)

Moreover, for each multi-index α ∈ N
3,

|∂α
ξ ν(ξ)| � 〈ξ 〉γ−|α| . (14)

For the integral operators K1 and K2, we have the following representations.

Lemma 6 The integral operator K1 can be represented as

(K1 f ) (ξ) =
∫
R3

k1(ξ, η) f (η)dη,

where the kernel k1(ξ, η) is given by

k1 (ξ, η) = γ0 |ξ − η|γ exp

{
−1

4

(
|ξ |2 + |η|2

)}
, (15)

for some positive constant γ0. The integral operator K2 can be represented as

(K2 f ) (ξ) =
∫
R3

k2(ξ, η) f (η)dη,

where the kernel k2 (ξ, η) is given by

k2(ξ, η) = |ξ − η|−1

(
2π3

)1/2
∫

w⊥(ξ−η)

exp

(
−|η + w|2 + |ξ + w|2

4

)

(
|ξ − η|2 + |w|2

) γ−1
2
(

B(θ)

| cos θ | + B(π
2 − θ)

| sin θ |
)
d2w,
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with arctan θ := |w|
|ξ−η| . Moreover, the kernel k2 (ξ, η) satisfies

|k2(ξ, η)| � |ξ − η|γ (1 + |ξ | + |η|)γ−1

exp

(
−1

8

[(|ξ |2 − |η|2)2
|ξ − η|2 + |ξ − η|2

])
for γ ∈ (−3,−2]. (16)

Immediately from Lemma 6 and [26], we have the following result.

Proposition 7 Let −3 < γ ≤ −2, τ ∈ R, 0 ≤ β < 1
4 , and 0 ≤ p < 2. If k(ξ, η) =

−k1(ξ, η) + k2(ξ, η), then

∫
R3

|k (ξ, η)|q 〈η〉τ e−β〈η〉pdη � 〈ξ 〉τ+q(γ−1)−1 e−β〈ξ〉p ,

∫
R3

|k (ξ, η)|q 〈ξ 〉τ e−β〈ξ〉pdξ � 〈η〉τ+q(γ−1)−1 e−β〈η〉p (17)

provided that 1 ≤ q < 3
−γ

.

Consequently, we have

Proposition 8 Let τ ∈ R and −3 < γ ≤ −2. Then

|Kg|Lq
ξ,τ+2−γ

� |g|Lq
ξ,τ
, 1 ≤ q ≤ ∞ (18)

and
|Kg|L∞

ξ,τ+1−γ+ 1
q

≤ C |g|
Lq′

ξ,τ

(19)

provided that 1/q + 1/q ′ = 1 and 1 ≤ q < 3
−γ

(
that is, q ′ > 3

3+γ

)
.

Proposition 9 Let −3 < γ ≤ −2, τ ∈ R, 0 ≤ β < 1
4 , and 0 ≤ p < 2, then

‖Kg (ξ)‖L∞
ξ,τ+2−γ

(
eβ〈ξ〉p ) � ‖g (ξ)‖L∞

ξ,τ

(
eβ〈ξ〉p ) . (20)

Next, we will focus on the estimate of the fractional derivative for e−ν(ξ)t and
|ξ − η|γ .

2.2 The fractional derivative of e−�(�)t and |� − �|�

Proposition 10 Let −3 < γ ≤ −2. For any t > 0 and 0 < s < 3 + γ , we have

∣∣∣(−�ξ

) s
2 e−ν(ξ)t

∣∣∣ � 〈ξ 〉−s . (21)
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Proof By definition of the fractional derivative, we separate the following integral into
two domains |z| < (1 + |ξ |) /2 and |z| > (1 + |ξ |) /2, i.e.,

(−�ξ

) s
2 e−ν(ξ)t = p.v.

∫
R3

e−ν(ξ+z)t − e−ν(ξ)t

|z|3+s
dz

= p.v.

(∫
|z|< 1+|ξ |

2

+
∫

|z|> 1+|ξ |
2

)
e−ν(ξ+z)t − e−ν(ξ)t

|z|3+s
dz

= T1 + T2.

By the Newton–Leibniz formula and Lemma 5, we have

|T1| =
∣∣∣∣∣
∫

|z|< 1+|ξ |
2

∫ 1

0

−te−ν(ξ+yz)t

|z|3+s

d

dy
ν(ξ + yz)dydz

∣∣∣∣∣
�
∫

|z|< 1+|ξ |
2

∫ 1

0

tν(ξ + yz)e−ν(ξ+yz)t

|z|2+s (1 + |ξ + yz|)−1 dydz

� 〈ξ 〉−1
∫

|z|< 1+|ξ |
2

1

|z|2+s
dz

� 〈ξ 〉−s .

Combining this with that

|T2| �
∫

|z|> 1+|ξ |
2

1

|z|3+s
dz � 〈ξ 〉−s .

the proof is completed. ��
Before going to the estimate of the fractional derivative of K f , we calculate the

fractional derivative of |ξ − η|γ first.

Lemma 11 Let −3 < γ ≤ −2 and 0 < s < 1. Then

∣∣∣(−�ξ

) s
2 |ξ − η|γ

∣∣∣ � |ξ − η|γ−s . (22)

Proof Denote ζ = ξ − η. By using spherical coordinates, the fractional derivative of
|ξ − η|γ can be written as

(−�ξ)
s
2 |ξ − η|γ

= p.v.
∫
R3

|ξ − η + z|γ − |ξ − η|γ
|z|3+s

dz

= p.v.
∫ ∞

0

∫ π

0

∫ 2π

0

(|ζ |2 + r2 + 2r |ζ | cos θ
) γ
2 − |ζ |γ

r3+s
r2 sin θdϕdθdr
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= 2π · p.v.
∫ ∞

0

∫ π

0

[(
|ζ |2 + r2 + 2r |ζ | cos θ

) γ
2 − |ζ |γ

]
r−1−s sin θdθdr ,

where θ is the angle between ζ and z. Direct computation gives

∫ π

0

(|ζ |2 + r2 + 2r |ζ | cos θ
) γ
2 sin θdθ =

⎧⎨
⎩

ln(|ζ |+r)−ln||ζ |−r |
r |ζ | , for γ = −2,

||ζ |−r |γ+2−(|ζ |+r)γ+2

(−2−γ )r |ζ | , for − 3 < γ < −2.

Hence, for γ = −2, we have

(−�ξ)
s
2 |ξ − η|γ

= 2π · p.v.
∫ ∞

0

ln (|ζ | + r) − ln ||ζ | − r | − 2r |ζ |−1

r2+s |ζ | dr

= 2π · p.v.
(∫ |ζ |/2

0
+
∫ ∞

|ζ |/2

)
ln (|ζ | + r) − ln ||ζ | − r | − 2r |ζ |−1

r2+s |ζ | dr

=: 2π · (T11 + T12) .

By the Newton–Leibniz formula,

|T11| =
∣∣∣∣
∫ |ζ |/2

0

∫ r

0

(
1

|ζ | + ρ
+ 1

|ζ | − ρ
− 2

|ζ |
)

1

r2+s |ζ |dρdr

∣∣∣∣
=
∫ |ζ |/2

0

∫ |ζ |/2

ρ

2ρ2

|ζ |2 (|ζ | + ρ) (|ζ | − ρ)

1

r2+s
drdρ

= 2

1 + s

∫ |ζ |/2

0

ρ2

|ζ |2 (|ζ | + ρ) (|ζ | − ρ)

(
1

ρ1+s
− 1

(|ζ |/2)1+s

)
dρ

� |ζ |−2−s .

Letting r = λ|ζ | gives

|T12| ≤ |ζ |−2−s
∫ ∞

1/2

ln (1 + λ) + |ln |1 − λ|| + 2λ

λ2+s
dλ � |ζ |−2−s .

Combining the estimates for T11 and T12, we obtain the desired estimatewhen γ = −2.
Next, for −3 < γ < −2, we also split the integral into two domains, that is,

(−�ξ)
s
2 |ξ − η|γ

= 2π · p.v.
∫ ∞

0

||ζ | − r |γ+2 − (|ζ | + r)γ+2 − 2r(−2 − γ )|ζ |γ+1

(−2 − γ )r2+s |ζ | dr

= 2π · p.v.
(∫ |ζ |/2

0
+
∫ ∞

|ζ |/2

) ||ζ | − r |γ+2 − (|ζ | + r)γ+2 − 2r(−2 − γ )|ζ |γ+1

(−2 − γ )r2+s |ζ | dr

=: 2π · (T21 + T22) .
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Using similar argument as above, we have

|T21| =
∣∣∣∣
∫ |ζ |/2

0

∫ r

0

(
1

(|ζ | + ρ)−γ−1 + 1

(|ζ | − ρ)−γ−1 − 2

|ζ |−γ−1

)
1

r2+s |ζ |dρdr

∣∣∣∣
=
∣∣∣∣
∫ |ζ |/2

0

∫ |ζ |/2

ρ

(
1

(|ζ | + ρ)−γ−1 + 1

(|ζ | − ρ)−γ−1 − 2

|ζ |−γ−1

)
1

r2+s |ζ |drdρ

∣∣∣∣
≤ 1

s + 1

∫ |ζ |/2

0

(
1

(|ζ | + ρ)−γ−1 + 1

(|ζ | − ρ)−γ−1 − 2

|ζ |−γ−1

)
1

|ζ |(
1

ρs+1 − 1

(|ζ |/2)s+1

)
dρ

�
∫ |ζ |/2

0

ρ

|ζ |−γ

1

|ζ |
1

ρs+1 dρ � |ζ |γ−s .

Also, letting r = λ|ζ | gives

|T22| =
∣∣∣∣
∫ ∞

1/2
|ζ |γ−s |1 − λ|γ+2 − (1 + λ)γ+2 − 2λ(−2 − γ )

(−2 − γ )λ2+s
dλ

∣∣∣∣
� |ζ |γ−s .

Combining the estimates for T21 and T22, we obtain the desired estimate when
−3 < γ < −2. ��

In what follows, we will compute
(−�ξ

) s
2 k1(ξ, η) and

(−�ξ

) s
2 k2(ξ, η), respec-

tively.

2.3 The fractional derivative of k1

Proposition 12 Let −3 < γ ≤ −2 and 0 < s < 3 + γ . Then

∣∣∣(−�ξ

) s
2 k1(ξ, η)

∣∣∣ � |ξ − η|γ−s 〈ξ 〉γ−3−s e− |η|2
6 + 〈ξ 〉−3−s e− |η|2

4 . (23)

Proof Up to a constant multiple, one has

(−�ξ

) s
2 k1(ξ, η)

= p.v.
∫
R3

[
|ξ − η + z|γ exp

(
−|ξ + z|2 + |η|2

4

)
− |ξ − η|γ exp

(
−|ξ |2 + |η|2

4

)]

1

|z|3+s
dz

= p.v.
∫
R3

|ξ − η + z|γ − |ξ − η|γ
|z|3+s

e− |ξ |2+|η|2
4 dz + p.v.

∫
R3

|ξ − η + z|γ e− |ξ+z|2+|η|2
4 − e− |ξ |2+|η|2

4

|z|3+s
dz =: I1 + I2.
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It immediately follows from (22) that

|I1| � |ξ − η|γ−se− |ξ |2+|η|2
4 .

By the Newton–Leibniz formula,

I2 = p.v.
∫
R3

|ξ − η + z|γ e− |ξ+z|2+|η|2
4 − e− |ξ |2+|η|2

4

|z|3+s
dz

= p.v.
∫
R3

|ξ − η + z|γ
|z|3+s

e− |η|2
4

∫ 1

0
e− |ξ+t z|2

4 (−1)
(ξ + t z) · z

2
dtdz,

which implies that

|I2| �
∫
R3

∫ 1

0
|ξ − η + z|γ e− |η|2+|ξ+t z|2

5

|z|2+s
dtdz. (24)

Now we discuss the estimate for I2 into three cases, respectively.
Case 1: |ξ − η| < 1 and |ξ | > 10. Then we have |ξ | − 1 < |η| < |ξ | + 1, and

|I2| � e− |η|2
5 − |ξ |2

20

∫
|z|< |ξ |

2

|ξ − η + z|γ
|z|2+s

dz + e− |η|2
5

∫
|z|> |ξ |

2

|z|γ−2−sdz.

Since

∫
|z|< |ξ |

2

|ξ − η + z|γ
|z|2+s

dz

�
∫

|z|< |ξ−η|
2

|ξ − η|γ
|z|2+s

dz +
∫

|ξ−η|
2 <|z|< 3|ξ−η|

2

|ξ − η + z|γ
|ξ − η|2+s

dz +
∫

|z|> 3|ξ−η|
2

|z|γ−2−s dz

� |ξ − η|γ+1−s +
∫

|z+(ξ−η)|< 5|ξ−η|
2

|ξ − η + z|γ
|ξ − η|2+s

dz � |ξ − η|γ+1−s , (25)

and ∫
|z|> |ξ |

2

|z|γ−2−sdz � |ξ |γ−s+1 � |ξ − η|γ+1−s ,

we get

|I2| � |ξ − η|γ−s e− |η|2
5 − |ξ |2

20 .

Case 2: |ξ − η| > 1 and |ξ | > 10. Let z = w − ξ and thus

I2 = p.v.
∫
R3

e− |w|2+|η|2
4 − e− |ξ |2+|η|2

4

|w − η|−γ |w − ξ |3+s
dw
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= p.v.

(∫
|w−ξ |< |ξ |

2

+
∫

|w−ξ |> |ξ |
2

)
e− |w|2+|η|2

4 − e− |ξ |2+|η|2
4

|w − η|−γ |w − ξ |3+s
dw =: A1 + A2.

For A1, by the Newton–Leibniz formula, we have

|A1| ≤ e
−|η|2
4

∫
|w−ξ |< |ξ |

2

∫ 1

0

e− |ξ+t(w−ξ)|2
4 |ξ + t(w − ξ)|

|w − η|−γ |w − ξ |2+s
dtdw

� e
−|η|2
4 − |ξ |2

20

∫
|y|< |ξ |

2

1

|y + (ξ − η)|−γ |y|2+s
dy.

Similar to (25), it follows that

|A1| � e
−|η|2
4 − |ξ |2

20 |ξ − η|γ+1−s � |ξ − η|γ−s e
−|η|2
5 − |ξ |2

25 .

For A2,

|A2| ≤
∫

|w−ξ |> |ξ |
2

e− |w|2+|η|2
4 + e− |ξ |2+|η|2

4

|w − η|−γ |w − ξ |3+s
dw =: A21 + A22.

In view of [10], we have

|A21| � e− |η|2
4

|ξ |3+s

∫
|w−ξ |> |ξ |

2

e− |w|2
4

|w − η|−γ
dw � e− |η|2

4

|ξ |3+s
〈η〉γ � e− |η|2

4 〈ξ 〉−3−s .

Finally,

|A22| � e− |ξ |2+|η|2
4

∫
(
|w−ξ |> |ξ |

2

)
∧(|w−η|>1)

1

|w − η|−γ |w − ξ |3+s
dw

+ e− |ξ |2+|η|2
4

∫
(
|w−ξ |> |ξ |

2

)
∧(|w−η|<1)

1

|w − η|−γ |w − ξ |3+s
dw

� |ξ − η|γ−s 〈ξ 〉γ−3−s e− |ξ |2+|η|2
5 .

Thus we have

|I2| � |ξ − η|γ−s 〈ξ 〉γ−3−s e− |ξ |2+|η|2
5 + e− |η|2

4 〈ξ 〉−3−s .

Case 3: |ξ | ≤ 10. In view of (24), it follows

|I2| �
∫
R3

|ξ − η + z|γ
|z|2+s e− |η|2

5 dz.
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Similar to (25), we have

|I2| � |ξ − η|γ+1−s e− |η|2
5 � |ξ − η|γ−s 〈ξ 〉γ−3−s e− |η|2

6 .

The last inequality is due to the fact that |ξ | ≤ 10.
Gathering Case 1–Case 3, we conclude that

|I2| � |ξ − η|γ−s 〈ξ 〉γ−3−s e− |η|2
6 + 〈ξ 〉−3−s e− |η|2

4 .

Combining this with the estimate for I1, we obtain
∣∣∣(−�ξ

) s
2 k1(ξ, η)

∣∣∣ � |ξ − η|γ−s 〈ξ 〉γ−3−s e− |η|2
6 + 〈ξ 〉−3−s e− |η|2

4 .

��

2.4 The fractional derivative of k2

Proposition 13 Let −3 < γ ≤ −2 and 0 < s < 3 + γ . Then

∣∣∣(−�ξ

) s
2 k2(ξ, η)

∣∣∣ � |ξ − η|γ−s(1 + |ξ | + |η|)γ+1e− |ξ−η|2
C

+ (1 + |ξ − η|)−3−s (1 + |ξ | + |η|)γ−1

+ (1 + |η|)γ−1 (1 + |ξ | + |η|)−3−s , (26)

for some C > 0.

The estimate of
(−�ξ

) s
2 k2(ξ, η) plays a central role in our technical preparations

for fractional Mixture Estimate. Its proof is based on refined analysis simultaneously
respecting singularity and decay of the kernel function. However, as the calculations
are lengthy, to offer a panoramic view of the paper as soon as possible, we postpone
the proof of Proposition 13 until Sect. 5.

According to Propositions 12 and 13,we have the following results for the fractional
derivative of the operator K in Lebesgue spaces.

Proposition 14 Let −3 < γ ≤ −2 and 0 < s < 3 + γ . If k (ξ, η) = −k1 (ξ, η) +
k2 (ξ, η), then

∫
R3

∣∣∣(−�ξ

) s
2 k (ξ, η)

∣∣∣q dη � 〈ξ 〉q(γ+1) , (27)
∫
R3

∣∣∣(−�ξ

) s
2 k (ξ, η)

∣∣∣q dξ � 〈η〉q(γ+1) , (28)

provided that 1 ≤ q < 3
−γ+s .

Consequently, we have
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Corollary 15 Let −3 < γ ≤ −2 and 0 < s < 3 + γ . Then

| (−�ξ

) s
2 Kg|Lq

ξ
� |g|Lq

ξ
, 1 ≤ q ≤ ∞. (29)

3 Proof of themixture estimate

In this section, we will prove theorem 1: the Mixture Estimate in fractional sense.
As mentioned in the Introduction, the fractional derivative estimates of the kernel
k (ξ, η) e−ν(η)t should be taken into account firstly. We have the following two propo-
sitions:

Proposition 16 Let −3 < γ ≤ −2 and 0 < s < 3 + γ . If k (ξ, η) = −k1 (ξ, η) +
k2 (ξ, η), then ∫

R3

∣∣∣(−�η

) s
2
[
k (ξ, η) e−ν(η)t

]∣∣∣q dη � C, (30)

for some constant C > 0, provided that 1 < q < 3
−γ+s .

Proof To prove this, let us recall the Kato–Ponce inequality or the so called “fractional
Leibniz rule” ([2], Proposition 3.3): Let 1 < r , p1, p2, q1, q2 < ∞with 1

r = 1
p1

+ 1
q1

=
1
p2

+ 1
q2
. Given 0 < s < 1, we have

∣∣∣(−�)
s
2 ( f g)

∣∣∣
Lr

�
∣∣∣(−�)

s
2 f
∣∣∣
L p1

|g|Lq1 + | f |L p2

∣∣∣(−�)
s
2 g
∣∣∣
Lq2

.

Now using (17), (21), (28) associated with the Kato-Ponce inequality, we have

∣∣∣(−�η

) s
2
(
k(ξ, η)e−ν(η)t

)∣∣∣
Lq

η

�
∣∣∣(−�η

) s
2 e−ν(η)t

∣∣∣
L p̂

η

|k(ξ, η)|
Lq̂

η
+
∣∣∣e−ν(η)t

∣∣∣
L p̂

η

∣∣∣(−�η

) s
2 k(ξ, η)

∣∣∣
Lq̂

η

� C ,

where 1
q = 1

p̂ + 1
q̂ with 1 < q < q̂ < 3

−γ+s and s p̂ > 3. ��
Proposition 17 Let −3 < γ ≤ −2 and 0 < s < 3 + γ . If k (ξ, η) = −k1 (ξ, η) +
k2 (ξ, η), then

∣∣∣∣
∫
R3

(−�η

) s
2
[
k(ξ, η)e−ν(η)t

]
g(η)dη

∣∣∣∣
L2

ξ

� |g|L p
ξ
,

where 1
p = 1

2 (3 − 2
q ) and 1 < q < 3

−γ+s .
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Proof In view of (30), we have by Minkowski integral inequality

∣∣∣∣
∫
R3

(−�η

) s
2
[
k(ξ, η)e−ν(η)t

]
g(η)dη

∣∣∣∣
Lq

ξ

� |g|L1
ξ
, (31)

and by Hölder’s inequality

∣∣∣∣
∫
R3

(−�η

) s
2
[
k(ξ, η)e−ν(η)t

]
g(η)dη

∣∣∣∣
L∞

ξ

� |g|
Lq′

ξ

(32)

provided that 1/q+1/q ′ = 1 and 1 < q < 3
−γ+s . And then applying theRiesz–Thorin

Interpolation Theorem to (31) and (32) yields

∣∣∣∣
∫
R3

(−�η

) s
2
[
k(ξ, η)e−ν(η)t

]
g(η)dη

∣∣∣∣
L2

ξ

� |g|L p
ξ
,

where 1
p = 1

2 (3 − 2
q ). ��

In order to prove our main theorem, we consider the mixing operator KS
t
γ first.

Note that Proposition 17 will be used in the proof of the following lemma.

Lemma 18 Let −3 < γ ≤ −2, 0 < s < 3+ γ . If 1
p = 1

2 (3− 2
q ) with 1 < q < 3

−γ+s ,
we have

∥∥∥(−�x )
s
2 KS

t
γ h0

∥∥∥
L2

� t−s ‖h0‖L p
ξ L

2
x
+ t−s‖ (−�ξ

) s
2 h0‖L2 . (33)

Proof Let
h(t, x, ξ) = S

t h0 = h0(x − ξ t, ξ).

Taking the Fourier transform in both x and ξ variables, we have

ĥ(t, x̂, ξ̂ ) = ĥ0(x̂, ξ̂ + t x̂),

where x̂ and ξ̂ are the Fourier dual variables of x and ξ , respectively. Notice that

|x̂ |s ĥ(t, x̂, ξ̂ ) = t−s |ξ̂ |s ĥ(t, x̂, ξ̂ ) + t−s
(
|t x̂ |s − |ξ̂ |s

)
ĥ(t, x̂, ξ̂ ).

Then applying the inverse Fourier transform to both sides gives

(−�x )
s
2 h = t−s (−�ξ

) s
2 h + t−sF−1

{(
|t x̂ |s − |ξ̂ |s

)
ĥ(t, x̂, ξ̂ )

}
. (34)
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Hence,

∥∥∥(−�x )
s
2 KS

t
γ h0

∥∥∥
L2

≤ t−s
∥∥∥Ke−ν(ξ)t (−�ξ

) s
2 S

t h0
∥∥∥
L2

+ t−s
∥∥∥Ke−ν(ξ)tF−1

{(
|t x̂ |s − |ξ̂ |s

)
ĥ(t, x̂, ξ̂ )

}∥∥∥
L2

=: t−s (T1 + T2) .

In view of (18),

T2 ≤
∥∥∥F−1

{(
|t x̂ |s − |ξ̂ |s

)
ĥ(t, x̂, ξ̂ )

}∥∥∥
L2

≤
∥∥∥|t x̂ + ξ̂ |s ĥ0(x̂, t x̂ + ξ̂ )

∥∥∥
L2
x̂ L

2
ξ̂

≤
∥∥∥(−�ξ

) s
2 h0

∥∥∥
L2

.

For the estimate of T1, note that

Ke−ν(ξ)t (−�ξ

) s
2 h =

∫
R3

k(ξ, η)e−ν(η)t (−�η

) s
2 h(t, x, η)dη

=
∫
R3

(−�η

) s
2
[
k(ξ, η)e−ν(η)t

]
h(t, x, η)dη.

By Proposition 17, we have

|T1| ≤
∣∣∣∣
∫
R3

(−�η

) s
2
[
k(ξ, η)e−ν(η)t

]
|h(t, ·, η)|L2

x
dη

∣∣∣∣
L2

ξ

� ‖h‖L p
ξ L

2
x

� ‖h0‖L p
ξ L

2
x
.

This completes the proof of the lemma. ��
Proof of Theorem 1 Applying Lemma 18, (18) and (29), we have

∥∥∥(−�x )
s
2 KS

t
γ Kh0

∥∥∥
L2

� t−s ‖Kh0‖L p
ξ L

2
x
+ t−s‖ (−�ξ

) s
2 Kh0‖L2

� t−s
∥∥∥〈ξ 〉γ−2 h0

∥∥∥
L p

ξ L
2
x

+ t−s‖h0‖L2

� t−s ‖h0‖L2 + t−s‖h0‖L2 .

This completes the proof of Theorem 1. ��

4 Proof of theorem 3

In this section we go back to equation (2) and investigate the well-posedness and large
time behavior of theBoltzmann equation for the very soft potential case−3 < γ ≤ −2
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(Theorem 3). First, we study the large time behavior of the linearized Boltzmann
equation {

∂t g + ξ · ∇x g = Lg,
g(0, x, ξ) = g0(x, ξ),

(t, x, ξ) ∈ R
+ × R

3 × R
3. (35)

Then, we study the large time behavior of the linearized equation with extra source
term 	(h1, h2), where h1, h2 are prescribed with time decay (60). Finally, based on
the result of the inhomogeneous linearized equation, we design an iteration scheme for
solving equation (2) and thus establish the well-posedness and large time behavior of
the Boltzmann equation for the very soft potential case. In what follows, we elaborate
our proof.

4.1 Large time behavior of solution to the linearized equation

In this subsection we will prove the large time behavior of the solution to (35) in L2
x

and L∞
x with certain ξ -weight as below.

Proposition 19 Let −3 < γ ≤ −2, 0 < p ≤ 2, β > 3/2, α > 0 sufficiently small,
and let j > 0 be sufficiently large. Assume that g0 ∈ L∞

ξ,β+ j (e
α〈ξ〉p )(L∞

x ∩ L1
x ). Then

there are positive constants Ci and C̄i , i = 1, 2, such that the solution g to (35)
satisfies

‖g(t)‖L∞
ξ,β (eα〈ξ〉p )L2

x
≤ C1(1 + t)−

3
4 ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )(L1

x∩L∞
x ) , (36)

‖g(t)‖L∞
ξ,β (eα〈ξ〉p )L∞

x
≤ C2(1 + t)−

3
2 ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )(L1

x∩L∞
x ) . (37)

Moreover,

‖g(t)‖L∞
ξ,β+ j (e

α〈ξ〉p )L2
x

≤ C̄1 ‖g0‖L∞
ξ,β+ j (e

α〈ξ〉p )(L1
x∩L∞

x ) , (38)

‖g(t)‖L∞
ξ,β+ j (e

α〈ξ〉p )L∞
x

≤ C̄2 ‖g0‖L∞
ξ,β+ j (e

α〈ξ〉p )(L1
x∩L∞

x ) . (39)

The main idea is to obtain the L2
ξ L

2
x and L2

ξ L
∞
x estimates of the linearized equation

followed by the bootstrap argument. The L2
ξ L

2
x and L2

ξ L
∞
x estimates is based on the

longwave-shortwave andwave-remainder decomposition; and regularization estimate
plays a significant role in the course of the proof. Furthermore, to obtain the ξ -weighted
L2
x and L∞

x estimate, we apply finite steps of bootstrap argument with the aid of the
interpolation result of the integral operator K .

• Step 1. L2
ξ L

2
x and L2

ξ L
∞
x estimates of the linearized equation.

For −3 < γ ≤ −2, 0 < p ≤ 2, β > 3/2, α > 0 sufficiently small, we will show that
if g0 ∈ L∞

ξ,β(eα〈ξ〉p )(L∞
x ∩ L1

x ), then there are positive constants Ci , i = 1, 2, such
that the solution g to (35) satisfies

‖g(t)‖L2
ξ L

2
x

≤ C1(1 + t)−
3
4 ‖g0‖L∞

ξ,β (eα〈ξ〉p )(L1
x∩L∞

x ) , (40)
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‖g(t)‖L2
ξ L

∞
x

≤ C2(1 + t)−
3
2 ‖g0‖L∞

ξ,β (eα〈ξ〉p )(L1
x∩L∞

x ) . (41)

To this end, we first introduce the long wave-short wave decomposition. By the
Fourier transform, the solutionof the linearizedBoltzmannequation (35) canbewritten
as

G
t g0 = g(t, x, ξ) =

∫
R3

ei x̂ ·x+(−iξ ·x̂+L)t ĝ0(x̂, ξ)dx̂, (42)

where f̂ means the Fourier transform of f in the space variable x and G
t is the

solution operator (or Green’s function) of the linearized Boltzmann equation. We can
decompose the solution g into the long wave part gL and the short wave part gS given
respectively by

gL =
∫

|x̂ |<δ

ei x̂ ·x+(−iξ ·x̂+L)t ĝ0(x̂, ξ)dx̂,

gS =
∫

|x̂ |>δ

ei x̂ ·x+(−iξ ·x̂+L)t ĝ0(x̂, ξ)dx̂,

(43)

for δ > 0 small. Using similar arguments as those in the papers of Kawashima [14],
Strain [24] and Strain-Guo [25], we get time decay as follows:

‖gL‖L2
ξ L

∞
x

� (1 + t)−
3
2 ‖g0‖L2

ξ (eα〈ξ〉p )L1
x
, (44)

‖gL‖L2 � (1 + t)−
3
4 ‖g0‖L2

ξ (eα〈ξ〉p )L1
x
, (45)

‖gS‖L2 � e−cp,γ α
−γ
p−γ t

p
p−γ ‖g0‖L2(eα〈ξ〉p ) , (46)

if the initial data g0 ∈ L2
ξ (e

α〈ξ〉p )
(
L1
x ∩ L∞

x

)
, 0 < p ≤ 2 and α > 0 small; therefore,

(40) is obtained. All related estimates about the proof have been done in [25] and so
we skip the proof.

To obtain L2
ξ L

∞
x estimate for g, we further introduce the wave-remainder decom-

position; the strategy is to design a Picard-type iteration, treating Kg as a source term.
Specifically, we write

g = W (n) + R(n)

where

W (n) =
n∑
j=0

h( j), R(n) = g − W (n), (47)

are called the wave part and remainder part, respectively, which are defined as below:

h(0) = S
t
γ g0, h( j) =

∫ t

0
S
t−s
γ Kh( j−1)(s)ds , (48)

for 1 ≤ j ≤ n and

R(n) =
∫ t

0
G

t−s Kh(n)(s)ds, (49)
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where Gt is the Green’s function of the full linearized Boltzmann equation. Note that
h( j) can be represented in terms of the multiple-mixture operator M j , as

h( j) = M j h
(0), j ≥ 1.

Because of the argument in [18, Lemmas 8 and 11] being also valid in the case
−3 < γ ≤ 2, we readily get the L∞ and L2 estimates of h( j) and so does the wave
part W (n):

∥∥∥h( j)
∥∥∥
L∞

ξ

(〈ξ〉β )L∞
x

� t j e−c0α
−γ
p−γ t

p
p−γ ‖g0‖L∞

ξ

(
e( j+1)α〈ξ〉p 〈ξ〉β )L∞

x
, (50)

∥∥∥h( j)
∥∥∥
L2

� t j e−cα
−γ
p−γ t

p
p−γ ‖g0‖L2

(
e( j+1)α〈ξ〉p ) , (51)

for some constants c0, c > 0, where g0 ∈ L∞
ξ

(
e( j+1)α〈ξ〉p 〈ξ 〉β

)
(L∞

x ∩ L2
x ), 0 <

p ≤ 2, β > 3/2 and α > 0 is small with ( j + 1) α < α.
Next, we obtain the regularization estimate of h(2k), which is a consequence of

Corollary 2.

Lemma 20 (Regularization estimate on h(2k)) For −3 < γ ≤ −2, choose 0 < s <

3 + γ , k ∈ N such that sk = 2, then we have

‖h(2k)‖L2
ξ H

2
x

� (1 + t)k(2−s) ‖g0‖L2 .

Therefore, in view of (49), taking n = 2k, we find

‖R(n)‖L2
ξ H

2
x

≤
∫ t

0
‖h(2k) (τ ) ‖L2

ξ H
2
x
dτ � (1 + t)k(2−s)+1 ‖g0‖L2 . (52)

Combining above estimates, one can obtain (41) by following the same argument
presented in [18, Section 5.1].

• Step 2. Bootstrap
Subsequently, we will prove (37) and the others can be proved in a similar way. In

terms of the damped transport operator Stγ , g can be written as

g (t) = S
t
γ g0 +

∫ t

0
S
t−τ
γ Kg(τ )dτ. (53)

Let T > 0. For any 0 ≤ t ≤ T ,

eα〈ξ〉p |g(t)|L∞
x

≤ eα〈ξ〉p
∣∣∣Stγ g0

∣∣∣
L∞
x

+ eα〈ξ〉p
∫ t

0

∣∣∣St−τ
γ Kg(τ )

∣∣∣
L∞
x

dτ = I + I I .
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It is easy to see that

I ≤ sup
ξ

(
eα〈ξ〉p

∣∣∣Stγ g0
∣∣∣
L∞
x

)
≤
(
sup
ξ

e−ν(ξ)t 〈ξ 〉− j

)
‖g0‖L∞

ξ, j (e
α〈ξ〉p )L∞

x

� (1 + t)
j
γ ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )L∞

x
� (1 + t)−

3
2 ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )L∞

x
, (54)

since j is sufficiently large. For I I , let 1/q+1/q ′ = 1 and q in the region 1 < q < 3
−γ

(that is, q ′ > 3
3+γ

≥ 3), it follows from (19) and (20) that

eα〈ξ〉p e−(t−τ)ν(ξ) |Kg(τ )|L∞
x

≤ e−(t−τ)ν(ξ) 〈ξ 〉γ−1− 1
q

[
sup
|ξ |≤λ

(
eα〈ξ〉p 〈ξ 〉−γ+1+ 1

q |Kg(τ )|L∞
x

)

+ sup
|ξ |>λ

(
〈ξ 〉−1+ 1

q eα〈ξ〉p 〈ξ 〉2−γ |Kg(τ )|L∞
x

)]

� (1 + t − τ)
−γ+1+ 1

q
γ

(
eα〈λ〉p ‖Kg(τ )‖L∞

ξ,−γ+1+ 1
q
L∞
x

+(1 + λ)
−1+ 1

q

∥∥∥eα〈ξ〉p Kg(τ )

∥∥∥
L∞

ξ,2−γ L
∞
x

)

� (1 + t − τ)
−γ+1+ 1

q
γ

(
eα(1+λ)p ‖g(τ )‖

Lq′
ξ L∞

x

+(1 + λ)
−1+ 1

q ‖g(τ )‖L∞
ξ (eα〈ξ〉p )L∞

x

)
,

for any λ > 0. Here we restrict q such that
−γ+1+ 1

q
γ

≤ − 3
2 , that is,

1 < q < min

{
2

−γ − 2
,

3

−γ

}
.

However, ‖g(τ )‖
Lq′

ξ L∞
x
is unknown. We claim that

‖g (t)‖
Lq′

ξ L∞
x

� (1 + t)−
3
2 ‖g0‖L∞

ξ,β+ j (L
1
x∩L∞

x ) , (55)

for 0 ≤ t ≤ T . Suppose this is the case, we can deduce

I I

≤ Ceα〈λ〉p ‖g0‖L∞
ξ,β+ j (L

1
x∩L∞

x )

∫ t

0
(1 + t − τ)

−γ+1+ 1
q

γ (1 + τ)−
3
2 dτ
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+C (1 + λ)
−1+ 1

q sup
0≤s≤T

[
(1 + τ)

3
2 ‖g(τ )‖L∞

ξ (eα〈ξ〉p )L∞
x

]

·
∫ t

0
(1 + t − τ)

−γ+1+ 1
q

γ (1 + τ)−
3
2 dτ

≤ C ′eα〈λ〉p (1 + t)−
3
2 ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )(L1

x∩L∞
x )

+C ′ (1 + λ)
−1+ 1

q (1 + t)−
3
2 sup
0≤τ≤T

[
(1 + τ)

3
2 ‖g(τ )‖L∞

ξ (eα〈ξ〉p )L∞
x

]
. (56)

After selecting λ > 0 sufficiently large with C ′ (1 + λ)
−1+ 1

q < 1/2, we obtain

sup
0≤t≤T

[
(1 + t)

3
2 ‖g(t)‖L∞

ξ (eα〈ξ〉p )L∞
x

]
≤ C1 ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )(L1

x∩L∞
x ) ,

due to (54) and (56). It implies that

‖g(t)‖L∞
ξ (eα〈ξ〉p )L∞

x
≤ C1(1 + t)−

3
2 ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )(L1

x∩L∞
x ) (57)

for 0 ≤ t < ∞, since T > 0 is arbitrary.
Now, to obtain (55), we need some interpolation result of the integral operator

K . Applying the Riesz-Thorin interpolation theorem to the operator 〈ξ 〉1−γ+1/q K ,
1 < q < 3

−γ
, associated with (18) and (19), we have

‖Kh‖L p1
ξ,1−γ+1/q L

∞
x

� ‖h‖L2
ξ L

∞
x

where 1
p1

=
(
1
q − 1

2

)
/
(
1 − 1

q

)
= 1/ (2q) with 1

q ′ =
(
1 − 1

q

)
< 1

p1
< 1

q . Con-

tinuing in this way up to (m + 1) times for which 1/pm+1 < 1/q ′ < 1/pm where(
1
q − 1

p�

)
= 1

2−q

(
1
q − 1

p�−1

)
for 1 ≤ � ≤ m and p0 = 2, we find

‖Kh‖L p�
ξ,1−γ+1/q L

∞
x

� ‖h‖
L
p�−1
ξ L∞

x
.

Thus, in view of (53),

‖g (t)‖L p�
ξ L∞

x
≤
∥∥∥Stγ g0

∥∥∥
L
p�
ξ L∞

x

+
∫ t

0

∥∥∥St−z
γ Kg (z)

∥∥∥
L
p�
ξ L∞

x

dz

� (1 + t)
j
γ ‖g0‖L∞

ξ,β+ j L
∞
x

+
∫ t

0
(1 + t − z)

−γ+1+ 1
q

γ ‖Kg (z)‖L p�
ξ,1−γ+1/q L

∞
x
dz

� (1 + t)−
3
2 ‖g0‖L∞

ξ,β+ j (L
1
x∩L∞

x ) +
∫ t

0
(1 + t − z)−

3
2 ‖g (z)‖L p�−1

ξ L∞
x
dz,
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for 1 ≤ � ≤ m + 1. By the Bootstrap argument associated with (41), we have

‖g‖L pm+1
ξ L∞

x
� (1 + t)−

3
2 ‖g0‖L∞

ξ,β+ j (L
1
x∩L∞

x ) , ‖g‖L pm
ξ L∞

x

� (1 + t)−
3
2 ‖g0‖L∞

ξ,β+ j (L
1
x∩L∞

x ) .

Therefore,

‖g (t)‖
Lq′

ξ L∞
x

≤ ‖g‖λ

L
pm+1
ξ L∞

x
‖g‖1−λ

L pm
ξ L∞

x
� (1 + t)−

3
2 ‖g0‖L∞

ξ,β+ j (L
1
x∩L∞

x )

where 1
q ′ = θ

pm+1
+ 1−θ

pm
, for some 0 < θ < 1.

Finally, to complete the estimate of (37), applying the bootstrap argument again,
together with (20) and (57), we get

‖g(t)‖L∞
ξ,β (eα〈ξ〉p )L∞

x
≤ C1(1 + t)−

3
2 ‖g0‖L∞

ξ,β+ j (e
α〈ξ〉p )(L1

x∩L∞
x ) ,

as desired. The proof of Proposition 19 is completed.

4.2 Nonlinear estimate

We consider the following inhomogeneous Boltzmann equation

{
∂t g + ξ · ∇x g = Lg + 	(h1, h2),
g(0, x, ξ) = g0(x, ξ).

(58)

Let 0 < p ≤ 2, β > 3/2, α ≥ 0 sufficiently small, and j > 0 sufficiently large. We
assume that g0 satisfies

‖g0‖L∞
ξ

(〈ξ〉β+2 j eα〈ξ〉p )L1
x
+ ‖g0‖L∞

ξ

(〈ξ〉β+2 j eα〈ξ〉p )L∞
x

≤ b0, (59)

and hi (i = 1, 2) satisfies

sup
t

{
(1 + t)

3
4 ‖hi (t)‖L∞

ξ

(〈ξ〉βeα〈ξ〉p )L2
x
, (1 + t)

3
4 ‖hi (t)‖L∞

ξ

(〈ξ〉βeα〈ξ〉p )L∞
x

,

‖hi (t)‖L∞
ξ

(〈ξ〉β+2 j eα〈ξ〉p )L2
x
, ‖hi (t)‖L∞

ξ

(〈ξ〉β+2 j eα〈ξ〉p )L∞
x

}
≤ bi , (60)

for some b0, b1, b2 > 0. We can demonstrate that the solution g to (58) satisfies

Proposition 21 Assume that g0 satisfies (59) and that h1 and h2 satisfy (60). Then
there exists a number C > 0 such that the solution g to (58) satisfies

max
{
(1 + t)

3
4 ‖g(t)‖L∞

ξ

(〈ξ〉βeα〈ξ〉p )L2
x
, (1 + t)

3
4 ‖g(t)‖L∞

ξ

(〈ξ〉βeα〈ξ〉p )L∞
x

,

‖g(t)‖L∞
ξ

(〈ξ〉β+2 j eα〈ξ〉p )L2
x
, ‖g(t)‖L∞

ξ

(〈ξ〉β+2 j eα〈ξ〉p )L∞
x

}
≤ C(b0 + b1b2).
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The proof of Proposition 21 is similar to those in the soft potential cases (−2 < γ < 0)
and the reader is referred to [17] for more details.

Next, define a norm ||| · ||| as

|||h||| ≡ sup
t

{
(1 + t)

3
4 ‖h(t)‖L∞

ξ

(〈ξ〉βeα〈ξ〉p )L2
x
, (1 + t)

3
4 ‖h(t)‖L∞

ξ

(〈ξ〉βeα〈ξ〉p )L∞
x

,

‖h(t)‖L∞
ξ

(〈ξ〉β+2 j eα〈ξ〉p )L2
x
, ‖h(t)‖L∞

ξ

(〈ξ〉β+2 j eα〈ξ〉p )L∞
x

}
.

We consider the iteration
{
f (i)

}
for which f (0) (t, x, ξ) ≡ 0 and f (i+1), i ∈ N ∪ {0},

is a solution to the equation

{
∂t f

(i+1) + ξ · ∇x f
(i+1) = L f (i+1) + 	( f (i), f (i)),

f (i+1)(0, x, ξ) = η f0(x, ξ),
(61)

where η > 0 is sufficiently small. Denote

b0 := η
(
‖ f0‖L∞

ξ

(〈ξ〉β+2 j eα〈ξ〉p )L1
x
+ ‖ f0‖L∞

ξ

(〈ξ〉β+2 j eα〈ξ〉p )L∞
x

)
.

According to Proposition 21, we find that
{
f (i)

}
is a Cauchy sequence in the norm

||| · |||, and therefore it converges to the limit f satisfying

‖ f (t)‖L∞
ξ,β (eα〈ξ〉p )L2

x
≤ ηC1(1 + t)−

3
4 ‖ f0‖L∞

ξ,β+2 j (e
α〈ξ〉p )(L1

x∩L∞
x ) , (62)

‖ f (t)‖L∞
ξ,β (eα〈ξ〉p )L∞

x
≤ ηC2(1 + t)−

3
4 ‖ f0‖L∞

ξ,β+2 j (e
α〈ξ〉p )(L1

x∩L∞
x ) , (63)

‖ f (t)‖L∞
ξ,β+2 j (e

α〈ξ〉p )L2
x

≤ ηC̄1 ‖ f0‖L∞
ξ,β+2 j (e

α〈ξ〉p )(L1
x∩L∞

x ) , (64)

‖ f (t)‖L∞
ξ,β+2 j (e

α〈ξ〉p )L∞
x

≤ ηC̄2 ‖ f0‖L∞
ξ,β+2 j (e

α〈ξ〉p )(L1
x∩L∞

x ) . (65)

Finally, write f as

f = ηGt f0 +
∫ t

0
G

t−τ	( f , f )(τ )dτ,

we can use a bootstrap argument to improve the estimate (63) as

‖ f (t)‖L∞
ξ,β (eα〈ξ〉p )L∞

x
� η (1 + t)−

3
2 ‖ f0‖L∞

ξ,β+3 j (e
α〈ξ〉p )(L1

x∩L∞
x ) .

Therefore, the proof of Theorem 3 is completed.
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5 Proof of Proposition 13

By definition, the fractional derivative of k2 is given by

(−�ξ

) s
2 k2(ξ, η) = p.v.

∫
R3

k2(ξ + z, η) − k2(ξ, η)

|z|s+3 dz.

To proceed, we simplify the expression of k2(ξ + z, η). By the representation formula
in Lemma 6, up to a constant multiple,

k2(ξ, η)

= |ξ − η|−1
∫ ∞

0

∫ 2π

0
e− |ξ |2+|η|2

4 e− r2+r|(ξ+η)⊥| cosϕ

2
(|ξ − η|2 + r2

) γ−1
2 B∗

(
r

|ξ − η|
)
rdϕdr

= |ξ − η|γ e− |ξ |2+|η|2
4

∫ ∞

0

∫ 2π

0
e− |ξ−η|2ρ2+|ξ−η||(ξ+η)⊥|ρ cosϕ

2
(
1 + ρ2) γ−1

2 B∗(ρ)ρdϕdρ, (66)

where

B∗
(

r

|ξ − η|
)

=
B
(
tan−1

(
r

|ξ−η|
))

| cos
(
tan−1

(
r

|ξ−η|
))

|
+

B
(

π
2 − tan−1

(
r

|ξ−η|
))

| sin
(
tan−1

(
r

|ξ−η|
))

|
,

and

(ξ + η)⊥ = (ξ + η)− (ξ + η) · (ξ − η)

|ξ − η|2 (ξ − η) = ξ − η

|ξ − η| ∧
(

(ξ + η) ∧ ξ − η

|ξ − η|
)

,

with ∣∣(ξ + η)⊥
∣∣ = 2

√
|ξ |2|η|2 − (ξ · η)2

|ξ − η| = 2 |ξ ∧ η|
|ξ − η| .

Therefore,

(−�ξ

) s
2 k2(ξ, η)

= p.v.

(∫
Dc

k2(ξ + z, η) − k2(ξ, η)

|z|3+s
dz +

∫
D

k2(ξ + z, η) − k2(ξ, η)

|z|3+s
dz

)

= p.v.

(∫
Dc

+
∫
D

) |ξ + z − η|γ − |ξ − η|γ
|z|3+s

dz e− |ξ |2+|η|2
4

∫ ∞

0

∫ 2π

0
e− |ξ−η|2ρ2+2|ξ∧η|ρ cosϕ

2

(
1 + ρ2

) γ−1
2

B∗(ρ)ρdϕdρ

+ p.v.

(∫
Dc

+
∫
D

)
|ξ + z − η|γ e− |η|2

4

·
∫ ∞

0

∫ 2π

0

e− |ξ+z|2+2|ξ+z−η|2ρ2+4|(ξ+z)∧η|ρ cosϕ
4 − e− |ξ |2+2|ξ−η|2ρ2+4|ξ∧η|ρ cosϕ

4

|z|3+s
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(
1 + ρ2

) γ−1
2

B∗(ρ)ρdϕdρdz

=: (IDc,1 + ID,1
)+ (IDc,2 + ID,2

)
,

where D = {z : |z| ≤ � |ξ |} for some � > 0 or D = {z : |z| ≤ |ξ−η|
2 }. By previous

argument, it gives

∣∣IDc,1
∣∣ , ∣∣ID,1

∣∣ , ∣∣IDc,1 + ID,1
∣∣

� |ξ − η|γ−s e−
|ξ |2+|η|2

4

∫ ∞
0

∫ 2π

0
e−

|ξ−η|2ρ2+|ξ−η||(ξ+η)⊥|ρ cosϕ

2

(
1 + ρ2

) γ−1
2 B∗(ρ)ρdϕdρ

� |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C , (67)

for some positive constant C .
To estimate IDc,2 and ID,2, we need some preparations. By the Newton–Leibniz

formula,

e− |ξ+z|2+2|ξ+z−η|2ρ2+4|(ξ+z)∧η|ρ cosϕ
4 − e− |ξ |2+2|ξ−η|2ρ2+4|ξ∧η|ρ cosϕ

4

=
∫ 1

0
e− |ξ+t z|2+2|ξ+t z−η|2ρ2+4|(ξ+t z)∧η|ρ cosϕ

4

(
−1

4

)

·
[
2 (ξ + t z) · z + 4ρ2 (ξ + t z − η) · z + 4ρ cosϕ

(ξ + t z) ∧ η

|(ξ + t z) ∧ η| · (z ∧ η)

]
dt,

and thus the double integral can be written as

e− |η|2
4

∫ ∞

0

∫ 2π

0

e− |ξ+z|2+2|ξ+z−η|2ρ2+4|(ξ+z)∧η|ρ cosϕ
4 − e− |ξ |2+2|ξ−η|2ρ2+4|ξ∧η|ρ cosϕ

4

|z|3+s

(
1 + ρ2

) γ−1
2

B∗(ρ)ρdϕdρ

=
∫ 1

0

∫ ∞

0

∫ 2π

0
e− |η|2+|ξ+t z|2+2|ξ+t z−η|2ρ2+4|(ξ+t z)∧η|ρ cosϕ

4

·
[
− (ξ+t z)·z

2 − ρ2(ξ + t z − η) · z − ρ cosϕ
(ξ+t z)∧η
|(ξ+t z)∧η| · (z ∧ η)

]
|z|3+s

(
1 + ρ2

) γ−1
2

B∗(ρ)ρdϕdρdt,

whose magnitude is bounded by

∫ 1

0

∫ ∞

0

∫ 2π

0
e− |η|2+|ξ+t z|2+2|ξ+t z−η|2ρ2+4|(ξ+t z)∧η|ρ cosϕ

C
1 + ρ + ρ|η|

|z|2+s

(
1 + ρ2

) γ−1
2

B∗(ρ)ρdϕdρdt
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�
∫ 1

0

∫
w⊥(ξ+t z−η)

e− |ξ+t z+w|2+|η+w|2
C

1 + |w|
|ξ+t z−η| + |w||η|

|ξ+t z−η|
|z|2+s

(
|ξ + t z − η|2 + |w|2

) γ−1
2 |ξ + t z − η|−γ−1 d2wdt .

Now, we consider the integral

∫
w⊥(ξ+t z−η)

e− |ξ+t z+w|2+|η+w|2
C

1 + |w|
|ξ+t z−η| + |w||η|

|ξ+t z−η|
|z|2+s

(|ξ + t z − η|2 + |w|2) γ−1
2 d2w.

For simplicity, we replace ξ + t z by ξ in the above integral, namely,

∫
w⊥(ξ−η)

e−
|ξ+w|2+|η+w|2

4C

(
1 + |w|

|ξ − η| + |w||η|
|ξ − η|

)(
|ξ − η|2 + |w|2

) γ−1
2 d2w. (68)

As w is perpendicular to ξ − η, we have the identity

|ξ + w|2 + |η + w|2 = |ξ |2 + |η|2 − |(ξ + η)⊥|2
2

+ 2

∣∣∣∣w + (ξ + η)⊥
2

∣∣∣∣
2

= 1

2
|ξ − η|2 + 2

∣∣∣∣ (ξ + η)‖
2

∣∣∣∣
2

+ 2

∣∣∣∣w + (ξ + η)⊥
2

∣∣∣∣
2

,

where (ξ + η)‖ is the orthogonal projection of ξ + η onto the vector ξ − η and

(ξ + η)⊥ = (ξ − η) − (ξ + η)‖. Denote ζ = ξ+η
2 and then (68) becomes

∫
w⊥(ξ−η)

e− |ξ+w|2+|η+w|2
4C

(
1 + |w|

|ξ − η| + |w||η|
|ξ − η|

)(
|ξ − η|2 + |w|2

) γ−1
2

d2w

= e− 1
8C |ξ−η|2− 1

2C |ζ‖|2
∫

w⊥(ξ−η)

e− 1
2C |w+ζ⊥|2

(
1 + |w|

|ξ − η| + |w||η|
|ξ − η|

)

(
|ξ − η|2 + |w|2

) γ−1
2

d2w

= |ξ − η|−1e− 1
8C |ξ−η|2− 1

2C |ζ‖|2

·
∫

w⊥(ξ−η)

e− 1
2C |w|2 (|ξ − η| + |w − ζ⊥| + |w − ζ⊥||η|)

(
|ξ − η|2 + |w − ζ⊥|2

) γ−1
2

d2w.

Next, we split this integral into two regions: {|w| ≤ |ζ⊥|/2} and {|w| > |ζ⊥|/2}. On
the first region,

123



Mixture estimate in fractional sense and its application... 2091

∫
|w|≤|ζ⊥|/2

e− 1
2C |w|2 (|ξ − η| + |w − ζ⊥| + |w − ζ⊥||η|) (|ξ − η|2 + |w − ζ⊥|2) γ−1

2 d2w

≤ (|ξ − η| + |ζ⊥| + |ζ⊥||η|) (|ξ − η| + |ζ⊥|)γ−1 min
(
1, |ζ⊥|2) .

On the second region,

∫
|w|>|ζ⊥|/2

e− 1
2C |w|2 (|ξ − η| + |w − ζ⊥| + |w − ζ⊥||η|)

(
|ξ − η|2 + |w − ζ⊥|2

) γ−1
2

d2w

�
∫

|ζ⊥|
2 <|w|< 3|ζ⊥|

2

e− 1
8C |ζ⊥|2 (|ξ − η| + |w − ζ⊥| + |w − ζ⊥||η|)

(
|ξ − η|2 + |w − ζ⊥|2

) γ−1
2

d2w

+
∫

|w|≥ 3|ζ⊥|
2

e− 1
2C |w|2 (|ξ − η| + |w| + |w||η|)

(
|ξ − η|2 + |w|2

) γ−1
2

d2w

=: T1 + T2.

For T2, it is easy to see that for −3 < γ < −2,

T2 �
∫

|w|≥ 3|ζ⊥|
2

e− 1
2C |w|2 (1 + |η|)

(
|ξ − η|2 + |w|2

) γ
2
d2w

� (1 + |η|)
∫ ∞

3|ζ⊥|
2

ye− 1
2C y2

(
|ξ − η|2 + |y|2

) γ
2
dy

� e− 9
8C |ζ⊥|2 (1 + |η|) |ξ − η|γ+2,

and for γ = −2,

T2 �
∫

|w|≥ 3|ζ⊥|
2

e− 1
2C |w|2 (1 + |η|)

(
|ξ − η|2 + |w|2

) γ
2
d2w

� (1 + |η|)
(∫ |ξ−η|+2|ζ⊥|

3|ζ⊥|
2

+
∫ ∞

|ξ−η|+2|ζ⊥|

)
ye− 1

2C y2
(
|ξ − η|2 + |y|2

) γ
2
dy

� e− 9
8C |ζ⊥|2 (1 + |η|) ln

⎡
⎢⎣ |ξ − η|2 + (|ξ − η| + 2|ζ⊥|)2

|ξ − η|2 +
(
3|ζ⊥|
2

)2
⎤
⎥⎦

+ (1 + |η|) 1

|ξ − η|2 + (|ξ − η| + 2|ζ⊥|)2 e
− 1

2C (|ξ−η|+2|ζ⊥|)2

� e− 1
8C |ζ⊥|2 (1 + |η|) .

As for T1, we further split the region of integration into

D1 =
{
w

∣∣∣|ζ⊥|/2 < |w| < 3|ζ⊥|/2, |w − ζ⊥| > |ζ⊥|/2
}

and
D2 =

{
w

∣∣∣|ζ⊥|/2 < |w| < 3|ζ⊥|/2, |w − ζ⊥| < |ζ⊥|/2
}

,
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and then compute

T1 �
(∫

D1

+
∫
D2

)
e− 1

8C |ζ⊥|2 (|ξ − η| + |w − ζ⊥| + |w − ζ⊥||η|)
(
|ξ − η|2 + |w − ζ⊥|2

) γ−1
2

d2w

� e− 1
8C |ζ⊥|2 (|ξ − η| + |ζ⊥| + |ζ⊥||η|)

(
|ξ − η|2 + |ζ⊥|2

) γ−1
2 |ζ⊥|2

+ e− 1
8C |ζ⊥|2

∫ |ζ⊥|
2

0
(|ξ − η| + r + r |η|)

(
|ξ − η|2 + r2

) γ−1
2

rdr

� e− 1
8C |ζ⊥|2 (1 + |η|) |ξ − η|γ+2

+ e− 1
8C |ζ⊥|2 (1 + |η|) ·

{
ln
(
1 + |ζ⊥|

2|ξ−η|
)

, for γ = −2,

|ξ − η|γ+2, for − 2 < γ < −3.

Combining the above estimates, (68) satisfies

∫
w⊥(ξ−η)

e− |ξ+w|2+|η+w|2
4C

(
1 + |w|

|ξ − η| + |w||η|
|ξ − η|

)(
|ξ − η|2 + |w|2

) γ−1
2

d2w

� |ξ − η|−1e− 1
8C |ξ−η|2− 1

2C |ζ‖|2 ·
[
e− 1

8C |ζ⊥|2 (1 + |η|) |ξ − η|γ+2

+(|ξ − η| + |ζ⊥| + |ζ⊥||η|) (|ξ − η| + |ζ⊥|)γ−1 min
(
1, |ζ⊥|2

)]
, (69)

if −3 < γ < −2, and

∫
w⊥(ξ−η)

e− |ξ+w|2+|η+w|2
4C

(
1 + |w|

|ξ − η| + |w||η|
|ξ − η|

)(
|ξ − η|2 + |w|2

) γ−1
2

d2w

� |ξ − η|−1e− 1
8C |ξ−η|2− 1

2C |ζ‖|2 ·
[
e− 1

8C |ζ⊥|2 (1 + |η|)
(
1 + ln

(
1 + |ζ⊥|

2 |ξ − η|
))

+(|ξ − η| + |ζ⊥| + |ζ⊥||η|) (|ξ − η| + |ζ⊥|)γ−1 min
(
1, |ζ⊥|2

)]
, (70)

if γ = −2.
To complete the estimate for IDc,2 and ID,2, we consider the following four cases:

(i) |ξ − η| < 1 and |ξ | < 10: singularity;
(ii) |ξ − η| < 1 and |ξ | > 10: ξ -decay;
(iii) |ξ − η| > 1 and |ξ − η| >

|ξ |
2 ;

(iv) |ξ − η| > 1 and |ξ − η| <
|ξ |
2 .

We will estimate each case one by one for −3 < γ < −2. For simplicity of
notation, we denote
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Aγ (ξ, η, z, t, ζ⊥) = e− 1
8C |ζ⊥|2 (1 + |η|) |ξ + t z − η|γ+2

+ (|ξ + t z − η| + |ζ⊥| + |ζ⊥||η|)
(|ξ + t z − η| + |ζ⊥|)γ−1 min

(
1, |ζ⊥|2

)
.

• Case (i): |ξ − η| < 1 and |ξ | < 10. In this case, |η| < 1 + |ξ | < 11. Notice that
when |ζ⊥| < |ξ + t z − η|, we have

(|ξ + t z − η| + |ζ⊥| + |ζ⊥||η|) (|ξ + t z − η| + |ζ⊥|)γ−1 min
(
1, |ζ⊥|2

)

� |ξ + t z − η|γ+2(1 + |η|);

and when |ζ⊥| ≥ |ξ + t z − η|, we have
(|ξ + t z − η| + |ζ⊥| + |ζ⊥||η|) (|ξ + t z − η| + |ζ⊥|)γ−1 min

(
1, |ζ⊥|2

)

� |ζ⊥|γ+2(1 + |η|) � |ξ + t z − η|γ+2(1 + |η|).

Therefore, in view of (69), we obtain

|IDc,2 + ID,2|

�
∫
R3

|ξ + z − η|γ dz
∫ 1

0

|ξ + t z − η|−γ−2

|z|2+s
e− 1

8C |ξ−η|2− 1
2C |ζ‖|2Aγ (ξ, η, z, t, ζ⊥)dt

�
∫
R3

|ξ + z − η|γ
|z|2+s

dz

�
∫
|z|< |ξ−η|

2

|ξ − η|γ |z|−2−sdz +
∫

|ξ−η|
2 <|z|< 3|ξ−η|

2

|ξ − η|−2−s |ξ + z − η|γ dz

+
∫
|z|> 3|ξ−η|

2

|z|γ−s−2dz

� |ξ − η|γ+1−s

� |ξ − η|γ+1−s e
− |ξ |2+|η|2

C1 ,

for some C1 > 0 large enough. Combining this with (67), we complete the estimate

of
(−�ξ

) s
2 k2(ξ, η) in this case; that is,

∣∣∣(−�ξ

) s
2 k2(ξ, η)

∣∣∣ � |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C

+ |ξ − η|γ+1−s e
− |ξ |2+|η|2

C1

� |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C

+ |ξ − η|γ−s e
− |ξ |2+|η|2

C1 .
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• Case (ii) |ξ − η| < 1 and |ξ | > 10. In this case, |ξ | − 1 < |η| < 1 + |ξ |, and we
choose D = {z : |z| ≤ |ξ | /4}. Then in view of (16),

∣∣IDc,1 + IDc,2
∣∣

≤
∫

|z|> |ξ |
4

k2(ξ + z, η) + k2(ξ, η)

|z|3+s
dz

�
∫

|z|> |ξ |
4

|ξ + z − η|γ (1 + |ξ + z| + |η|)γ−1|z|−3−sdz

+ |ξ − η|γ (1 + |ξ | + |η|)γ−1
∫

|z|> |ξ |
4

|z|−3−sdz

� (1 + |ξ | + |η|)2γ−s−1 + |ξ − η|γ (1 + |ξ | + |η|)γ−1−s

� |ξ − η|γ (1 + |ξ | + |η|)γ−1−s . (71)

Next, we split ID,2 into three regions as

∣∣ID,2
∣∣

�
(∫

|z|< |ξ−η|
2

+
∫

|ξ−η|
2 <|z|< 3|ξ−η|

2

+
∫

3|ξ−η|
2 <|z|≤ |ξ |

4

)
|ξ + z − η|γ

|z|2+s

·
∫ 1

0
|ξ + t z − η|−γ−2 e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2Aγ (ξ, η, z, t, ζ⊥)dtdz

=: ID,21 + ID,22 + ID,23.

Noticing that when |ξ | > 10 and |ξ − η| < 1, together with |z| ≤ |ξ |
4 and 0 ≤ t ≤ 1,

we have

|ξ + t z + η| = |2ξ + t z + η − ξ | ≥ 2|ξ | − |z| − |ξ − η| ≥ 33

20
|ξ | ≥ 1√

2
(|ξ | + |η|) ,

and thus

|ζ‖|2 + |ζ⊥|2 = |ζ |2 = |ξ + t z + η|2
4

≥ (|η| + |ξ |)2
8

.

It implies that either |ζ‖| or |ζ⊥|must be greater than or equal to |ξ |+|η|
4 in this situation.

Thus, we have

∣∣ID,21
∣∣ �

∫
|z|< |ξ−η|

2

∫ 1

0

|ξ − η|γ
|z|2+s (1 + |η|) e− 1

8C |ζ |2dtdz

+
∫
|z|< |ξ−η|

2

∫ 1

0

|ξ − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2

· (|ξ + t z − η| + |ζ⊥| + |ζ⊥||η|) (|ξ + t z − η| + |ζ⊥|)γ−1 min
(
1, |ζ⊥|2

)
dtdz

=: I ′
D,21 + I ′′

D,21,
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and it immediately follows that

∣∣I ′
D,21

∣∣ � |ξ − η|γ+1−s e
− |ξ |2+|η|2

C1 .

As for I ′′
D,21, we refine the region of integration in the zt-space and consider two

subregions: the region (a) satisfying |ζ⊥| < 1
3 |ξ + t z−η| and the region (b) satisfying

|ζ⊥| > 1
3 |ξ + t z − η|. Hence, we denote

I ′′
D,21 :=

∫
(a)

+
∫

(b)
.

On the region (a), since

1

8C
|ξ + t z − η|2 + 1

2C

∣∣ζ‖
∣∣2 ≥ 1

2C

(
|ζ⊥|2 + |ζ‖|2

)
≥ |η|2 + |ξ |2

16C
,

we have

∫
(a)

�
∫

|z|< |ξ−η|
2

|ξ − η|γ
|z|2+s (1 + |η|) e− |ξ |2+|η|2

16C dz � |ξ − η|γ+1−s e
− |ξ |2+|η|2

C1 .

On the region (b), we find

∫
(b)

�
(∫

(b)∧
(
|ζ‖|> |ξ |+|η|

4

) +
∫

(b)∧
(
|ζ⊥|> |ξ |+|η|

4

)
)

|ξ − η|−2

|z|2+s
e− 1

2C |ζ‖|2

(|ξ + t z − η| + |ζ⊥| + |ζ⊥||η|)
· (|ξ + t z − η| + |ζ⊥|)γ−1 min

(
1, |ζ⊥|2

)
dtdz

�
∫

|z|< |ξ−η|
2

|ξ − η|−2

|z|2+s
e− |ξ |2+|η|2

32C |ξ − η|γ+2 (1 + |η|) dz

+
∫

|z|< |ξ−η|
2

|ξ − η|−2

|z|2+s (1 + |ξ | + |η|)γ+1 dz

� |ξ − η|γ+1−s e
− |ξ |2+|η|2

C1 + |ξ − η|−1−s (1 + |ξ | + |η|)γ+1.

Therefore, we have

∣∣ID,21
∣∣ � |ξ − η|γ+1−s e

− |ξ |2+|η|2
C1 + |ξ − η|−1−s (1 + |ξ | + |η|)γ+1.
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Following similar arguments as those for ID,21, we deduce

∣∣ID,22
∣∣

�
∫

|ξ−η|
2 <|z|< 3|ξ−η|

2

|ξ + z − η|γ
|z|2+s

∫ 1

0
|ξ + t z − η|−γ−2 e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2

Aγ (ξ, η, z, t, ζ⊥)dtdz

�
∫

|ξ−η|
2 <|z|< 3|ξ−η|

2

|ξ + z − η|γ
|z|2+s

∫ 1

0
e− |ζ |2

8C (1 + |η|) dtdz

+
∫ ∫

( |ξ−η|
2 <|z|< 3|ξ−η|

2 , 0≤t≤1
)
∧
(
|ζ⊥|< 1

3 |ξ+t z−η|
)

|ξ + z − η|γ
|z|2+s

e− |ζ |2
2C (1 + |η|) dtdz

+
∫ ∫

( |ξ−η|
2 <|z|< 3|ξ−η|

2 , 0≤t≤1
)
∧
(
|ζ⊥|> 1

3 |ξ+t z−η|
)
∧
(
|ζ‖|> |ξ |+|η|

4

)

|ξ + z − η|γ
|z|2+s

e− |ξ |2+|η|2
32C (1 + |η|) dtdz

+
∫ ∫

( |ξ−η|
2 <|z|< 3|ξ−η|

2 , 0≤t≤1
)
∧
(
|ζ⊥|> 1

3 |ξ+t z−η|
)
∧
(
|ζ⊥|> |ξ |+|η|

4

)

|ξ + z − η|γ
|z|2+s

|ξ + t z − η|−γ−2|ζ⊥|γ (1 + |η|)dtdz

� |ξ − η|γ+1−se
− |ξ |2+|η|2

C1 + |ξ − η|−1−s(1 + |ξ | + |η|)γ+1,

and

∣∣ID,23
∣∣ �

∫
3|ξ−η|

2 ≤|z|≤ |ξ |
4

|z|γ−2−s
∫ 1

0
e− |ζ |2

8C (1 + |η|)dtdz

+
∫ ∫

(
3|ξ−η|

2 ≤|z|≤ |ξ |
4 , 0≤t≤1

)
∧
(
|ζ⊥|< 1

3 |ξ+t z−η|
)|z|γ−2−se− |ζ |2

2C (1 + |η|) dtdz

+
∫ ∫

(
3|ξ−η|

2 ≤|z|≤ |ξ |
4 , 0≤t≤1

)
∧
(
|ζ⊥|> 1

3 |ξ+t z−η|
)
∧
(
|ζ‖|> |ξ |+|η|

4

)

|z|γ−2−se− |ξ |2+|η|2
32C (1 + |η|)dtdz

+
∫ ∫

(
3|ξ−η|

2 ≤|z|≤ |ξ |
4 , 0≤t≤1

)
∧
(
|ζ⊥|> 1

3 |ξ+t z−η|
)
∧
(
|ζ⊥|> |ξ |+|η|

4

)

|z|γ−2−s |ζ⊥|γ (1 + |η|)dtdz
� |ξ − η|γ+1−se

− |ξ |2+|η|2
C1 + |ξ − η|γ+1−s(1 + |ξ | + |η|)γ+1.
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Combining the above estimates, we have

∣∣ID,2
∣∣ � |ξ − η|γ+1−se

− |ξ |2+|η|2
C1 + |ξ − η|γ+1−s(1 + |ξ | + |η|)γ+1

+|ξ − η|γ (1 + |ξ | + |η|)γ−1−s

� |ξ − η|γ+1−se
− |ξ |2+|η|2

C1 + |ξ − η|γ−s(1 + |ξ | + |η|)γ+1e
− |ξ−η|2

C1 .

Together with (67) and (71), we obtain

∣∣∣(−�ξ

) s
2 k2(ξ, η)

∣∣∣ = ∣∣ID,1 + IDc,1 + ID,2 + IDc,2
∣∣

≤ ∣∣ID,1
∣∣+ ∣∣IDc,1 + IDc,2

∣∣+ ∣∣ID,2
∣∣

� |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C

+|ξ − η|γ−se
− |ξ |2+|η|2

C1

+|ξ − η|γ−s(1 + |ξ | + |η|)γ+1e
− |ξ−η|2

C1 .

• Case (iii) |ξ − η| > 1 and |ξ − η| >
|ξ |
2 . In this case,

|ξ | < 2|ξ − η| and |η| ≤ |ξ − η| + |ξ | < 3|ξ − η|,

so that

|ξ − η| ≥ 1

6
(1 + |ξ | + |η|) .

Here we choose D = {z : |z| ≤ |ξ−η|
2 }. In view of (16),

∣∣(IDc,1 + IDc,2
)∣∣

=
∣∣∣∣∣
∫

|z|> |ξ−η|
2

k2(ξ + z, η) − k2(ξ, η)

|z|3+s
dz

∣∣∣∣∣
≤
∫

|z|> |ξ−η|
2

k2(ξ + z, η) + k2(ξ, η)

|z|3+s
dz

�
∫

|z|> |ξ−η|
2

e− |ξ+z−η|2
C |ξ + z − η|γ (1 + |ξ + z| + |η|)γ−1|z|−3−sdz

+ e− |ξ−η|2
C |ξ − η|γ (1 + |ξ | + |η|)γ−1

∫
|z|> |ξ−η|

2

|z|−3−sdz

� (1 + |η|)γ−1 (1 + |ξ | + |η|)−3−s + e
− |ξ |2+|η|2

C1 |ξ − η|γ (1 + |ξ | + |η|)γ−1−s .

(72)
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On the other hand, if |z| ≤ |ξ−η|
2 , then

|ξ + t z + η| ≥ 1

2
|ξ − η| ≥ 1

10
(|ξ | + |η|) ,

so that ∣∣ζ‖
∣∣2 + |ζ⊥|2 = |ζ |2 = |ξ + t z + η|2

4
≥ |ξ |2 + |η|2

400
.

Hence, we get

∣∣ID,2
∣∣

�
∫

|z|≤ |ξ−η|
2

|ξ + z − η|γ
|z|2+s

∫ 1

0
|ξ + t z − η|−γ−2 e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2

Aγ (ξ, η, z, t, ζ⊥)dtdz

�
∫

|z|≤ |ξ−η|
2

|ξ − η|γ
|z|2+s (1 + |η|) e− |ζ |2

8C dz +
∫

|z|≤ |ξ−η|
2

|ξ − η|γ
|z|2+s

e− |ξ−η|2
32C (1 + |η|) dz

� |ξ − η|γ+1−se
− |ξ |2+|η|2

C1 .

Together with (67) and (72), we complete the estimate for
(−�ξ

) s
2 k2(ξ, η) with

∣∣∣(−�ξ

) s
2 k2(ξ, η)

∣∣∣ � |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C

+ (1 + |η|)γ−1 (1 + |ξ | + |η|)−3−s

+e
− |ξ |2+|η|2

C1 |ξ − η|γ (1 + |ξ | + |η|)γ−1−s

+|ξ − η|γ+1−se
− |ξ |2+|η|2

C1

� |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C

+ (1 + |η|)γ−1 (1 + |ξ | + |η|)−3−s

+|ξ − η|γ−se
− |ξ |2+|η|2

C ′
1 .

• Case (iv) |ξ − η| > 1 and |ξ − η| <
|ξ |
2 . In this case, we have 1 <

|ξ |
2 < |η| < 3

2 |ξ |,
and 3|ξ−η|

2 <
3|ξ |
4 . Now select D = {z : |z| ≤ 1

2 |ξ − η|}. In view of (16),

∣∣IDc,1 + IDc,2
∣∣ ≤

∫
|z|> |ξ−η|

2

k2(ξ + z, η) + k2(ξ, η)

|z|3+s
dz

�
∫

|z|> |ξ−η|
2

e− |ξ+z−η|2
C |ξ + z − η|γ (1 + |ξ + z| + |η|)γ−1|z|−3−sdz

+e− |ξ−η|2
C |ξ − η|γ (1 + |ξ | + |η|)γ−1

∫
|z|> |ξ−η|

2

|z|−3−sdz
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� |ξ − η|−3−s (1 + |η|)γ−1 + e− |ξ−η|2
C

|ξ − η|γ (1 + |ξ | + |η|)γ−1 |ξ − η|−s

� (1 + |ξ − η|)−3−s (1 + |ξ | + |η|)γ−1

+e− |ξ−η|2
C |ξ − η|γ−s(1 + |ξ | + |η|)γ−1.

For ID,2, we have

∣∣ID,2
∣∣

≤
∫

|z|< |ξ−η|
2

|ξ + z − η|γ
|z|2+s

∫ 1

0
|ξ + t z − η|−γ−2 e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2

Aγ (ξ, η, z, t, ζ⊥)dtdz

≤
∫

|z|< |ξ−η|
2

|ξ + z − η|γ
|z|2+s

∫ 1

0
(1 + |η|) e− |ξ+t z−η|2+|ζ |2

8C dtdz

+
∫

|z|< |ξ−η|
2

∫ 1

0

|ξ + z − η|γ
|z|2+s

|ξ + t z − η|−γ−2 e− 1
8C |ξ+t z−η|2− 1

2C |ζ‖|2

·(|ξ + t z − η| + |ζ⊥| + |ζ⊥||η|) (|ξ + t z − η| + |ζ⊥|)γ−1 min
(
1, |ζ⊥|2

)
dtdz

=: A1 + A2.

As |z| ≤ |ξ−η|
2 <

|ξ |
4 , 0 ≤ t ≤ 1, it gives

|ξ + t z − η|2 + 4|ζ |2 = |ξ + t z − η|2 + |ξ + t z + η|2
= 2 |ξ + t z|2 + 2 |η|2 ≥ |ξ |2 + 2 |η|2 .

Hence,

A1 � |ξ − η|γ+1−se− |ξ |2+|η|2
32C � e− |ξ |2+|η|2

32C .

Moreover, as |z| ≤ |ξ−η|
2 <

|ξ |
4 , 0 ≤ t ≤ 1, we have

2
√

|ζ‖|2 + |ζ⊥|2 = 2|ζ | = |ξ + t z + η| ≥ 2 |ξ | − |z| − |ξ − η| ≥ 5

4
|ξ | ,

which leads to that either |ζ‖| or |ζ⊥| must be greater than or equal to 5
√
2

16 |ξ | when
|z| ≤ |ξ−η|

2 <
|ξ |
4 , 0 ≤ t ≤ 1. Therefore,

A2 �
∫

|z|< |ξ−η|
2

∫ 1

0

|ξ − η|γ
|z|2+s

|ξ − η|−γ−2e− 1
32C |ξ−η|2− 1

2C |ζ‖|2

· (|ξ − η| + |ζ⊥|(1 + |η|)) (|ξ − η| + |ζ⊥|)γ−1 min
(
1, |ζ⊥|2) dtdz

�
∫∫

(
|z|< |ξ−η|

2 ,0≤t≤1
)
∧(|ζ⊥|<|ξ−η|)

|ξ − η|γ
|z|2+s

e− |ζ |2
32C (1 + |η|) dtdz

123



2100 Yu-Chu Lin et al.

+
∫∫

(
|z|< |ξ−η|

2 ,0≤t≤1
)
∧(|ζ⊥|>|ξ−η|)∧

(
|ζ‖|> 5

√
2

16 |ξ |
) |ξ − η|γ

|z|2+s
e− 25|ξ |2

256C (1 + |η|) dtdz

+
∫∫

(
|z|< |ξ−η|

2 ,0≤t≤1
)
∧(|ζ⊥|>|ξ−η|)∧

(
|ζ⊥|> 5

√
2

16 |ξ |
) |ξ − η|−2

|z|2+s
e− |ξ−η|2

32C (1 + |ξ | + |η|)γ+1 dtdz

� |ξ − η|γ−se
− |ξ |2+|η|2

C1 + |ξ − η|−1−s (1 + |ξ | + |η|)γ+1 e
− |ξ−η|2

C1 .

Combining the above estimates with (67), we conclude that for |ξ − η| > 1 and
|ξ − η| <

|ξ |
2 ,

∣∣∣(−�ξ

) s
2 k2(ξ, η)

∣∣∣

� |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C

+ (1 + |ξ − η|)−3−s (1 + |ξ | + |η|)γ−1 + e− |ξ−η|2
C |ξ − η|γ−s(1 + |ξ | + |η|)γ−1

+ |ξ − η|γ−se
− |ξ |2+|η|2

C1 + |ξ − η|−1−s (1 + |ξ | + |η|)γ+1 e
− |ξ−η|2

C1

� |ξ − η|γ−s (1 + |ξ | + |η|)γ−1 e−
|ξ−η|2+ (|ξ |2−|η|2)2

|ξ−η|2
C + (1 + |ξ − η|)−3−s (1 + |ξ | + |η|)γ−1

+ |ξ − η|γ−s(1 + |ξ | + |η|)γ+1e− |ξ−η|2
C ′ .

In summary,

∣∣∣(−�ξ

) s
2 k2(ξ, η)

∣∣∣ � |ξ − η|γ−s(1 + |ξ | + |η|)γ+1e− |ξ−η|2
C

+ (1 + |ξ − η|)−3−s (1 + |ξ | + |η|)γ−1

+ (1 + |η|)γ−1 (1 + |ξ | + |η|)−3−s ,

for C > 0 whenever −3 < γ ≤ −2.
Last, we deal with the estimate of I2,D and I2,Dc for the case γ = −2. In view of

(69) and (70), it remains to deal with the integral

∫
R3

∫ 1

0

|z + ξ − η|−2

|z|2+s e− 1
8C |ξ+t z−η|2− 1

2C |ζ‖|2− 1
8C |ζ⊥|2 (1 + |η|) ln

(
1 + |ζ⊥|

2 |ξ + t z − η|
)
dtdz

�
∫
R3

∫ 1

0

|ξ + z − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

8C |ζ⊥|2 (1 + |η|)
( |ζ⊥|

|ξ + t z − η|
)ε

dtdz

for any ε > 0 small whenever γ = −2; the other terms have been done by replacing
γ = −2 during the procedure of the proof in which −3 < γ ≤ −2. By Hölder’s
inequality,

∫
R3

∫ 1

0

|ξ + z − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

8C |ζ⊥|2 (1 + |η|)
( |ζ⊥|

|ξ + t z − η|
)ε

dtdz

�
∫
R3

∫ 1

0

|ξ + z − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

16C |ζ⊥|2 (1 + |η|) |ξ + t z − η|−ε dtdz
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�
(∫

R3

∫ 1

0

|ξ + z − η|−2p

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

16C |ζ⊥|2 (1 + |η|)p dtdz
)1/p

·
(∫

R3

∫ 1

0

|ξ + t z − η|−qε

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

16C |ζ⊥|2dtdz
)1/q

,

where 1 < p < 3/2 with 1/p + 1/q = 1.

(∫
R3

∫ 1

0

|ξ + t z − η|−qε

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

16C |ζ⊥|2dtdz
)1/q

�
(∫ 1

0
t−1+s

∫
R3

|ξ + w − η|−qε

|w|2+s
e− 1

8C |ξ+w−η|2dwdt

)1/q

�
(∫

R3

|ξ + w − η|−qε

|w|2+s
e− 1

8C |ξ+w−η|2dw

)1/q

�
[(∫

|w|< |ξ−η|
2

+
∫

|w|> |ξ−η|
2

)
|ξ + w − η|−qε

|w|2+s e− 1
8C |ξ+w−η|2dw

]1/q

� |ξ − η|(1−s)/q−ε + |ξ − η|−(2+s)/q

(∫
|w|> |ξ−η|

2

|ξ + w − η|−qε e− 1
8C |ξ+w−η|2dw

)1/q

� |ξ − η|(1−s)/q−ε + |ξ − η|−(2+s)/q .

In the Case (i) |ξ − η| < 1 and |ξ | < 10,

∫
R3

∫ 1

0

|ξ + z − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

8C |ζ⊥|2 (1 + |η|)
( |ζ⊥|

|ξ + t z − η|
)ε

dtdz

� |ξ − η|(−2p+1−s)/p
(
|ξ − η|(1−s)/q−ε + |ξ − η|−(2+s)/q

)

� |ξ − η|−2+1−s−ε + |ξ − η|−2+1−s−3/q

�
(|ξ − η|−2+1−s−ε + |ξ − η|−2+1−s−3/q) e− |ξ |2+|η|2

C1

�
(|ξ − η|−2−s + |ξ − η|−2−s) e− |ξ |2+|η|2

C1 .

In the Case (ii) |ξ − η| < 1 and |ξ | > 10,

∫
|z|< |ξ |

4

∫ 1

0

|ξ + z − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

8C |ζ⊥|2 (1 + |η|)
( |ζ⊥|

|ξ + t z − η|
)ε

dtdz

�
(

|ξ − η|(−2p+1−s)/p e
− |ξ |2+|η|2

pC1

)(
|ξ − η|(1−s)/q−ε + |ξ − η|−(2+s)/q

)

�
(|ξ − η|−2−s+1−ε + |ξ − η|−2−s+1−3/q) e− |ξ |2+|η|2

pC1

�
(|ξ − η|−2−s + |ξ − η|−2−s) e− |ξ |2+|η|2

pC1 .
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In the Case (iii) |ξ − η| > 1 and |ξ − η| >
|ξ |
2 ,

∫
|z|≤ |ξ−η|

2

∫ 1

0

|ξ + z − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

8C |ζ⊥|2 (1 + |η|)
( |ζ⊥|

|ξ + t z − η|
)ε

dtdz

�
(

|ξ − η|(−2p+1−s)/p e
− |ξ |2+|η|2

pC1

)(
|ξ − η|(1−s)/q−ε + |ξ − η|−(2+s)/q

)

�
(|ξ − η|−2−s+1−ε + |ξ − η|−2−s+1−3/q) e− |ξ |2+|η|2

pC1

�
(|ξ − η|−2−s + |ξ − η|−2−s) e− |ξ |2+|η|2

pC ′
1 .

In the Case (iv) |ξ − η| > 1 and |ξ − η| <
|ξ |
2 ,

∫
||z|≤ 3

4 |ξ |

∫ 1

0

|ξ + z − η|−2

|z|2+s
e− 1

8C |ξ+t z−η|2− 1
2C |ζ‖|2− 1

8C |ζ⊥|2 (1 + |η|)
( |ζ⊥|

|ξ + t z − η|
)ε

dtdz

�
(
e− |ξ |2+|η|2

256pC

)(
|ξ − η|(1−s)/q−ε + |ξ − η|−(2+s)/q

)

�
(|ξ − η|−2−s+1−ε + |ξ − η|−2−s+1−3/q) e− |ξ |2+|η|2

256pC .

�
(|ξ − η|−2−s + |ξ − η|−2−s) e− |ξ |2+|η|2

C ′ .
.

Therefore, the proof of Proposition 13 is completed.
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