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Abstract. We study the pointwise (in the space and time variables) behavior of the

Fokker-Planck equation with potential. An explicit description of the solution is given,

including the large time behavior, initial layer, and spatially asymptotic behavior. More-

over, it is shown that the structure of the solution sensitively depends on the potential

function.

1. Introduction.

1.1. The models. In this paper, we study the kinetic Fokker-Planck equation with

potential in R3. It reads⎧⎨⎩
∂tF + v · ∇xF = ∇v · [∇vF + (∇vΦ)F ] , x, v ∈ R

3, t > 0,

F (0, x, v) = F0(x, v) ,

(1.1)

where the potential Φ(v) is of the form

Φ =
1

γ
〈v〉γ +Φ0 , γ > 0
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for some constant Φ0, where 〈v〉 = (1 + |v|2)1/2. We define

M(v) = e−Φ(v)

with Φ0 ∈ R such that M is a probability measure. It is easy to see that M is a steady

state to the Fokker-Planck equation (1.1). Thus it is natural to study the fluctuation of

the Fokker-Planck equation (1.1) around M(v) with the standard perturbation f(t, x, v)

to M as

F = M+M1/2f .

The Fokker-Planck equation for f(t, x, v) = Gtf0 now takes the form⎧⎪⎪⎨⎪⎪⎩
∂tf+v · ∇xf=Δvf−

1

4
|v|2 〈v〉2γ−4

f+

(
3

2
〈v〉γ−2

+
γ − 2

2
|v|2 〈v〉γ−4

)
f=Lf,

f(0, x, v) = f0(x, v) , (x, v) ∈ R
3 × R

3.

(1.2)

Here Gt is the solution operator of the Fokker-Planck equation (1.2).

The goal of this paper is to study the pointwise (in the space and time variables)

behavior of (1.2).

1.2. Review of previous works. The Fokker-Planck equations arise in many areas of

sciences, including probability, statistical physics, plasma physics, and gas and stellar

dynamics. In particular, when Φ = 〈v〉2 /2, it is closely related to the Langevin equation,

which is used to describe the Brownian motion [23]. Some general Φ has also been

investigated by physical literatures in order to approximate the Boltzmann equation

[9, 10]. So in this paper, we would like to study the generalized potential Φ.

The study of the Fokker-Planck equation can be traced back to the 1930s. When the

potential Φ = 0, the equation (1.1) is known as the Kolmogorov-Fokker-Planck equation.

In 1934 Kolmogorov [21] derived the Green function for the whole space problem:

GFP (t, x, v; τ, y, u) =
1

(t− τ )6
exp

(
−3|(x− y)− [(t− τ )/2](v + u)|2

(t− τ )3
− |v − u|2

4(t− τ )

)
.

This explicit formula surprisingly showed that the solution becomes smooth in the t, x, v

variables when t > 0 immediately. Moreover, it can be applied to boundary value

problems [16–18] and the Vlasov-Poisson-Fokker-Planck system [2, 12, 32].

Later the regularization effect was investigated further and recovered by some more

general and robust methods. For example, it is known that the Fokker-Planck operator

−v · ∇x + Δv is a hypoelliptic operator. So one can apply Hörmander’s commutator

[15] to the linear Fokker-Planck operator to obtain that diffusion in v together with the

transport term v · ∇x has a regularizing effect on solutions not only in v but also in

t and x. It can also be obtained through the functional method; see [13, 36]. On the

other hand, the Fokker-Planck operator is also known as a hypocoercive operator, which

concerns the rate of convergence to equilibrium. Indeed, the trend to equilibria with a

certain rate has been investigated in many papers (cf. [7, 8, 13, 14, 30, 31]) for the close

to Maxwellian regime in the whole space or in the periodic box.

Let us point out the recent important results constructed by Mischler and Mouhot

[30]. They developed an abstract method for deriving decay estimates of the semigroup

associated to non-symmetric operators in Banach spaces. Applying this method to the
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EXPLICIT STRUCTURE OF THE FOKKER-PLANCK EQUATION WITH POTENTIAL 729

kinetic Fokker-Planck equation in the torus with potential in the close to equilibrium

setting, they obtained spectral gap estimates for the associated semigroup in various

norms, including Lebesgue norms, negative Sobolev norms, and the Monge-Kantorovich

distance (or 1-Wasserstein distance).

1.3. Main theorem. Before the presentation of the main theorem, let us define some

notation in this paper. We denote 〈v〉s = (1 + |v|2)s/2, s ∈ R. For the microscopic

variable v, we denote

|f |L2
v
=
(∫

R3

|f |2dv
)1/2

,

and the weighted norms | · |L2
v(m) and | · |L2

θ
can be defined by

|f |L2(m) =
(∫

R3

|f |2mdv
)1/2

, |f |L2
θ
=
(∫

R3

〈v〉2θ |f |2dv
)1/2

,

respectively, where m = m (t, x, v) is a weight function. The L2
v inner product in R

3 will

be denoted by 〈·, ·〉v,

〈f, g〉v =

∫
R3

f(v)g(v)dv.

For the space variable x, we have the similar notation. In fact, L2
x is the classical Hilbert

space with norm

|f |L2
x
=
(∫

R3

|f |2dx
)1/2

.

We denote the supremum norm as

|f |L∞
x

= sup
x∈R3

|f(x)| .

The standard inner product in R
3 will be denoted by (·, ·). For the Fokker-Planck equa-

tion, the natural space in the v variable is equipped with the norm | · |L2
σ
, which is defined

as

|f |2L2
σ
= |

〈
v
〉γ−1

f |2L2
v
+ |∇vf |2L2

v
,

and the corresponding weighted norms are defined as

|f |2L2
σ(m) = |

〈
v
〉γ−1

f |2L2
v(m) + |∇vf |2L2

v(m) , |f |2L2
σ,θ

= |
〈
v
〉γ−1

f |2L2
θ
+ |∇vf |2L2

θ
.

Moreover, we define

‖f‖2L2 =

∫
R3

|f |2L2
v
dx , ‖f‖2L2

σ
=

∫
R3

|f |2L2
σ
dx ,

and

‖f‖L∞
x L2

v
= sup

x∈R3

|f |L2
v
, ‖f‖L1

xL
2
v
=

∫
R3

|f |L2
v
dx .

Finally, we define the high order Sobolev norm in the x variable: let k ∈ N and let α be

any multi-index,

‖f‖Hk
xL

2
v
:=

∑
|α|≤k

‖∂α
x f‖L2 .

The weighted spaces in the (x, v)-variable can be defined in a similar way.
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For multi-indices α, βj(j = 1, . . . , s) ∈ N3
0 with α =

∑s
j=1 βj , we denote the multino-

mial coefficients by (
α

β1 β2 . . . βs

)
=

3∏
k=1

αk!∏s
j=1(βj)k!

.

The domain decomposition plays an essential role in our analysis, hence we define a

cut-off function χ : R → R, which is a smooth non-increasing function, χ(s) = 1 for

s ≤ 1, χ(s) = 0 for s ≥ 2 and 0 ≤ χ ≤ 1. Moreover, we define χR(s) = χ(s/R).

For simplicity of notation, hereafter, we abbreviate “ ≤ C ” to “ � ”, where C is a

positive constant depending only upon fixed numbers.

Here is the precise description of our main results (combining Theorems 3.7, 3.12, 4.2,

and 4.4).

Theorem 1.1. Let f be a solution to the Fokker-Planck equation (1.2) with initial data

compactly supported in the x variable and bounded in L2
v (we need some exponential

weight for 0 < γ < 3/2) space

f0(x, v) ≡ 0 for |x| ≥ 1.

There exists a positive constant M such that the following hold:

(1) As γ ≥ 3/2, there exists a positive constant C such that the solution f satisfies

(a) For 〈x〉 ≤ 2Mt,

|f(t, x)|L2
v
�
[
(1 + t−9/4)e−Ct + (1 + t)−3/2e−C |x|2

t+1

]
‖f0‖L∞

x L2
v
.

(b) For 〈x〉 ≥ 2Mt,

|f(t, x)|L2
v
� (1 + t−9/4)e−C(〈x〉+t)‖f0‖L∞

x L2
v
.

(2) As 1 ≤ γ < 3/2, for any given positive integer N and any sufficiently small α > 0,

there exists a positive constant C such that the solution f satisfies

(a) For 〈x〉 ≤ 2Mt,

|f(t, x)|L2
v
�
[
(1 + t−9/4)e−Ct + (1 + t)−3/2

(
1 +

|x|2
1 + t

)−N
]
‖f0‖L∞

x L2
v
.

(b) For 〈x〉 ≥ 2Mt,

|f(t, x)|L2
v
(1 + t−9/4)e−C(〈x〉+t)

γ
3−γ ‖f0‖L2(e4α〈v〉γ ) .

(3) As 0 < γ < 1, for any sufficiently small α > 0, there exists a positive constant C

such that the solution f satisfies

(a) For 〈x〉 ≤ 2Mt,

|f(t, x)|L2
v
�
[
(1 + t−9/4)e−Ct

γ
2−γ

+ (1 + t)−3/2

]
‖f0‖L2(e4α〈v〉γ ) .

(b) For 〈x〉 ≥ 2Mt,

|f(t, x)|L2
v
� (1 + t−9/4)e−C(〈x〉+t)

γ
3−γ ‖f0‖L2(e4α〈v〉γ ) .
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1.4. Significant points of the paper. In this paper, we study the Fokker-Planck equa-

tion with potential in the close to equilibrium setting. In the literature, this kind of

problem basically focuses on the rate of convergence to equilibrium (see the reference

listed above). Instead, in this paper we supply an explicit description of the solution

in the sense of pointwise estimate. It turns out the structure of the solution sensitively

depends on the potential function. Let us illustrate the novelties of the paper:

• We obtain the global picture of the solution, which consists of three parts: the

time-like region (large time behavior), the space-like region (spatially asymptotic

behavior), and the small time region (the evolution of initial singularity).

(1) In the time-like region, we have distinctly different descriptions according

to potential functions. For γ ≥ 1, thanks to the spectrum analysis, we have

a pointwise fluid structure, which is more precise than previous results. The

leading term of the wave propagation has been recognized. More specifically,

for γ ≥ 3/2 the leading term is a diffusion wave with heat kernel-type, while

for 1 ≤ γ < 3/2 the diffusion wave is of algebraic-type. By contrast, the

spectral information is missing for 0 < γ < 1 due to the weak damping

for large velocity, which leads to the unavailability of pointwise structure.

Nevertheless, we can apply Kawashima’s argument [20,34] to get a uniform

time decay rate.

(2) Concerning the space-like region, we have exponential decay for γ ≥ 3/2

and sub-exponential decay for 0 < γ < 3/2. The results are consistent with

the wave behaviors inside the time-like region for different γ’s, respectively.

To our knowledge, this is the first result for the asymptotic behavior of the

Fokker-Planck equation with potential.

(3) Owing to the regularization effect, the initial singularity is eliminated in-

stantaneously.

• The regularization estimate is a key ingredient of this paper (see Lemmas 2.5

and 2.7), which enables us to obtain the pointwise estimate without regularity

assumptions on the initial condition. In the literature, the regularization esti-

mates for the kinetic Fokker-Planck equation and Landau equation have been

proved for various purposes; see for instance [13], [30], and [36, Appendix A.21.2]

for the Fokker-Planck case and [5] for the Landau case. The above mentioned

regularization estimates are sufficient for studying the time decay of the solution.

However, to gain understanding of the spatially asymptotic behavior, one needs

to analyze the solution in some appropriate weighted spaces. Taking this into

account, we construct the regularization estimates in suitable weighted spaces.

The calculation of the estimates is interesting and more sophisticated than before.

Moreover, this type of regularization estimate is itself new.

• The pointwise estimate of the solution in the space-like region is constructed by

the weighted energy estimate. The time-dependent weight functions are chosen

according to different confinement potentials. For γ ≥ 3/2, from an estimate

in the time-like region, the solution decays exponentially along the wave cone,

i.e., |x| = Mt, suggesting the exponential decay at the spatial infinity. It turns

out that a simple weight function is satisfactory (see Proposition 4.1). However,
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when 0 < γ < 3/2, we notice that in (1.2) the exponent of damping coefficient

(∼ 〈v〉2(γ−1)) is less than 1. From the scaling of the transport equation, we

cannot expect exponential decay in the spatial variable. In fact, motivating by the

transport equation with weak damping, we devise appropriate weight functions,

introduce a refined space-velocity domain decomposition, and eventually show

the sub-exponential decay for 0 < γ < 3/2 (Proposition 4.3).

• We believe that our idea in this paper can have potential applications in other

important kinetic equations, such as the Landau equation or Boltzmann equation

without angular cutoff. In fact, these projects are in progress.

To the best of our knowledge, the first pointwise result of the kinetic-type equation

is the Boltzmann equation for hard sphere [26–28]; the authors have established impor-

tant results regarding the pointwise behavior of the Green function and completed the

non-linear problem. Later, the result was generalized to the Boltzmann equation with

cutoff hard potentials [22]. Very recently, the authors of the current paper extended the

pointwise result to more general potentials, the range −2 < γ < 1, and obtained an ex-

plicit relation between the decay rate and velocity weight assumption [24]. Let us point

out some similarities and differences between the Fokker-Planck equation with potential

and the Boltzmann equation with hard sphere or cutoff hard potentials.

• The solutions of both equations in large time are dominated by the fluid part. For

the Fokker-Planck with γ ≥ 1 and for the Boltzmann with hard sphere or hard

potentials with cutoff, the fluid parts are characterized by diffusion waves. To

extract them, both need the long wave-short wave decomposition. However, the

wave structures of them are quite different. For the Boltzmann equation, there

are diffusion waves propagating with different speeds: one with the background

speed of the global Maxwellian while the other with the superposed speed of the

background speed and the sound speed. In comparison, there is only one diffusion

wave for the Fokker-Planck equation. The fluid behavior can be seen formally

from the Chapman-Enskog expansion, which indicates that the macroscopic part

(the fluid part) of the solution satisfies the viscous system of conservation laws.

For the Boltzmann equation there are conservation laws of mass, momentum, and

energy, while the Fokker-Planck equation only preserves the mass, explaining the

difference of their wave structures.

• Since the leading term of the solution in large time is the fluid part and it

essentially has finite propagation speed, the solution in the space-like region,

compared to the leading part, should be much smaller. In fact it is shown that the

asymptotic behaviors exponentially or sub-exponentially decay. This is similar

to the solution of the Boltzmann equation outside the finite Mach number region.

• The regularization mechanism of the Fokker-Planck equation is distinct from that

of the Boltzmann equation. For the Boltzmann equation, the initial singularity

will be preserved (although decays in time very fast), one has to single them out.

Since the singular waves satisfy a damped transport equation, there is an explicit

solution formula, from which the pointwise structure can be deduced. Then the

regularity of the resulting remainder part comes from the compact part of the

collision operator (see the Mixture Lemma in [22], [26], and [27]). By contrast,
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for the Fokker-Planck equation the regularity comes from the combined effect of

ellipticity in the velocity variable v and the transport term (see Lemmas 2.5 and

2.7). The initial singularities have been identified. However, there is no explicit

formula for singular waves. Instead, they are accurately estimated by suitable

weighted energy estimates.

1.5. Method of proof and plan of the paper. The main idea of this paper is to com-

bine the long wave-short wave decomposition, the wave-remainder decomposition, the

weighted energy estimate, and the regularization estimate to analyze the solution. The

long wave-short wave decomposition, based on the Fourier transform, gives the fluid

structure of the solution. The wave-remainder decomposition is used for extracting the

initial singularity. The weighted energy estimate is used for the pointwise estimate of

solution inside the space-like region, where the regularization estimate is also used. We

explain the idea in more detail below.

In the time-like region (inside the region |x| ≤ Mt for some M), the solution is

dominated by the fluid part, which is contained in the long wave part. In order to obtain

its estimate, we devise different methods for γ ≥ 1 and 0 < γ < 1, respectively. For

γ ≥ 1, taking advantage of the spectrum information of the Fokker-Planck operator [29]

(in fact, the paper [29] only studies the case γ = 2 and we can extend it to the case

γ ≥ 1), the complex analytic or Fourier multiplier techniques can be applied to obtain

pointwise structure of the fluid part. However, for 0 < γ < 1, the spectrum information

is missing due to the weak damping for large velocity. Instead, we use Kawashima’s

argument [20] to get the optimal decay only in time. It is shown that the L2 norm of

the short wave exponentially decays in time for γ ≥ 1 essentially due to the spectrum

gap, while it decays only algebraically for 0 < γ < 1 if imposing certain velocity weight

on initial data.

We use the wave-remainder decomposition to extract the possible initial singularity in

the short wave. This decomposition is based on a Picard-type iteration. The first several

terms in the iteration contain the most singular part of the solution, and they are the

so-called wave part. By functional methods, we prove the iteration equation has a regu-

larization effect, which enables us to show the remainder becomes more regular. Noticing

the singularity will disappear after initial time, the regularization estimate together with

L2 decay of the short wave yields the L∞ decay of the short wave. Combining this with

the long wave, we finish the pointwise structure inside the wave cone.

To get the global structure of the solution, we need the estimate outside the wave

cone, i.e., inside the space-like region. The weighted energy estimates play a decisive

role here. The weight functions are carefully chosen for different γ’s. It is noted that the

sufficient understanding of the structure of the wave part obtained previously is essential

in the estimate. Moreover, the regularization effect makes it possible to do the higher

order weighted energy estimate. Then the desired pointwise estimate follows from the

Sobolev inequality.

The rest of this paper is organized as follows: We first prepare some important prop-

erties in Section 2 for the long wave-short wave decomposition, the wave-remainder de-

composition, and regularization estimates. Then we study the large time behavior in

Section 3. Finally, we study the initial layer and the asymptotic behavior in Section 4.
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2. Preliminary.

2.1. The operator L. It is obvious that L is a non-positive self-adjoint operator on L2
v.

More precisely, its Dirichlet form is given by

〈Lf, f〉v = −
∫
R3

∣∣∣∣∇vf +
∇Φ

2
f

∣∣∣∣2 dv = −
∫
R3

∣∣∣∣∇v

(
f√
M

)∣∣∣∣2 Mdv.

Therefore, the null space of L is given by

Ker(L) = span {ED} ,

where ED =
√
M. Based on this property, we can introduce the macro-micro decompo-

sition as follows: the macro projection P0 is the orthogonal projection with respect to

the L2
v inner product onto Ker(L), and the micro projection P1 ≡ Id− P0.

Now, we introduce a new norm |·|L2
σ̃,θ

:

|g|2L2
σ̃,θ

:=

∫
〈v〉2θ |∇g|2 dv +

∫
〈v〉2θ |v|2 〈v〉2γ−4

2
|g|2 dv, θ ∈ R, γ > 0,

which is equivalent to the natural norm |·|Lσ,θ
. Through this equivalent norm, we can

derive the coercivity of the operator L for all γ > 0, as below. The proof is analogous to

the Landau case [11].

Lemma 2.1 (Coercivity). Let θ ∈ R, γ > 0. For any m > 1, there is 0 < C (m) < ∞,

such that∣∣∣∣〈〈v〉2θ �vΦ

2
g1, g2

〉
v

∣∣∣∣ (2.1)

≤ C

mγ
|g1|L2

σ̃,θ
|g2|L2

σ̃,θ
+ C (m)

(∫
|v|≤m

∣∣∣〈v〉θ g1∣∣∣2 dv
)1/2(∫

|v|≤m

∣∣∣〈v〉θ g2∣∣∣2 dv
)1/2

.

Moreover, there exists ν0 > 0 such that

〈−Lg, g〉v ≥ ν0 |P1g|2L2
σ
. (2.2)

Now, let us decompose the collision operator L = −Λ +K, where

Λ = −L+
χR (|v|) , K = 
χR (|v|) ;

here 
 > 0 and R > 0 are as large as desired.

Regarding the behavior of solutions to equation (1.2) in the space-like region, the

following weight functions μ(x, v) will be taken into account:

μ(x, v) = 1 or exp (〈x〉 /D) if γ ≥ 3/2 ,

for D large, and

μ(x, v) = 1 or exp (αc(x, v)) if 0 < γ < 3/2 ,
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EXPLICIT STRUCTURE OF THE FOKKER-PLANCK EQUATION WITH POTENTIAL 735

where

c(x, v) = 5
(
δ 〈x〉

) γ
3−γ

(
1− χ

(
δ 〈x〉 〈v〉γ−3

))
+

[(
1− χ

(
δ 〈x〉 〈v〉γ−3

))
δ 〈x〉 〈v〉2γ−3 + 3 〈v〉γ

]
χ
(
δ 〈x〉 〈v〉γ−3

)
,

and the positive constants δ and α will be determined later.

Lemma 2.2. Assuming that γ > 0, we have the following properties of the operators Λ

and K:

(i) There exists c > 0 such that∫
(Λg) gμdxdv ≥ c ‖g‖2L2

σ(μ)
.

(ii) ∫
(Kg) gμdxdv ≤ 
 ‖g‖2L2(μ) .

Proof. We only prove part (i) when μ (x, v) = eαc(x,v), since the other cases of part

(i) and part (ii) are trivial. Notice that there is a constant c1 > 0 such that

‖∇vg‖2L2(μ) +

∫ [
|v|2 〈v〉2γ−4

4
−
(
3

2
〈v〉γ−2 +

(γ − 2)

2
|v|2 〈v〉γ−4

)
+
χR

]
g2μdxdv

≥ c1 ‖g‖2L2
σ(μ)

whenever 
, R > 0 are sufficiently large. On the other hand, it follows from

|∇vc (x, v)| ≤ C (γ) 〈v〉γ−1
(
1 +

∣∣∣χ′
(
[δ 〈x〉] 〈v〉γ−3

)∣∣∣) (2.3)

that∣∣∣∣∫ ∇vg · ∇v (μ) gdxdv

∣∣∣∣ ≤ αC (γ) sup (1 + |χ′|)
∫

〈v〉γ−1 |g| |∇vg|μdxdv ≤ αQ

2
‖g‖2L2

σ(μ)
,

where Q = [C (γ) sup (1 + |χ′|)] . Therefore, we choose α > 0 sufficiently small with

αQ < c1 and thus deduce that∫
(Λg) gμdxdv = ‖∇vg‖2L2(μ) +

∫
∇vg · ∇v (μ) gdxdv

+

∫ [
|v|2 〈v〉2γ−4

4
−
(
3

2
〈v〉γ−2

+
(γ − 2)

2
|v|2 〈v〉γ−4

)
+
χR

]
g2μdxdv

≥ c1
2
‖g‖2L2

σ(μ)
= c ‖g‖2L2

σ(μ)
,

which completes the proof of the lemma. �
On the other hand, in preparation for studying the time-like region, we provide the

spectrum Spec(η), η ∈ R
3, of the operator Lη = −iv · η + L. In fact, we extend the

results for the case γ = 2 in [29] to the case γ ≥ 1.

Lemma 2.3 (Spectrum of Lη). Assuming that γ ≥ 1, given 0 < δ � 1:

(i) There exists τ = τ (δ) > 0 such that if |η| > δ,

Spec(η) ⊂ {z ∈ C : Re(z) < −τ} . (2.4)
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736 YU-CHU LIN, HAITAO WANG, AND KUNG-CHIEN WU

(ii) If |η| < δ,

Spec(η) ∩ {z ∈ C : Re(z) > −τ} = {λ(η)} , (2.5)

where λ(η) is the eigenvalue of Lη which is real and smooth in η only through |η|2, i.e.,
λ(η) = A (|η|2) for some real smooth function A ; the eigenfunction eD(v, η) is smooth

in η as well. In addition, they are analytic in η if γ ≥ 3/2. Their asymptotic expansions

are given as below:
λ(η) = −aγ |η|2 +O(|η|4) ,

eD(η) = ED + iED,1|η|+O(|η|2) ,
(2.6)

with aγ > 0, ED,1 = L−1(v · ωED), ω = η/|η|. Here {eD(η)} can be normalized by〈
eD(−η), eD(η)

〉
v
= 1 .

(iii) Moreover, the semigroup e(−iη·v+L)t can be decomposed as

e(−iη·v+L)tf = e(−iη·v+L)tΠD⊥
η f + 1{|η|<δ}e

λ(η)t
〈
eD(−η), f

〉
v
eD(η) , (2.7)

where 1D is the characteristic function of the domain D, and there exist a(τ ) > 0 and

a > 0 such that

|e(−iη·v+L)tΠD⊥
η |L2

v
� e−a(τ)t and |eλ(η)t| ≤ e−a|η|2t. (2.8)

Proof. Let L = −Λ +K with

Ληf = (−Λ− iη · v) f, Lη = (L− iη · v) f.
Here f ∈ D (Λη) =

{
f ∈ L2

v; Ληf ∈ L2
v

}
and D (Λη) = D (Lη) . Since K is a bounded

operator in L2
v, Lη is regarded as a bounded perturbation of Λη. We shall verify that

such a decomposition satisfies the four hypotheses H1-H4 stated in [38]. Under the

assumptions H1-H4, using semigroup theory and linear operator perturbation theory,

Theorem 1.1 in [38] asserts that the spectrum of Lη has the similar structure of the

Boltzmann equation with cutoff hard potential. Since the null space of the linear Fokker-

Planck operator is one-dimensional, for |η| small enough, we only obtain one smooth

eigenvalue of Lη while there are five smooth eigenvalues for the Boltzmann equation with

cutoff hard potentials. As to the verification of H1-H4, the proof is a slight modification

of the paper [29] and hence we omit the details. The hypothesis H1 is worthy of being

mentioned. For 
 sufficiently large, there exists a constant c > 0 such that

〈Λf, f〉v ≥ c |f |2L2
σ
≥ c |f |2L2

v

for all γ ≥ 1. The last inequality holds since |f |L2
σ
is stronger than |f |L2

v
as γ ≥ 1. This

is why we miss the spectrum structure for the case 0 < γ < 1.

To prove (ii), we need to explore the symmetric properties of λ(η) and eD(η). Here

we follow the framework of Section 7.3 in [28]. First we notice there is a natural three-

dimensional orthogonal group O(3)-action on L2
v: Let a ∈ O(3), f ∈ L2

v,

(a ◦ f)(v) ≡ f(a−1v).

Then it is easy to check theO(3)-action commutes with operators L, P0, and P1. Consider

the eigenvalue problem

LηeD(η) = (−iv · η + L)eD(η) = λ(η)eD(η). (2.9)
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Apply a ∈ O(3) to (2.9). By commutative properties and the fact that a preserves the

vector inner product in R3,

(−iv · (aη) + L)(a ◦ eD(η)) = λ(η)(a ◦ eD)(η).

Then λ(aη) = λ(η), eD(aη) = a ◦ e(η), which implies that λ(η) is dependent only upon

|η|. Now let a ∈ O(3) be an orthogonal transformation that sends η
|η| to (1, 0, 0)T . Thus

the original eigenvalue problem (2.9) is reduced to

(−iv1|η|+ L)e(|η|) = λ(|η|)e(|η|) (2.10)

with λ(η) = λ(|η|), eD(η) = a−1 ◦ eD(|η|). Apply the macro-micro decomposition to

(2.10) to yield

− i|η|P0v1
(
P0e+ P1e

)
= λP0e, (2.11a)

− i|η|P1v1P0e− i|η|P1v1P1e+ LP1e = λP1e. (2.11b)

Set λ(|η|) = i|η|ζ(|η|). We can solve P1e in terms of P0e from (2.11b),

P1e = i|η|
[
L− i|η|P1v1 − i|η|ζ(|η|)

]−1
P1v1P0e; (2.12)

then substitute this back to (2.11a) to get(
P0v1 + i|η|P0

[
L− i|η|P1v1 − i|η|ζ(|η|)

]−1
P1v1

)
P0e = −ζP0e. (2.13)

We notice that this is actually a finite dimensional eigenvalue problem. The solvability

of it and the asymptotic expansions of eigenvalue and eigenfunction for |η| � 1 are

essentially due to the implicit function theorem. The procedure is basically the same as

the case γ = 2; we refer the readers to Theorem 3.2 in [29] for details. We obtain λ(|η|)
and P0e(|η|) = β(|η|)ED with λ and β being smooth functions. Furthermore, λ(|η|) and
β(|η|) are not merely smooth but analytic for γ ≥ 3/2. To prove this, it suffices to check

that the perturbation ivf is L-bounded, i.e.,

|vf |2L2
v
≤ C1|Lf |2L2

v
+ C2|f |2L2

v
.

Then the Kato-Rellich theorem guarantees the operator B(z) = −iv1z+L is in the ana-

lytic family of Type (A), see [19], which in turn implies the eigenvalue and eigenfunction

associated with (2.10) are analytic in |η|, cf. [6]. Now, let us calculate
〈
Λf,Λf

〉
v
first.

For simplicity of notation, let

ψ(v) =
1

4
|v|2 〈v〉2γ−4 −

(
3

2
〈v〉γ−2

+
γ − 2

2
|v|2 〈v〉γ−4

)
+
χR(|v|);

then 〈
Λf,Λf

〉
v
= |Δvf |2L2

v
+ |ψ(v)f |2L2

v

+ 2
〈
ψ(v),

(
∇vf,∇vf

)〉
v
+ 2

〈
f,
(
∇vψ(v),∇vf

)〉
v
.

By the Cauchy inequality, we have∣∣〈f, (∇vψ(v),∇vf
)〉

v

∣∣ ≤ 〈
ψ(v),

(
∇vf,∇vf

)〉
v
+

1

4

〈 f2

ψ(v)
,
(
∇vψ(v),∇vψ(v)

)〉
v
.

Let us compare
(
∇vψ(v),∇vψ(v)

)
and ψ3(v). For |v| large, we have(

∇vψ(v),∇vψ(v)
)
≈ |v|4γ−6
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and

ψ3(v) ≈ |v|6γ−6 .

For |v| small, one can choose 
 large enough such that(
∇vψ(v),∇vψ(v)

)
� ψ3(v) .

This means 〈
Λf,Λf

〉
v
≥ |Δvf |2L2

v
+

1

2
|ψ(v)f |2L2

v
� | 〈v〉2γ−2 f |2L2

v
.

Hence if γ ≥ 3/2,

|vf |2L2
v
≤ C

〈
Λf,Λf

〉
v
= C

〈
Lf −Kf,Lf −Kf

〉
v

≤ C1|Lf |2L2
v
+ C2|f |2L2

v
.

However, we cannot simply deduce smoothness (analyticity) in η from smoothness (an-

alyticity) in |η|. Our goal is to show λ(z) and β(z) are in fact even functions in z. If so,

due to a classical theorem of Whitney [37], we have

λ(|η|) = A (|η|2), β(|η|) = B(|η|2)

for some smooth or analytic functions A and B provided λ(|η|) and β(|η|) are smooth

or analytic, respectively. To show they are even, let us define a map R : (v1, v2, v3) �→
(−v1, v2, v3); then obviously R ∈ O(3). We apply R to (2.10),

(−iv1(−|η|) + L)(R ◦ e(|η|)) = λ(|η|)(R ◦ e(|η|)),

which is an eigenvalue problem with |η| → −|η|. This follows that the eigenpair {λ(|η|),
R ◦ e(|η|)} coincides with {(λ(−|η|), e(−|η|))}. Hence

λ(|η|) = λ(−|η|), R ◦ e(|η|) = e(−|η|). (2.14)

In addition, use R ◦ P0e(|η|) = P0R ◦ e(|η|) = P0e(−|η|) and R ◦ ED = ED to find

β(|η|) = β(−|η|), namely β is also an even function. We can show

λ(|η|) = λ(−|η|), e(|η|) = e(−|η|), (2.15)

by taking the complex conjugate of (2.10). This together with (2.14) shows λ(|η|) and

β(|η|) are real functions. By (2.12), we can construct e(|η|) from P0e(|η|),

e(|η|) = P0e(|η|) + P1e(|η|) =
(
1 + i|η|

[
L− i|η|P1v1 − λ(|η|)

]−1
P1v1

)
β(|η|)ED.

The eigenfunction eD(η) to the original eigenvalue-problem (2.9) can be recovered by

applying a−1, namely

eD(η) = a−1 ◦ e(|η|) =
(
1 +

[
L− P1iη · v − A (|η|2)

]−1
P1iη · v

)
B(|η|2)ED.

Therefore the proof is complete. �
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EXPLICIT STRUCTURE OF THE FOKKER-PLANCK EQUATION WITH POTENTIAL 739

2.2. The semigroup operator etL. Now, let h be the solution of the equation⎧⎨⎩
∂th = Lh, where Lh = −v · ∇xh− Λh ,

h(0, x, v) = h0(x, v) .
(2.16)

In this subsection, we will study some properties of the semigroup operator etL.

Lemma 2.4. For any k ∈ N ∪ {0}:
(i) If γ ≥ 1, there exists C > 0 such that∥∥etLh0

∥∥
Hk

xL
2
v(μ)

� e−Ct ‖h0‖Hk
xL

2
v(μ)

. (2.17)

(ii) If 0 < γ < 1, we have ∥∥etLh0

∥∥
Hk

xL
2
v(μ)

� ‖h0‖Hk
xL

2
v(μ)

. (2.18)

Proof. It suffices to show that there exists c0 > 0 such that for any multi-index β,

d

dt

∥∥∂β
xh
∥∥2
L2(μ)

≤ −c0
∥∥∂β

xh
∥∥2
L2

σ(μ)
. (2.19)

In view of Lemma 2.2, we have

1

2

d

dt

∥∥∂β
xh
∥∥2
L2(μ)

=

∫
−v · ∇x

(
∂β
xh
)
∂β
xhμdxdv −

∫
Λ
(
∂β
xh
)
∂β
xhμdxdv

≤
∫

1

2

(
∂β
xh
)2

v · ∇xμdxdv − c0
∥∥∂β

xh
∥∥2
L2

σ(μ)
.

If μ (x, v) ≡ 1, (2.19) is obvious since
∫

1
2

(
∂β
xh
)2

v · ∇xμdxdv = 0.

If μ (x, v) = exp (〈x〉 /D) and γ ≥ 3/2, we choose D sufficiently large such that

1/D < min{c0, 1} and thus obtain∣∣∣∣∫ 1

2

(
∂β
xh
)2

v · ∇xμdxdv

∣∣∣∣ = ∣∣∣∣∫ 1

2

(
∂β
xh
)2

v · x

D 〈x〉μdxdv
∣∣∣∣

≤ 1

2D

∫
〈v〉2γ−2 (

∂β
xh
)2

μdxdv ≤ c0
2

∥∥∂β
xh
∥∥2
L2

σ(μ)
.

If μ (x, v) = eαc(x,v) and 0 < γ < 3/2, since

|∇xc (x, v)| ≤ δC 〈v〉2γ−3
,

for some constant C > 0 depending only upon γ, we have∣∣∣∣∫ 1

2

(
∂β
xh
)2

v · ∇xμdxdv

∣∣∣∣ ≤ δCα

2

∫
〈v〉2γ−2 (∂β

xh
)2

μdxdv ≤ c0
2

∥∥∂β
xh
∥∥2
L2

σ(μ)

by choosing α, δ > 0 small enough with 0 < δCα < min{c0, 1}.
Grouping the above discussions, we obtain (2.19) and thus deduce that for γ > 0,

k ∈ N ∪ {0}, ∥∥etLh0

∥∥
Hk

xL
2
v(μ)

≤ ‖h0‖Hk
xL

2
v(μ)

.

Moreover, if γ ≥ 1, then (2.19) becomes

1

2

d

dt

∥∥∂β
xh
∥∥2
L2(μ)

≤ −c0
2

∥∥∂β
xh
∥∥2
L2

σ(μ)
≤ −c0

2

∥∥∂β
xh
∥∥2
L2(μ)

,
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which leads to the exponential time decay of all x-derivatives of the solution etLh0 in the

weighted L2 norm. �
The following is the regularization estimate of the semigroup operator etL in small

time.

Lemma 2.5 (Regularization estimate). For γ > 0 and 0 < t ≤ 1, we have∫
|∇ve

tLh0|2μdxdv = O(t−1)

∫
|h0|2μdxdv

and ∫
|∇xe

tLh0|2μdxdv = O(t−3)

∫
|h0|2μdxdv .

Proof. Recall that Λ = −L+K with

Λf = −�vf +

[
1

4
|∇vΦ|2 −

1

2
�vΦ

]
f +
χR (|v|) f, K = 
χR (|v|) f.

Here we choose R > 0 and 
 > 0 sufficiently large such that⎧⎨⎩
1
4 |∇vΦ|2− 1

2�vΦ≤ 1
3 〈v〉

2γ−2,
∣∣∣∇v

(
1
4 |∇vΦ|2− 1

2�vΦ
)∣∣∣�〈v〉2γ−3 for |v|>R,∣∣∣14 |∇vΦ|2 − 1

2�vΦ
∣∣∣ , ∣∣∣∇v

(
1
4 |∇vΦ|2 − 1

2�vΦ
)∣∣∣ < 


2 for |v| ≤ R.
(2.20)

Now, define the energy functional

F (t, ht) := A ‖h‖2L2(μ) + at ‖∇vh‖2L2(μ) + 2ct2 〈∇xh,∇vh〉L2(μ) + bt3 ‖∇xh‖2L2(μ)

with a, b, c > 0 and c <
√
ab (positive definite) and A > 0 sufficiently large. We shall

show that dF/dt ≤ 0, t ∈ (0, 1) , via choosing suitable positive constants A, a, b, and c.

In (2.19) , it has been shown that

d

dt
‖h‖2L2(μ) ≤ −c0 ‖h‖2L2

σ(μ)
, (2.21)

d

dt
‖∂xi

h‖2L2(μ) ≤ −c0 ‖∂xi
h‖2L2

σ(μ)
. (2.22)

Next, we show that

1

2

d

dt
‖∂vih‖

2
L2(μ) ≤ −

∫
∂xi

h∂vihμdxdv −
c0
2
‖∂vih‖

2
L2

σ(μ)
+ Cε ‖h‖2L2

σ(μ)
+ ε ‖∂vih‖

2
L2

σ(μ)
,

(2.23)

where ε > 0 is arbitrarily small and Cε = O (1/ε) . Compute

1

2

d

dt
‖∂vih‖

2
L2(μ) = −

∫
∂xi

h∂vihμdxdv +

∫ [v
2
(∂vih)

2
]
· ∇xμdxdv

−
∫

(Λ∂vih) ∂vihμdxdv −
∫

([∂vi ,Λ]h) ∂vihμdxdv,

where

[∂vi ,Λ]h =

[
∂vi

(
1

4
|∇vΦ|2 −

1

2
�vΦ

)]
h+
∂vi (χR)h.

In the course of the proof of Lemma 2.4, one can see that

|∇xμ| ≤ min{c0, 1} · 〈v〉2γ−3
μ and |∇xμ| ≤ min{c0, 1}μ, (2.24)
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so

∣∣∣∣∫ [v
2
(∂vih)

2
]
· ∇xμdxdv

∣∣∣∣ ≤ c0
2

∫
〈v〉2γ−2 (∂vih)

2 μdxdv ≤ c0
2
‖∂vih‖

2
L2

σ(μ)
.

Furthermore, by (2.20) we obtain

∣∣∣∣∫ ([∂vi ,Λ]h) ∂vihμdxdv

∣∣∣∣
≤ C

∫
〈v〉2γ−2 |h∂vih|μdxdv +




2

∫
χR |h∂vih|μdxdv +




R

∫
|χ′

R| |h∂vih|μdxdv

≤ C ′
∫

〈v〉2γ−2 |h∂vih|μdxdv ≤ Cε ‖h‖2L2
σ(μ)

+ ε ‖∂vih‖
2
L2

σ(μ)
,

where ε > 0 is arbitrarily small and Cε = O (1/ε) . It turns out that

1

2

d

dt
‖∂vih‖

2
L2(μ) ≤ −

∫
∂xi

h∂vihμdxdv −
c0
2
‖∂vih‖

2
L2

σ(μ)
+ Cε ‖h‖2L2

σ(μ)
+ ε ‖∂vih‖

2
L2

σ(μ)
.

Finally, direct computation gives

d

dt

∫
∂xi

h∂vihμdxdv

= −
∫

|∂xi
h|2 μdxdv − 2

∫
∇v (∂xi

h) · ∇v (∂vih)μdxdv

− 2

∫ (
|∇vΦ|2

4
− �vΦ

2
+
χR

)
∂xi

h∂vihμdxdv

+

∫
(v · ∇xμ) ∂vih∂xi

hdxdv +
1

2

∫
∂vi

(
|∇vΦ|2

4
− �vΦ

2
+
χR

)
h2∂xi

μdxdv

−
∫

∇v (∂xi
h) · ∇v (μ) ∂vihdxdv −

∫
∇v (∂vih) · ∇v (μ) ∂xi

hdxdv.

From (2.3), it follows that

∣∣∣∣∫ ∇v (∂xi
h) · ∇v (μ) ∂vihdxdv +

∫
∇v (∂vih) · ∇v (μ) ∂xi

hdxdv

∣∣∣∣
≤ αC (γ) sup (1 + |χ′|)

∫
〈v〉γ−1 (|∇v (∂xi

h)| |∂vih|+ |∇v (∂vih)| |∂xi
h|)μdxdv

≤
∫ (

〈v〉γ−1 |∇v (∂xi
h)| |∂vih|+ 〈v〉γ−1 |∇v (∂vih)| |∂xi

h|
)
μdxdv
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from αC (γ) sup (1 + |χ′|) = αQ < 1. Note that this inequality is valid in the cases

μ (x, v) = 1 and μ (x, v) = exp (〈x〉 /D) as well, since ∇vμ = 0 in both cases. Therefore,

d

dt

∫
∂xi

h∂vihμdxdv

≤ −
∫

|∂xi
h|2 μdxdv − 2

∫
∇v (∂xi

h) · ∇v (∂vih)μdxdv

− 2

∫ (
|∇vΦ|2

4
− �vΦ

2
+
χR

)
∂xi

h∂vihμdxdv

+

∫
(v · ∇xμ) ∂vih∂xi

hdxdv +
1

2

∫
∂vi

(
|∇vΦ|2

4
− �vΦ

2
+
χR

)
h2∂xi

μdxdv

+

∫ (
〈v〉γ−1 |∇v (∂xi

h)| |∂vih|+ 〈v〉γ−1 |∇v (∂vih)| |∂xi
h|
)
μdxdv.

Collecting terms gives

d

dt
F (t, ht)

≤ −c0A ‖h‖2L2
σ(μ)

+ a ‖∇vh‖2L2(μ) + 4ct 〈∇xh,∇vh〉L2(μ) + 3bt2 ‖∇xh‖2L2(μ)

+ 2at

[
−

3∑
i=1

∫
∂xi

h∂vihμdxdv −
c0
2
‖∇vh‖2L2

σ(μ)
+ 3Cε ‖h‖2L2

σ(μ)
+ ε ‖∇vh‖2L2

σ(μ)

]

+ 2ct2

[
−
∫

|∇xh|2 μdxdv − 2

3∑
i=1

∫
∇v (∂xi

h) · ∇v (∂vih)μdxdv

− 2

3∑
i=1

∫ (
|∇vΦ|2

4
− �vΦ

2
+
χR

)
∂xi

h∂vihμdxdv −
3∑

i=1

∫
(v · ∇xμ) ∂vih∂xi

hdxdv

+
1

2

3∑
i=1

∫
∂vi

(
|∇vΦ|2

4
− �vΦ

2
+
χR

)
h2∂xi

μdxdv

+

3∑
i=1

∫ (
〈v〉γ−1|∇v(∂xi

h)||∂vih|+〈v〉γ−1|∇v (∂vih)| |∂xi
h|
)
μdxdv

]
−bc0t

3 ‖∇xh‖2L2
σ(μ)

.
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By (2.20) and (2.24),

∣∣∣∣∣−2
3∑

i=1

∫ (
|∇vΦ|2

4
− �vΦ

2
+
χR

)
∂xi

h∂vihμdxdv +
3∑

i=1

∫
(v · ∇xμ) ∂vih∂xi

hdxdv

∣∣∣∣∣
≤

3∑
i=1

2

∫
〈v〉2γ−2 |∂xi

h∂vih|μdxdv + 3


∫
χR |∇xh · ∇vh|μdxdv

≤
3∑

i=1

(
bc0
8c

t
∥∥∥〈v〉γ−1 (∂xi

h)
∥∥∥2
L2(μ)

+
8c

bc0t

∥∥∥〈v〉γ−1 (∂vih)
∥∥∥2
L2(μ)

)
+ 3


∫
χR |∇xh · ∇vh|μdxdv

=
bc0
8c

t ‖∇xh‖2L2
σ(μ)

+
8c

bc0t
‖∇vh‖2L2

σ(μ)
+ 3


∫
χR |∇xh · ∇vh|μdxdv.

By the Cauchy-Schwartz inequality,

∣∣∣∣∣2
3∑

i=1

∫
∇v (∂xi

h) · ∇v (∂vih)μdxdv

∣∣∣∣∣
≤

3∑
i=1

(
bc0
8c

t ‖∇v (∂xi
h)‖2L2(μ) +

8c

bc0t
‖∇v (∂vih)‖

2
L2(μ)

)
≤ bc0

8c
t ‖∇xh‖2L2

σ(μ)
+

8c

bc0t
‖∇vh‖2L2

σ(μ)
,

∣∣∣∣(4ct− 2at)

∫
∇xh · ∇vhμdxdv

∣∣∣∣+ ∫
6c
t2χR |∇xh · ∇vh|μdxdv

≤ (4c+ 2a+ 6c
t) t

[
εt ‖∇xh‖2L2(μ) +

Cε

t
‖∇vh‖2L2(μ)

]
, Cε = O

(
1

ε

)
,

and ∣∣∣∣∣
3∑

i=1

∫ (
〈v〉γ−1 |∇v (∂xi

h)| |∂vih|+ 〈v〉γ−1 |∇v (∂vih)| |∂xi
h|
)
μdxdv

∣∣∣∣∣
≤

3∑
i=1

(
2c

bc0t

∫
〈v〉2γ−2 |∂vih|

2 μdxdv +
bc0
8c

t

∫
|∇v (∂xi

h)|2 μdxdv
)

+
3∑

i=1

(
bc0
8c

t

∫
〈v〉2γ−2 |∂xi

h|2 μdxdv + 2c

bc0t

∫
|∇v (∂vih)|

2 μdxdv

)
≤ 2c

bc0t
‖∇vh‖2L2

σ(μ)
+

bc0
8c

t ‖∇xh‖2L2
σ(μ)

.
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744 YU-CHU LIN, HAITAO WANG, AND KUNG-CHIEN WU

In view of (2.20) and (2.24),∣∣∣∣∣12
3∑

i=1

∫
∂vi

(
|∇vΦ|2

4
− �vΦ

2
+
χR

)
h2∂xi

μdxdv

∣∣∣∣∣
≤ C

2

∫
〈v〉2γ−3

h2μdxdv +



4

∫
〈v〉2γ−3

χRh
2μdxdv +




2R

∫
〈v〉2γ−3 |χ′

R|h2μdxdv

≤ M ′
∫

〈v〉2γ−2 h2μdxdv ≤ M ′ ‖h‖2L2
σ(μ)

,

where M ′ > 0 is dependent only upon R and 
. Gathering the above estimates, we

therefore deduce

d

dt
F (t, ht) ≤ ‖h‖2L2

σ(μ)

[
−c0A+ a+ 6atCε + (4c+ 2a+ 6c
t)Cε + 2cM ′t2

]
+ ‖∇xh‖2L2(μ) (−2c+ 3b+ (4c+ 2a+ 6c
t) ε) t2

+ ‖∇xh‖2L2
σ(μ)

(
−bc0

4

)
t3

+ ‖∇vh‖2L2
σ(μ)

(
−ac0 + 2aε+

36c2

bc0

)
t.

Set a = ε, 4b = c = ε3/2. After choosing A > 0 sufficiently large and ε > 0 sufficiently

small, we obtain

d

dt
F (t, ht) ≤ 0, t ∈ (0, 1) ,

which implies that

F (t, ht) ≤ F (0, h0) = A ‖h0‖2L2 , t ∈ [0, 1] .

This completes the proof of the lemma. �
Before the end of this section, we introduce the wave-remainder decomposition, which

is the key decomposition in our paper. The strategy is to design a Picard-type iteration,

treating Kf as a source term. The zeroth order approximation of the Fokker-Planck

equation (1.2) is ⎧⎨⎩
∂th

(0) + v · ∇xh
(0) + Λh(0) = 0 ,

h(0)(0, x, v) = f0(x, v) .
(2.25)

Thus the difference f − h(0) satisfies⎧⎨⎩
∂t(f − h(0)) + v · ∇x(f − h(0)) + Λ(f − h(0)) = K(f − h(0)) +Kh(0) ,

(f − h(0))(0, x, v) = 0 .

Therefore the first order approximation h(1) can be defined by⎧⎨⎩
∂th

(1) + v · ∇xh
(1) + Λh(1) = Kh(0) ,

h(1)(0, x, v) = 0 .
(2.26)
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In general, we can define the jth order approximation h(j), j ≥ 1, as⎧⎨⎩
∂th

(j) + v · ∇xh
(j) + Λh(j) = Kh(j−1) ,

h(j)(0, x, v) = 0 .
(2.27)

The wave part and the remainder part can be defined as follows:

W (3) =

3∑
j=0

h(j) , R(3) = f −W (3) ,

R(3) solving the equation:⎧⎨⎩
∂tR(3) + v · ∇xR(3) = LR(3) +Kh(3) ,

R(3)(0, x, v) = 0 .
(2.28)

The next two lemmas are the fundamental properties of h(j), 0 ≤ j ≤ 3.

Lemma 2.6 (L2 estimate of h(j), 0 ≤ j ≤ 3). For all 0 ≤ j ≤ 3 and t > 0:

(i) If γ ≥ 1, there exists C > 0 such that

‖h(j)‖L2(μ) � tje−Ct‖f0‖L2(μ).

(ii) If 0 < γ < 1, we have

‖h(j)‖L2(μ) � tj‖f0‖L2(μ) .

This lemma is immediate from Lemma 2.4 and hence we omit the details.

Lemma 2.7 (x-derivative estimate of h(j), 0 ≤ j ≤ 3). Let γ > 0 and k = 1, 2. Then:

(i) For 0 < t ≤ 1, we have

‖∇k
xh

(j)‖L2(μ) � tj−
3
2k‖f0‖L2(μ) .

(ii) For t > 1, we have that if γ ≥ 1,

‖∇k
xh

(j)‖L2(μ) � tje−Ct‖f0‖L2(μ) ,

and if 0 < γ < 1,

‖∇k
xh

(j)‖L2(μ) � tj‖f0‖L2(μ) .

Proof. We divide our proof into several steps.

Step 1. First x-derivative of h(j), 0 ≤ j ≤ 3 in small time. We want to show that for

0 < t ≤ 1,

‖∇xh
(j)‖L2(μ) � t(−3+2j)/2‖f0‖L2(μ) .

The estimate of h(0) is immediate from Lemma 2.5. Note that

h(1) =

∫ t

0

e(t−s)LKesLf0ds ,
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746 YU-CHU LIN, HAITAO WANG, AND KUNG-CHIEN WU

hence

∇xh
(1) =

∫ t

0

(t− s) + s

t
∇xe

(t−s)LKesLf0ds

=

∫ t

0

1

t

[
(t− s)∇xe

(t−s)LKesLf0 + e(t−s)LK
(
s∇xe

sLf0
)]

ds.

From Lemmas 2.4 and 2.5, it follows∥∥∥∇xh
(1)
∥∥∥
L2(μ)

�
∫ t

0

t−1
[
(t− s)−1/2 + s−1/2

]
ds‖f0‖L2(μ)

� t−1/2‖f0‖L2(μ) .

Likewise, note that

h(2) =

∫ t

0

∫ s1

0

e(t−s1)LKe(s1−s2)LKes2Lf0ds2ds1 ,

and

∇xh
(2) =

∫ t

0

∫ s1

0

(s1 − s2) + s2
s1

∇xe
(t−s1)LKe(s1−s2)LKes2Lf0ds2ds1 ,

hence we have∥∥∥∇xh
(2)
∥∥∥
L2(μ)

�
∫ t

0

∫ s1

0

s−1
1

[
(s1 − s2)

−1/2 + s
−1/2
2

]
ds2ds1‖f0‖L2(μ)

� t1/2‖f0‖L2(μ) .

The estimate of h(3) is analogous and hence we omit the details.

Step 2. Second x-derivatives of h(j), 0 ≤ j ≤ 3 in small time. We want to show that

for any 0 < t ≤ 1,

‖∇2
xh

(j)‖L2(μ) ≤ Cjt
−3+j‖f0‖L2(μ) .

We only give the estimates for h(0) and h(1), and the others are similar. For any 0 < t0 ≤ 1

and t0/2 < t ≤ t0, we have

∇xh
(0)(t, x, v) = e(t−t0/2)L

[
∇xh

(0)(t0/2, x, v)
]
.

By Lemma 2.5, ∥∥∥∇2
xh

(0)
∥∥∥
L2(μ)

(t) � (t− t0/2)
−3/2(t0/2)

−3/2‖f0‖L2(μ) . (2.29)

Taking t = t0 yields ∥∥∥∇2
xh

(0)
∥∥∥
L2(μ)

(t0) � t−3
0 ‖f0‖L2(μ) . (2.30)

Since t0 ∈ (0, 1] is arbitrary, this completes the estimate for h(0). For 0 < t1 ≤ 1 and

t1/2 < t ≤ t1, we have

∇xh
(1)(t, x, v) = e(t−t1/2)L

[
∇xh

(1)(t1/2, x, v)
]
+

∫ t

t1/2

e(t−s)L
[
K∇xh

(0)(s, x, v)
]
ds .

Using Lemma 2.5 and (2.30) gives∥∥∥∇2
xh

(1)
∥∥∥
L2(μ)

(t) � (t− t1/2)
−3/2(t1/2)

−1/2‖f0‖L2(μ) +

∫ t

t1/2

s−3‖f0‖L2(μ)ds .
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Taking t = t1, we get ∥∥∥∇2
xh

(1)
∥∥∥
L2(μ)

(t1) � t−2
1 ‖f0‖L2(μ) .

Since t1 ∈ (0, 1] is arbitrary, this completes the estimate for h(1).

Next, we shall prove the large time behavior for γ ≥ 1; the estimate for the case

0 < γ < 1 can be obtained by employing the same argument.

Step 3. First x-derivative of h(j), 0 ≤ j ≤ 3, in large time for γ ≥ 1. We want to

show that for t > 1,

‖∇xh
(j)‖L2(μ) � tje−Ct‖f0‖L2(μ) , 0 ≤ j ≤ 3.

In view of Lemma 2.4, we have∥∥∥∇xh
(0)
∥∥∥
L2(μ)

(t) ≤ e−C(t−1)
∥∥∥∇xh

(0)
∥∥∥
L2(μ)

(1) � e−Ct‖f0‖L2(μ) , t > 1. (2.31)

For h(1), we have

h(1)(t, x, v) = e(t−1)Lh(1)(1, x, v) +

∫ t

1

e(t−s)L
[
Kh(0)(s, x, v)

]
ds , t > 1.

Using Lemma 2.4 and (2.31) gives∥∥∥∇xh
(1)
∥∥∥
L2(μ)

(t) ≤ e−C(t−1)
∥∥∥∇xh

(1)
∥∥∥
L2(μ)

(1) +

∫ t

1

e−C(t−s)
∥∥∥∇xh

(0)
∥∥∥
L2(μ)

(s)ds

� te−Ct‖f0‖L2(μ) , t > 1,

and similarly for ∇xh
(2) and ∇xh

(3).

Step 4. Second x-derivatives of h(j), 0 ≤ j ≤ 3 in large time for γ ≥ 1. We demon-

strate that for t > 1,

‖∇2
xh

(j)‖L2(μ) � tje−Ct‖f0‖L2(μ) ,

whose proof is similar to Step 3. �

3. In the time-like region. In this section, we will see the large time behavior of

solutions to equation (1.2). In what follows, we separate our discussion for the case γ ≥ 1

and the case 0 < γ < 1.

3.1. The case γ ≥ 1. According to Lemma 2.7, together with the Sobolev inequality

[1, Theorem 5.8]:

‖f‖L∞
x L2

v
� ‖f‖3/4H2

xL
2 ‖f‖1/4L2 ,

we immediately obtain the behavior of the wave part as follows.

Proposition 3.1. Assume that γ ≥ 1. Then for 0 ≤ j ≤ 3 and t > 0, there exists C > 0

such that

|h(j)|L2
v
� e−Cttj−

9
4 ‖f0‖L2 .

Based on the wave-remainder decomposition, it remains to study the large time be-

havior of the remainder part. By the Fourier transform with respect to the x variable,

the solution of the Fokker-Planck equation (1.2) can be represented as

f(t, x, v) =

∫
R3

eiη·x+(−iv·η+L)tf̂0(η, v)dη . (3.1)
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748 YU-CHU LIN, HAITAO WANG, AND KUNG-CHIEN WU

We can decompose the solution f into the long wave part fL and the short wave part fS
given, respectively, by

fL =

∫
|η|<δ

eiη·x+(−iv·η+L)tf̂0(η, v)dη ,

fS =

∫
|η|>δ

eiη·x+(−iv·η+L)tf̂0(η, v)dη .

(3.2)

The following short wave analysis relies on spectral analysis (Lemma 2.3).

Proposition 3.2 (Short wave fS). Assume that γ ≥ 1 and f0 ∈ L2. Then

‖fS‖L2 � e−a(τ)t‖f0‖L2 . (3.3)

In order to study the long wave part fL for γ ≥ 1, we need to further decompose the

long wave part as the fluid part and the non-fluid part, i.e., fL = fL;0 + fL;⊥, where

fL;0 =

∫
|η|<δ

eλ(η)teiη·x
〈
eD(−η), f̂0

〉
v
eD(η)dη ,

fL;⊥ =

∫
|η|<δ

eiη·xe(−iv·η+L)tΠD⊥
η f̂0dη .

(3.4)

Using Lemma 2.3, we obtain the exponential decay of the non-fluid long wave part.

Proposition 3.3 (Non-fluid long wave fL;⊥). Assume that γ ≥ 1 and f0 ∈ L2. Then

for s > 0,

‖fL;⊥‖Hs
xL

2
v
� e−a(τ)t‖f0‖L2 . (3.5)

For the fluid part, we have the following structure.

Proposition 3.4 (Fluid long wave fL;0). For γ ≥ 3/2 and any given M > 1, there exists

C > 0 such that for |x| ≤ Mt,

|fL;0(t, x, v)|L2
v
≤ C

[
(1 + t)−3/2e−

|x|2
C(t+1) + e−t/C

]
‖f0‖L1

xL
2
v
. (3.6)

On the other hand, for 1 ≤ γ < 3/2 and any given positive integer N , there exists a

positive constant C depending on N such that

|fL;0(t, x, v)|L2
v
≤ C

[
(1 + t)−3/2

(
1 +

|x|2
1 + t

)−N

+ e−t/C

]
‖f0‖L1

xL
2
v
. (3.7)

Proof. Before the proof of this proposition, we need the following two lemmas.

Lemma 3.5 (Lemma 7.11 of [28]). Suppose that g(t, η, v) is analytic in η for |η| < δ � 1

and satisfies

|g(t, η, v)|L2
v
� e−A|η|2t+O(|η|4)t

for some constant A > 0. Then in the region of |x| < (M + 1)t, where M is any given

positive constant, there exists a constant C > 0 such that the following inequality holds:∣∣∣∣∣
∫
|η|<δ

eix·ηg(t, η, v)dη

∣∣∣∣∣
L2

v

≤ C

[
(1 + t)−

3
2 e−

|x|2
Ct + e−t/C

]
.

Licensed to Shanghai Jiao Tong University. Prepared on Mon Feb 27 01:23:13 EST 2023 for download from IP 58.247.22.56.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



EXPLICIT STRUCTURE OF THE FOKKER-PLANCK EQUATION WITH POTENTIAL 749

Lemma 3.6 (Lemma 2.2 of [25]). Let x, η, v ∈ R3. Suppose g(t, η, v) is smooth and has

compact support in the variable η, and there exists a constant b > 0 such that g(t, η, v)

satisfies ∣∣Dβ
η (g(t, η, v))

∣∣
L2

v

≤ Cβ(1 + t)|β|/2e−b|η|2t

for any multi-indexes β with |β| ≤ 2N . Then there exists positive constants CN such

that ∣∣∣∣∫
R3

eix·ηg(t, η, v)dη

∣∣∣∣
L2

v

≤ CN

[
(1 + t)−3/2BN (|x|, t)

]
,

where N is any fixed integer and

BN (|x|, t) =
(
1 +

|x|2
1 + t

)−N

.

We now return to the proof of this proposition. Notice that

fL;0(t, x, v) =

∫
|η|<δ

eiη·xeλ(η)t
〈
eD(−η), f̂0

〉
v
eD(η)dη .

Let

g(t, η, v) = eλ(η)t
〈
eD(−η), f̂0

〉
v
eD(η) · 1{|η|<δ},

where 1D is the characteristic function of the domain D. When γ ≥ 3/2, the eigenvalue

λ(η) and eigenvector eD(η) are analytic in η. Owing to the asymptotic expansion of λ(η)

in (2.6), we have

|g(t, η, v)|L2
v
≤ e−aγ |η|2t+O(|η|4)t ‖f0‖L1

xL
2
v
.

From Lemma 3.5 it follows

|fL;0(t, x, v)|L2
v
�
[
(1 + t)−3/2e−

|x|2
C(t+1) + e−t/C

]
‖f0‖L1

xL
2
v
.

As for 1 ≤ γ < 3/2, the eigenvalue and eigenvector are only smooth in η. In this case,

one can see that∣∣Dβ
η g(t, η, v)

∣∣
L2

v

�
(
1 + t|β|/2

)(
1 + |η|2 t

)|β|/2
e−aγ |η|2t/2 ‖f0‖L1

xL
2
v
,

since f0 has compact support in the x variable. Note that the polynomial growth(
1 + |η|2 t

)|β|/2
can be absorbed by the exponential decay, hence we can conclude that

|fL;0(t, x, v)|L2
v
�
[
(1 + t)−3/2

(
1 +

|x|2
1 + t

)−N
]
‖f0‖L1

xL
2
v
,

in accordance with Lemma 3.6. �
We define the fluid part as fF = fL,0 and the non-fluid part as f∗ = f−fF = fL;⊥+fS .

By the fluid–non-fluid decomposition and the wave-remainder decomposition, we have

f = fF + f∗ = W (3) +R(3) .

We can define the tail part as fR = R(3) − fF and so f can be written as f = W (3) +

fF + fR.

It follows from Propositions 3.1 and 3.4 that the estimates of wave part W (3) and the

fluid part fF inside the time-like region is completed. Hence, it remains to study the tail
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part fR. From Lemma 2.7 and the fact that Gt,K are bounded operators on L2, R(3)

has the following estimate:

‖R(3)(t)‖H2
xL

2
v
≤
∫ t

0

∥∥∥h(3)(s)
∥∥∥
H2

xL
2
v

ds � ‖f0‖L2 . (3.8)

In view of (3.3), (3.5), (3.8), and Lemma 2.6, there exists C > 0 such that

‖fR‖L2 = ‖f∗ −W (3)‖L2 � e−Ct‖f0‖L2

and

‖fR‖H2
xL

2
v
= ‖R(3) − fF ‖H2

xL
2
v
� ‖f0‖L2 .

The Sobolev inequality [1, Theorem 5.8] implies

|fR|L2
v
≤ ‖fR‖L∞

x L2
v
� ‖fR‖3/4H2

xL
2
v
‖fR‖1/4L2 � e−Ct‖f0‖L2 (3.9)

for some constant C > 0. In conclusion, we have that for the time-like region, if γ ≥ 3/2,

there exists a constant C > 0 such that∣∣∣R(3)
∣∣∣
L2

v

�
[
(1 + t)−3/2e−C

|x|2
t+1 + e−Ct

]
‖f0‖L∞

x L2
v
; (3.10)

and if 1 ≤ γ < 3/2, any given N > 0, there exists a constant C > 0 such that∣∣∣R(3)
∣∣∣
L2

v

�
[
(1 + t)−3/2

(
1 +

|x|2
1 + t

)−N

+ e−Ct

]
‖f0‖L∞

x L2
v
. (3.11)

Combining Proposition 3.1, (3.9), (3.10), and (3.11), we obtain the pointwise estimate

for the solution in the time-like region.

Theorem 3.7 (Time-like region for γ ≥ 1). Let γ ≥ 1 and let f be the solution to

equation (1.2). Assume that the initial condition f0 has compact support in the x

variable and is bounded in L2
v. Then for any given M > 1 and |x| ≤ Mt,

(i) as γ ≥ 3/2, there exists a positive constant C such that

|f |L2
v
�
[
(1 + t)−3/2e−C |x|2

t+1 + (1 + t−9/4)e−Ct

]
‖f0‖L∞

x L2
v
; (3.12)

(ii) as 1 ≤ γ < 3/2, any given N > 0, there exists a constant C > 0 such that

|f |L2
v
�
[
(1 + t)−3/2

(
1 +

|x|2
1 + t

)−N

+ (1 + t−9/4)e−Ct

]
‖f0‖L∞

x L2
v
. (3.13)

3.2. The case 0 < γ < 1. First, we introduce the L2 estimate and the pointwise

estimate of the wave part.

Proposition 3.8. Assume that 0 < γ < 1. Then for 0 ≤ j ≤ 3, and t > 0, there exists

cγ > 0 such that ∥∥∥h(j)
∥∥∥
L2

� tje−cγα
2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(e(j+1)α〈v〉γ ) (3.14)

and ∣∣∣h(j) (t, x, v)
∣∣∣
L2

v

� tj−
9
4 e−

1
4 cγα

2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(e(j+1)α〈v〉γ ). (3.15)
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Proof. We first consider the L2 estimate for h(0). It is easy to see that (2.19) is still

valid if setting μ (t, x, v) = eα〈v〉
γ

, namely,

d

dt

∥∥∥h(0)
∥∥∥2
L2

+ C
∥∥∥h(0)

∥∥∥2
L2

σ

≤ 0 (3.16)

and

d

dt

∥∥∥eα〈v〉γh(0)
∥∥∥2
L2

+ C
∥∥∥eα〈v〉γh(0)

∥∥∥2
L2

σ

≤ 0. (3.17)

Hence,
∥∥h(0)

∥∥
L2 ≤ ‖f0‖L2 for t ≥ 0 and it suffices to show that for t ≥ 1,∥∥∥h(0)

∥∥∥
L2

� e−cγα
2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(eα〈v〉γ ).

As in the work of Caflisch [4], we consider a time-dependent low velocity part

E = {〈v〉 ≤ βtp
′},

and its complementary high velocity part Ec = {〈v〉 > βtp
′}, where p′ > 0 and β > 0

will be determined later. Following the argument as in Section 5 of [33], together with

(3.16) and (3.17), we obtain∥∥∥h(0)
∥∥∥
L2

� e−cγα
2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(eα〈v〉γ ) ,

for some constant cγ > 0, after choosing p′ = 1
2−γ in the Fokker -Planck case and β > 0

sufficiently large. This completes the L2 estimate for h(0).

Through the Duhamel Principle, we immediately obtain (3.14) for 1 ≤ j ≤ 3. Further-

more, the Sobolev inequality, together with Lemma 2.7 and (3.14), implies the desired

pointwise estimate for the wave part h(j), 0 ≤ j ≤ 3. �
Next, we are concerned with the pointwise behavior of the remainder part in the time-

like region. By virtue of the lack of the spectral analysis for 0 < γ < 1, we will instead

use the method of the weighted L2 estimate in the Fourier transformed variable and the

interpolation argument to deal with the time decay of the solution f to equation (1.2) in

this case. The main idea is to construct the desired weighted time-frequency Lyapunov

functional to capture the total energy dissipation rate. In the course of the proof we

have to take great care to estimate the microscopic and macroscopic parts for |η| ≤ 1

and |η| > 1, respectively. Consider (1.2); taking the Fourier transform with respect to

the x variable leads to

∂tf̂ + iv · ηf̂ = Lf̂. (3.18)

We first calculate the L2 estimate.

Proposition 3.9 (L2 estimate). Let f be the solution to equation (1.2). Then there

exists a time-frequency functional E (t, η) such that

E (t, η) ≈
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

v

, (3.19)
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where for any t > 0 and η ∈ R3, we have

∂tE (t, η) + σρ̂ (η)
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

γ−1

≤ 0. (3.20)

Here we use the notation ρ̂ (η) := min{1, |η|2}.

Proof. We multiply equation (3.18) by f̂ (t, η, v) and integrate over v to obtain

1

2

d

dt

∣∣∣f̂ (t, η, v)
∣∣∣2
L2

v

− Re
〈
Lf̂ , f̂

〉
= 0.

From the coercivity in Lemma 2.1, it follows that

1

2

d

dt

∣∣∣f̂ (t, η, v)
∣∣∣2
L2

v

+ ν0

∣∣∣P1f̂
∣∣∣2
L2

σ

≤ 0. (3.21)

Now, we need the estimate of P0f̂ . In what follows, we will apply Strain’s argument to

estimate the macroscopic dissipation, in the spirit of Kawashima’s work on dissipation

of the hyperbolic-parabolic system. Let a =
〈
M1/2, f

〉
v
and b = (b1, b2, b3) with bi =〈

viM1/2, f
〉
v
=
〈
viM1/2,P1f

〉
v
. Then P0f = aM1/2 and from (1.2) , a and b satisfy the

fluid-type system⎧⎨⎩ ∂ta+∇x · b = 0,

∂tb+ α∇xa+∇x · Γ (P1f) = −
∫ (

M1/2∇vΦ
)
P1fdv,

(3.22)

where

α =
1

3

∫
|v|2 Mdv > 0,

and Γ = (Γij)3×3 is the moment function defined by

Γij (g) =
〈
(vivj − 1)M1/2, g

〉
v
, 1 ≤ i, j ≤ 3.

Note by the definition of P0 that Γ (P1f) =
∫
(v ⊗ v)M1/2P1fdv. Taking the Fourier

transform with respect to x of (3.22) , we have

|η|2 |â|2 = (iηâ, iηâ) =
1

α

(
iηâ,−∂tb̂− iΓ

(
P1f̂

)
η −

∫ (
M1/2∇vΦ

)
P1f̂dv

)
=

1

α

[
−
(
iηâ, b̂

)
t
+
∣∣∣η · b̂

∣∣∣2 − (
iηâ, iΓ

(
P1f̂

)
η
)
−
(
iηâ,

∫ (
M1/2∇vΦ

)
P1f̂dv

)]
.

Invoking on the rapid decay of M1/2 and using the Cauchy-Schwartz inequality, we

have ∣∣∣∣∫ (
M1/2∇vΦ

)
P1f̂dv

∣∣∣∣2 ≤
∣∣∣M1/2v 〈v〉−1

∣∣∣2
L2

v

∣∣∣〈v〉γ−1 P1f̂
∣∣∣2
L2

v

≤ 3α
∣∣∣P1f̂

∣∣∣2
L2

γ−1

and ∣∣∣(iηâ, iΓ(P1f̂
)
η
)∣∣∣ ≤ ε |η|2 |â|2 + Cε |η|2

∣∣∣P1f̂
∣∣∣2
L2

γ−1

for any small ε > 0. Therefore, we can conclude

∂t Re

(
iηâ, b̂

)
1 + |η|2

+
σ |η|2

1 + |η|2
|â|2 ≤ C

∣∣∣P1f̂
∣∣∣2
L2

γ−1

(3.23)
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for some σ > 0. Now, we define

E (t, η) =
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

v

+ κ3 Re

(
iηâ, b̂

)
1 + |η|2

(3.24)

for a constant κ3 > 0 to be determined later. One can fix κ3 > 0 small enough such that

E (t, η) ≈
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

v

. Furthermore, according to Lemma 2.1 and (3.23) , we choose

κ3 > 0 sufficiently small such that

∂tE (t, η) + σ
∣∣∣P1f̂

∣∣∣2
L2

γ−1

+
2σ |η|2

1 + |η|2
|â|2 ≤ 0 (3.25)

for some σ > 0. In conclusion, we now have

∂tE (t, η) + σρ̂ (η)
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

γ−1

≤ 0.

Here we use the notation ρ̂ (η) := min{1, |η|2}. �
Since γ − 1 < 0, it is insufficient to gain the time decay of the total energy of the

solution f. Therefore, in order to capture the total energy dissipation rate, we need to

make further energy estimates on the microscopic part P1f and the macroscopic part

P0f .

Proposition 3.10. Let f be the solution to equation (1.2) . Then there exists a weighted

time-frequency functional Ẽ (t, η) such that

Ẽ (t, η) ≈
∣∣∣eα

2 〈v〉γ f̂ (t, η, v)
∣∣∣2
L2

v

, (3.26)

where 0 < αγ < 1/20 and for any t > 0 and η ∈ R3 we have

∂tẼ (t, η) + σρ̂ (η)
∣∣∣eα

2 〈v〉γ f̂ (t, η, v)
∣∣∣2
L2

γ−1

≤ 0. (3.27)

Here we use the notation ρ̂ (η) := min{1, |η|2}.

Proof. First, we shall prove the following Lyapunov inequality with a velocity weight

eα〈v〉
γ

, 0 < αγ < 1/20:

d

dt

∣∣∣eα
2 〈v〉γP1f̂ (t, η, v)

∣∣∣2
L2

v

+σ
∣∣∣eα

2 〈v〉γP1f̂ (t, η, v)
∣∣∣2
L2

γ−1

≤ Cσ |η|2
∣∣∣f̂ ∣∣∣2

L2
γ−1

+Cγ

∣∣∣P1f̂
∣∣∣2
L2

v(B2R)
,

(3.28)

where the constants Cγ > 0 and R > 0 are dependent only upon γ. We split the solution

f into two parts: f = P0f + P1f, and then apply P1 to equation (3.18):

∂tP1f̂ + iv · ηP1f̂ − LP1f̂ = −P1

(
iv · ηP0f̂

)
+ P0

(
iv · ηP1f̂

)
.

Multiply the above equation by eα〈v〉
γ

P1f̂ and integrate with respect to v to obtain

1

2

d

dt

∣∣∣eα
2 〈v〉γP1f̂ (t, η, v)

∣∣∣2
L2

v

− Re
〈
eα〈v〉

γ

LP1f̂ ,P1f̂
〉
v
= Γ,

where

Γ = −Re
〈
P1

(
iv · ηP0f̂

)
, eα〈v〉

γ

P1f̂
〉
+Re

〈
P0

(
iv · ηP1f̂

)
, eα〈v〉

γ

P1f̂
〉
.
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Owing to the rapid decay of M1/2, we obtain

|Γ| ≤ ε
∣∣∣eα

2 〈v〉γP1f̂ (t, η, v)
∣∣∣2
L2

γ−1

+ Cε |η|2
(∣∣∣P1f̂ (t, η, v)

∣∣∣2
L2

γ−1

+
∣∣∣P0f̂

∣∣∣2
L2

v

)
,

which holds for any small ε > 0. On the other hand, we rewrite L = −Λ + K, K =


χR (|v|) , where R > 0 and 
 > 0 are chosen sufficiently large such that

|v|2 〈v〉2γ−4

4
− 3

2
〈v〉γ−2 − (γ − 2)

2
|v|2 〈v〉γ−4

+
χR (|v|) ≥ 1

5
〈v〉2γ−2

.

Hence, we have

− Re
〈
eα〈v〉

γ

LP1f̂ ,P1f̂
〉
v

= Re

∫
eα〈v〉

γ
[
(Λ−K) P1f̂

]
P1f̂dv

≥
∫

eα〈v〉
γ
∣∣∣∇vP1f̂

∣∣∣2 +Re

∫
αγ 〈v〉γ−2 eα〈v〉

γ
(
v · ∇vP1f̂

)
P1f̂dv

+
1

5

∫
〈v〉2γ−2

eα〈v〉
γ
∣∣∣P1f̂

∣∣∣2 dv − C ′
∣∣∣P1f̂

∣∣∣2
L2

v(B2R)
,

where C ′ = C ′ (α, γ,R) . Note that αγ < 1/20. The Cauchy-Schwartz inequality implies∣∣∣∣Re ∫ αγ 〈v〉γ−2 eα〈v〉
γ
(
v · ∇vP1f̂

)
P1f̂dv

∣∣∣∣
≤
∫

αγ 〈v〉γ−1 eα〈v〉
γ
∣∣∣∇vP1f̂

∣∣∣ ∣∣∣P1f̂
∣∣∣ dv

≤
∫

eα〈v〉
γ
∣∣∣∇vP1f̂

∣∣∣2 dv + 1

80

∫
〈v〉2γ−2

eα〈v〉
γ
∣∣∣P1f̂

∣∣∣2 dv,
so we deduce

−Re
〈
〈v〉2� LP1f̂ ,P1f̂

〉
v
≥ 1

6

∫
〈v〉2γ−2

eα〈v〉
γ
∣∣∣P1f̂

∣∣∣2 dv − C̃ (R, γ, α)
∣∣∣P1f̂

∣∣∣2
L2

v(B2R)
,

where C̃ (R, �, α) > 0. Consequently,

d

dt

∣∣∣eα
2 〈v〉γP1f̂ (t, η, v)

∣∣∣2
L2

v

+σ
∣∣∣eα

2 〈v〉γP1f̂ (t, η, v)
∣∣∣2
L2

γ−1

≤ Cσ |η|2
∣∣∣f̂ ∣∣∣2

L2
γ−1

+Cγ

∣∣∣P1f̂
∣∣∣2
L2

v(B2R)

for some constant σ > 0.

In addition, if we multiply (3.18) with eα〈v〉
γ

f̂ (t, η, v), integrate in v, and use the same

procedure as above, we also obtain

1

2

d

dt

∣∣∣eα
2 〈v〉γ f̂ (t, η, v)

∣∣∣2
L2

v

+ σ
∣∣∣eα

2 〈v〉γ f̂ (t, η, v)
∣∣∣2
L2

γ−1

≤ Cγ

∣∣∣f̂ ∣∣∣2
L2(B2R)

. (3.29)

To do the weighted estimate, we introduce a new energy as follows:

Ẽ (t, η) := Ẽ0 (t, η) + Ẽ1 (t, η)
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with

Ẽ0 (t, η) = 1|η|≤1

(
E (t, η) + κ4

∣∣∣eα
2 〈v〉γP1f̂ (t, η, v)

∣∣∣2
L2

v

)
,

Ẽ1 (t, η) = 1|η|>1

(
E (t, η) + κ5

∣∣∣eα
2 〈v〉γ f̂ (t, η, v)

∣∣∣2
L2

v

)
,

where E (t, η) is defined as in (3.24) and the constants κ4, κ5 > 0 will be chosen small

enough. Notice further that |â|2 =
∣∣∣P0f̂

∣∣∣2
L2

v

�
∣∣∣eα

2 〈v〉γP0f̂
∣∣∣2
L2

v

for all 0 < αγ < 1/20, and

so Ẽ (t, η) ≈
∣∣∣eα

2 〈v〉γ f̂
∣∣∣2
L2

v

.

For Ẽ1 (t, η) , we combine (3.25) and (3.29) for |η| > 1 to obtain

∂tẼ1 (t, η) + σ
∣∣∣eα

2 〈v〉γ f̂ (t, η, v)
∣∣∣2
L2

γ−1

1|η|>1 ≤ 0 (3.30)

for κ5 > 0 small enough, since |η|2 /
(
1 + |η|2

)
≥ 1

2 .

For Ẽ0 (t, η) , since |η|2 /
(
1 + |η|2

)
≥ |η|2

2 for |η| ≤ 1 and |â|2 �
∣∣∣eα

2 〈v〉γP0f̂
∣∣∣2
L2

v

for all

αγ < 1/20, combining (3.25) and (3.28) for |η| ≤ 1 gives

∂tẼ0 (t, η) + σ |η|2
∣∣∣eα

2 〈v〉γ f̂ (t, η, v)
∣∣∣2
L2

γ−1

1|η|≤1 ≤ 0 (3.31)

for κ4 > 0 small enough. This completes the proof. �
Now, it is enough to prove the estimate in the time-like region. We apply the Hölder

inequality to obtain that for j ≥ 1,

E (t, η) �
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

v

=

∫ (∣∣∣f̂(t, η, v)∣∣∣2 eα〈v〉γ) 1
j+1

(∣∣∣f̂(t, η, v)∣∣∣2 e−α
j 〈v〉γ

) j
j+1

dv

≤
(∫

e−
α
j 〈v〉γ

∣∣∣f̂ (t, η, v)
∣∣∣2 dv)j/(j+1)(∫

eα〈v〉
γ
∣∣∣f̂ (t, η, v)

∣∣∣2 dv)1/(j+1)

�
∣∣∣f̂ (t, η, v)

∣∣∣2j/(j+1)

L2
γ−1

Ẽ1/(j+1) (t, η) .

Thus we conclude that

E(j+1)/j (t, η) �
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

γ−1

Ẽ1/j (t, η) �
∣∣∣f̂ (t, η, v)

∣∣∣2
L2

γ−1

Ẽ1/j (0, η) .

Now we can rewrite (3.25) , for any η ∈ R3, as

∂tE (t, η) + σρ̂ (η) E(j+1)/j (t, η) Ẽ−1/j (0, η) ≤ 0.

Integrating this over time, we obtain

jE−1/j (0, η)− jE−1/j (t, η) � −tρ̂ (η) Ẽ−1/j (0, η) .

As a consequence, for any j ≥ 1, uniformly in η ∈ R3, we get

E (t, η) � Ẽ (0, η)

(
tρ̂ (η)

j
+ 1

)−j

.
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Recall that the long wave part fL and the short wave part fS of the solution f are

given, respectively, by

fL =

∫
|η|≤1

eiη·x+(−iv·η+L)tf̂0 (η, v) dη,

fS =

∫
|η|>1

eiη·x+(−iv·η+L)tf̂0 (η, v) dη.

When |η| ≤ 1 and k ∈ N ∪ {0}, since∫
|η|≤1

|η|2k
(
t |η|2

j
+ 1

)−j

dη � (1 + t)−
3
2−k if j >

3

2
+ k,

we obtain ∫
|η|≤1

|η|2kE (t, η) dη �
∫
|η|≤1

|η|2k
(
t |η|2

j
+ 1

)−j

Ẽ (0, η) dη (3.32)

� (1 + t)−
3
2−k

∥∥∥eα
2 〈v〉γf0

∥∥∥2
L1

xL
2
v

,

which implies that ∥∥∇k
xfL

∥∥
L2 � (1 + t)−

3
4−

k
2

∥∥∥eα
2 〈v〉γf0

∥∥∥
L1

xL
2
v

.

By the Sobolev inequality ([35]), we get

‖fL‖L∞
x L2

v
�
∥∥∇2

xfL
∥∥1/2
L2 ‖∇xfL‖1/2L2 � (1 + t)−

3
2 ‖f0‖L1

xL
2
v(eα〈v〉γ ) .

When |η| > 1, we note that the equations (3.20) and (3.27) for fS are similar to (3.16)

and (3.17) for h(0). Then following a similar procedure of the proof, it implies

‖fS‖L2 � e−cγα
2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(eα〈v〉γ ) , t ≥ 0 ,

for some constant cγ > 0.

To sum up, we have the following proposition.

Proposition 3.11. Let 0 < γ < 1 and let f be the solution of equation (1.2) . For any

α > 0 small with αγ < 1/20, we have:

(i) (Long wave fL).

‖fL‖L∞
x L2

v
� (1 + t)−

3
2 ‖f0‖L1

xL
2
v(eα〈v〉γ ) . (3.33)

(ii) (Short wave fS). There exists cγ > 0 such that

‖fS‖L2 � e−cγα
2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(eα〈v〉γ ) . (3.34)

Based on the long wave-short wave decomposition and wave -remainder decomposition,

i.e.,

f = fL + fS = W (3) +R(3),
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we now define the tail part as fR = R(3) − fL = fS −W (3), which leads to that f can be

written as f = W (3) + fL + fR. From Lemma 2.7,∥∥∥R(3)(t)
∥∥∥
H2

xL
2
v

�
∫ t

0

∥∥∥h(3)(s)
∥∥∥
H2

xL
2
v

ds �
(
1 + t4

)
‖f0‖L2 , (3.35)

and so

‖fR‖H2
xL

2
v
=
∥∥∥R(3) − fL

∥∥∥
H2

xL
2
v

�
(
1 + t4

)
‖f0‖L2 , t > 0.

In view of Propositions 3.8 and 3.11,

‖fR‖L2 =
∥∥∥fS −W (3)

∥∥∥
L2

� e−
cγ
2 α

2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(e4α〈v〉γ ) , t > 0.

The Sobolev inequality implies

|fR|L2
v
≤ ‖fR‖L∞

x L2
v
� ‖fR‖3/4H2

xL
2
v
‖fR‖1/4L2 � e−

cγ
16 α

2(1−γ)
2−γ t

γ
2−γ ‖f0‖L2(e4α〈v〉γ ) , t > 0.

(3.36)

Combining (3.15), (3.33), and (3.36), we obtain the pointwise estimate for the solution

in the time-like region.

Theorem 3.12 (Time-like region for 0 < γ < 1). Let 0 < γ < 1 and let f be the solution

to equation (1.2). Assume that the initial condition f0 has compact support in the x

variable and is bounded in L2
v(e

4α〈v〉γ ). Then for α > 0 is small enough, there exists a

positive constant cγ such that

|f |L2
v
�
[
(1 + t)−3/2 + (1 + t−9/4)e−cγα

2(1−γ)
2−γ t

γ
2−γ

]
‖f0‖L∞

x L2
v(e

4α〈v〉γ ) . (3.37)

4. In the space-like region. We have finished the estimate of solution inside the

time-like region. To have the global picture of the space-time structure of solution,

we still need to investigate the solution in the space-like region. To this end, we shall

estimate the wave part W (3) and the remainder part R(3) separately. Here, the weighted

energy estimate plays a decisive role.

4.1. The case γ ≥ 3/2: Exponential decay.

Proposition 4.1. Consider the weight functions

w(x, t) = e
〈x〉−Mt

2D , μ(x) = e
〈x〉
D ,

where D and M are chosen sufficiently large. Then for 0 ≤ j ≤ 3, we have

‖wh(j)‖H2
xL

2
v
� t−3+j‖f0‖L2(μ), 0 < t ≤ 1, (4.1)

‖wh(j)‖H2
xL

2
v
� e−Ct‖f0‖L2(μ), t > 1, (4.2)

and

‖wR(3)‖H2
xL

2
v
� ‖f0‖L2(μ), t > 0. (4.3)

Proof. In view of that w(x, t) is non-increasing in t, it is not hard to verify that

‖wg(t)‖H2
xL

2
v
� ‖g(t)‖H2

xL
2
v(μ)

.

Then the weighted energy inequalities (4.1) and (4.2) follow from Lemma 2.7 directly.
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It remains to show the weighted energy estimates for the remainder part R(3), t > 0.

We shall demonstrate that

‖wR(3)‖H2
xL

2
v
� (1 + t) ‖f0‖L2(μ), t > 0.

To see this, let u = wR(3)and then ∂β
xu, where β is a multi-index, solves the equation

∂t
(
∂β
xu
)
= −v · ∇x

(
∂β
xu
)
− 1

2D

(
M − x · v

〈x〉

)
∂β
xu+ L∂β

xu+K∂β
x

(
wh(3)

)
+

1

2D

∑
β1+β2=β
|β1|≥1

(
β

β1 β2

)
∂β1
x

(
x

〈x〉

)
· v∂β2

x u.

The energy estimate gives

1

2
∂t
∥∥∂β

xu
∥∥2
L2 = − 1

2D

∫ (
M − x · v

〈x〉

) ∣∣∂β
xu
∣∣2 dxdv + ∫ (

L∂β
xu
)
∂β
xudxdv

+
1

2D

∫ ∑
β1+β2=β
|β1|≥1

(
β

β1 β2

)
∂β1
x

(
x

〈x〉

)
· v∂β2

x u∂β
xudxdv

+

∫
∂β
xuK∂β

x

(
wh(3)

)
dxdv.

Note that 2γ − 2 ≥ 1 if γ ≥ 3/2, and recall that Λ = −L+K, hence∣∣∣∣∫ x · v
〈x〉

∣∣∂β
xu
∣∣2 dxdv∣∣∣∣ ≤ ∫

〈v〉2γ−2 ∣∣∂β
xu
∣∣2 dxdv �

∫ (
Λ∂β

xu
)
∂β
xudxdv

� −
∫ (

L∂β
xu
)
∂β
xudxdv +

∫ ∣∣∂β
xu
∣∣2 dxdv,

and ∣∣∣∣∣∣∣∣
∫ ∑

β1+β2=β
|β1|≥1

(
β

β1 β2

)
∂β1
x

(
x

〈x〉

)
· v∂β2

x u∂β
xudxdv

∣∣∣∣∣∣∣∣
�
∫ ∑

β1+β2=β
|β1|≥1

〈v〉2γ−2 ∣∣∂β2
x u∂β

xu
∣∣ dxdv

�
∫ ∑

β1+β2=β
|β1|≥1

((
−L∂β2

x u
)
∂β2
x u+

(
−L∂β

xu
)
∂β
xu
)
dxdv

+

∫ ∑
β1+β2=β
|β1|≥1

(∣∣∂β2
x u

∣∣2 + ∣∣∂β
xu
∣∣2) dxdv.

Also, ∣∣∣∣∫ ∂β
xuK∂β

x

(
wh(3)

)
dxdv

∣∣∣∣ � ‖∂β
xu‖L2 ‖∂β

x

(
wh(3)

)
‖
L2 .
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EXPLICIT STRUCTURE OF THE FOKKER-PLANCK EQUATION WITH POTENTIAL 759

After choosing D and M large enough, we have

d

dt
‖u‖H2

xL
2
v
� ‖wh(3)‖

H2
xL2

v
.

Hence, it follows from (4.1) and (4.2) that

‖u‖H2
xL

2
v
(t) �

∫ t

0

‖wh(3)‖
H2

xL2
v
(s) ds � ‖f0‖L2(μ) . �

Note that w(x, t) ≥ e
〈x〉+2Mt

8D if 〈x〉 ≥ 2Mt, hence for γ ≥ 3/2, the Sobolev inequality

implies

e
〈x〉+2Mt

8D |f |L2
v
≤

3∑
j=0

∣∣∣wh(j)
∣∣∣
L2

v

+
∣∣∣wR(3)

∣∣∣
L2

v

�
3∑

j=0

∥∥∥wh(j)
∥∥∥3/4
H2

xL
2
v

∥∥∥wh(j)
∥∥∥1/4
L2

+
∥∥∥wR(3)

∥∥∥3/4
H2

xL
2
v

∥∥∥wR(3)
∥∥∥1/4
L2

�
(
t−9/4 + 1

)
‖f0‖L2(μ)

�
(
t−9/4 + 1

)
‖f0‖L2 .

The last inequality is due to the compact support assumption of the initial data.

Theorem 4.2 (Space-like region for γ ≥ 3/2). Let γ ≥ 3/2 and let f be the solution

to equation (1.2). Assume that the initial condition f0 has compact support in the x

variable and is bounded in L2
v. Then there exists a large positive constant M such that

if 〈x〉 > 2Mt, we have

|f |L2
v
� (1 + t−9/4)e−C(〈x〉+t)‖f0‖L2 ,

here C = C(M) is a positive constant.

4.2. The case 0 < γ < 3/2: Subexponential decay. If 0 < γ < 3/2, we consider the

weight functions

w(t, x, v) = e
αρ(t,x,v)

2 , μ(x, v) = eαc(x,v) ,

where

ρ(t, x, v) = 5 (δ(〈x〉 −Mt))
γ

3−γ

(
1− χ

(
δ (〈x〉 −Mt) 〈v〉γ−3

))
+
[(
1− χ

(
δ (〈x〉 −Mt) 〈v〉γ−3

))
δ(〈x〉 −Mt) 〈v〉2γ−3 + 3 〈v〉γ

]
χ
(
δ (〈x〉 −Mt) 〈v〉γ−3

)
,

and

c(x, v) = 5 (δ 〈x〉)
γ

3−γ

(
1− χ

(
δ 〈x〉 〈v〉γ−3

))
+
[(

1− χ
(
δ 〈x〉 〈v〉γ−3

))
δ 〈x〉 〈v〉2γ−3

+ 3 〈v〉γ
]
χ
(
δ 〈x〉 〈v〉γ−3

)
.

Here M is a large positive constant, δ, α are small positive constants; all of them will be

chosen later. We introduce the following space-velocity decomposition:

H+ = {(x, v) : [δ(〈x〉 −Mt)] ≥ 2 〈v〉3−γ} ,
H0 = {(x, v) : 〈v〉3−γ

< [δ(〈x〉 −Mt)] < 2 〈v〉3−γ} ,
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and

H− = {(x, v) : [δ(〈x〉 −Mt)] ≤ 〈v〉3−γ} .

Proposition 4.3. Consider the weight functions

w(t, x, v) = e
αρ(t,x,v)

2 and μ(x, v) = eαc(x,v) ,

where α > 0 is sufficiently small with αγ < 1/20. Then:

(i) For 0 ≤ j ≤ 3,

‖wh(j)‖H2
xL

2
v
� t−3+j‖f0‖L2(μ), 0 < t ≤ 1,

and

‖wh(j)‖H2
xL

2
v
� (1 + t)

j ‖f0‖L2(μ), t > 1.

(ii) For 1 ≤ γ < 3/2,

‖wR(3)‖H2
xL

2
v
� t(1 + t)‖f0‖L2(μ) , t > 0,

and for 0 < γ < 1,

‖wR(3)‖H2
xL

2
v
� t(1 + t4)‖f0‖L2(μ) , t > 0.

Proof. It is similar to Proposition 4.1 that the weighted energy estimate of the wave

parts h(j) is a consequence of Lemma 2.7 by virtue of ρ(t, x, v) being non-increasing in t

and ρ(0, x, v) = c(x, v).

We shall focus on the weighted energy estimate for the remainder part R(3), t > 0.

We want to show that for 1 ≤ γ < 3/2,

‖wR(3)‖H2
xL

2
v
� t(1 + t)‖f0‖L2(μ) , t > 0,

and for 0 < γ < 1,

‖wR(3)‖H2
xL

2
v
� t(1 + t4))‖f0‖L2(μ) , t > 0.

Let u = wR(3) = e
αρ
2 R(3), and then ∂β

xu, where β is a multi-index, solves the equation

∂t
(
∂β
xu
)
= −v · ∇x

(
∂β
xu
)
+

α

2
(∂tρ+ v · ∇xρ)∂

β
xu+ e

αρ
2 L

(
e−

αρ
2 ∂β

xu
)

+
α

2

∑
β1+β2=β
|β1|≥1

(
β

β1 β2

)
(∂t∂

β1
x ρ+ v · ∇x∂

β1
x ρ)∂β2

x u

+
∑

β1+β2+β3=β
|β3|<|β|

(
β

β1 β2 β3

)
(∂β1

x e
αρ
2 )L

(
(∂β2

x e−
αρ
2 )∂β3

x u
)

+K∂β
x

(
wh(3)

)
.
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The energy estimate gives

1

2

d

dt

∥∥∂β
xu
∥∥2
L2

=

∫
R3

〈
e

αρ
2 L

(
e−

αρ
2 ∂β

xu
)
, ∂β

xu
〉
v
dx+

α

2

∫
R3

〈
(∂tρ+ v · ∇xρ)∂

β
xu, ∂

β
xu
〉
v
dx

+
α

2

∑
β1+β2=β
|β1|≥1

(
β

β1 β2

)∫
R3

〈
(∂t∂

β1
x ρ+ v · ∇x∂

β1
x ρ)∂β2

x u, ∂β
xu
〉
v
dx

+
∑

β1+β2+β3=β
|β3|<|β|

(
β

β1 β2 β3

)∫
R3

〈
(∂β1

x e
αρ
2 )L

(
(∂β2

x e−
αρ
2 )∂β3

x u
)
, ∂β

xu
〉
v
dx

+

∫
R3

〈
K∂β

x

(
wh(3)

)
, ∂β

xu
〉
v
dx

:= (I1) + (I2) + (I3) + (I4) + (I5) .

We shall estimate (Ii) , i = 1, . . . , 5, term by term.

For (I1), it is easy to see that

〈
g, e

αρ
2 L

(
e−

αρ
2 g

)〉
v
=
〈
g, e−

αρ
2 L

(
e

αρ
2 g

)〉
v
= 〈g, Lg〉v +

α2

4

〈
g2, |∇vρ|2

〉
v
.

In addition, direct calculation gives

∇vρ =
[
(γ − 3)(1−2χ)δ(〈x〉−Mt) 〈v〉2γ−3+3(γ − 3) 〈v〉γ − 5(γ − 3) (δ(〈x〉 −Mt))

γ
3−γ

]
×
[
δ(〈x〉 −Mt) 〈v〉γ−4

] v

〈v〉χ
′

+
[
(2γ − 3)δ(〈x〉 −Mt) 〈v〉2γ−4

] v

〈v〉 (1− χ)χ+ 3γ 〈v〉γ−1 v

〈v〉χ .

This implies

|∇vρ| � 〈v〉γ−1 on H0 ∪H−

and

∇vρ = 0 on H+ .

Therefore,

(I1) =

∫
R3

〈
e

αρ
2 L

(
e−

αρ
2 ∂β

xu
)
, ∂β

xu
〉
v
dx

≤ −
(
ν0 −

α2C

4

)∫
R3

∣∣P1∂
β
xu
∣∣2
L2

σ
dx+

α2C

4

∫
H0∪H−

∣∣P0∂
β
xu
∣∣2 dxdv (4.4)

for some constant ν0 > 0.
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For (I2) and (I3), we need the estimates of derivatives of ρ(t, x, v). Direct computation

gives

∂tρ = −δM 〈v〉2γ−3

(
5γ

3− γ

[
δ(〈x〉 −Mt) 〈v〉γ−3

] 2γ−3
3−γ

(1− χ) + χ(1− χ)

)
+δM

(
5
[
δ(〈x〉−Mt) 〈v〉γ−3

] γ
3−γ −(1− 2χ)

[
δ(〈x〉 −Mt) 〈v〉γ−3

]
−3

)
〈v〉2γ−3 χ′

≤ 0,

(the constants 5 and 3 are chosen artificially such that the quantity in the latter bracket

is non-negative on H0) and

∇xρ = δ (∇x 〈x〉) 〈v〉2γ−3

(
5γ

3− γ

[
δ(〈x〉 −Mt) 〈v〉γ−3

] 2γ−3
3−γ

(1− χ) + χ(1− χ)

)
− δ (∇x 〈x〉)

(
5
[
δ(〈x〉 −Mt) 〈v〉γ−3

] γ
3−γ −(1− 2χ)

[
δ(〈x〉 −Mt) 〈v〉γ−3

]
− 3

)
〈v〉2γ−3

χ′,

so

∂tρ = v · ∇xρ = 0 on H− ,

|∂tρ| � δM 〈v〉2γ−3
, |v · ∇xρ| � δ 〈v〉2γ−2

on H0 ,

∂tρ = −5δMγ

3− γ
[δ(〈x〉 −Mt)]

2γ−3
3−γ , v · ∇xρ =

5δγ

3− γ

v · x
〈x〉 [δ(〈x〉 −Mt)]

2γ−3
3−γ on H+ .

Furthermore, we can also obtain that for |β1| ≥ 1,

∂t∂
β1
x ρ = ∇x∂

β1
x ρ = 0 on H−,

∣∣∂t∂β1
x ρ

∣∣ � δ2M 〈v〉γ+(|β1|+1)(γ−3) ,
∣∣∇x∂

β1
x ρ

∣∣ � δ2 〈v〉γ+(|β1|+1)(γ−3) on H0 ∪H+.

From these, there exist constants C > 0 and C ′ > 0 such that

α

∣∣∣∣∫
R3

〈
v · ∇xρ∂

β
xu, ∂

β
xu
〉
v
dx

∣∣∣∣ ≤ αδC

(∫
R3

| 〈v〉γ−1 P1∂
β
xu|2L2

v
dx+

∫
H0

|P0∂
β
xu|2dxdv

+

∫
H+

[δ(〈x〉 −Mt)]
2γ−3
3−γ |P0∂

β
xu|2dxdv

)
,

(4.5)

α

∫
R3

〈
(∂tρ)∂

β
xu, ∂

β
xu
〉
v
dx ≤ −αδMC ′

∫
H+

[δ(〈x〉 −Mt)]
2γ−3
3−γ |P0∂

β
xu|2dxdv

+ αδMC

(∫
R3

| 〈v〉γ−1
P1∂

β
xu|2L2

v
dx+

∫
H0

|P0∂
β
xu|2dxdv

)
,

(4.6)
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and for |β1| ≥ 1,

α

2

∣∣∣∣∫
R3

〈
(∂t∂

β1
x ρ+ v · ∇x∂

β1
x ρ)∂β2

x u, ∂β
xu
〉
v
dx

∣∣∣∣
≤ αδ2M

2
C

[∫
R3

(∣∣∣〈v〉γ−1
P1∂

β2
x u

∣∣∣2
L2

v

+ | 〈v〉γ−1
P1∂

β
xu|2L2

v

)
dx

+

∫
H0

(∣∣P0∂
β2
x u

∣∣2 + ∣∣P0∂
β
xu
∣∣2) dxdv

+

∫
H+

[δ(〈x〉 −Mt)]
2γ−3
3−γ

(∣∣P0∂
β2
x u

∣∣2 + ∣∣P0∂
β
xu
∣∣2) dxdv] .

(4.7)

As for (I4), |β1|+ |β2| ≥ 1, we have∣∣∣∣∫
R3

〈
(∂β1

x e
αρ
2 )L

(
(∂β2

x e−
αρ
2 )∂β3

x u
)
, ∂β

xu
〉
v
dx

∣∣∣∣
≤ αδC

2

[∫
R3

(∣∣P1∂
β3
x u

∣∣2
L2

σ
+
∣∣P1∂

β
xu
∣∣2
L2

σ

)
dx+

∫
H0

∣∣P0∂
β3
x u

∣∣2 + ∣∣P0∂
β
xu
∣∣2 dxdv

+

∫
H+

[δ(〈x〉 −Mt)]
2γ−3
3−γ

(∣∣P0∂
β3
x u

∣∣2 + ∣∣P0∂
β
xu
∣∣2) dxdv] .

(4.8)

Finally,

(I5) ≤
∣∣∣∣∫

R3

〈
K∂β

x

(
wh(3)

)
, ∂β

xu
〉
v
dx

∣∣∣∣ � ∥∥∂β
xu
∥∥
L2

∥∥∥∂β
x

(
wh(3)

)∥∥∥
L2

. (4.9)

Gathering the terms (4.4)–(4.9), we find

d

dt
‖u‖2H2

xL
2
v
� ‖u‖H2

xL
2
v
‖wh(3)‖H2

xL
2
v
+

∫
H0∪H−

(∣∣P0∇2
xu
∣∣2 + |P0∇xu|2 + |P0u|2

)
dxdv

� ‖u‖H2
xL

2
v
‖wh(3)‖H2

xL
2
v
+ ‖u‖H2

xL
2
v
‖R(3)‖H2

xL
2
v

� ‖u‖H2
xL

2
v

(
‖h(3)‖H2

xL
2
v(μ)

+ ‖R(3)‖H2
xL

2
v

)
,

after choosing δ, α > 0 small and M large enough with αγ < 1/20. Hence, it follows

from Lemmas 2.6 and 2.7 that for 1 ≤ γ < 3/2,

‖wR(3)‖H2
xL

2
v
= ‖u‖H2

xL
2
v
� t(1 + t) ‖f0‖L2(μ) ,

and for 0 < γ < 1,

‖wR(3)‖H2
xL

2
v
= ‖u‖H2

xL
2
v
� t(1 + t4) ‖f0‖L2(μ) .

This completes the proof of the proposition. �
Observe that for 〈x〉 > 2Mt,

ρ(t, x, v) � (δ(〈x〉 −Mt))
γ

3−γ

and

〈x〉 −Mt >
〈x〉
3

+
Mt

3
.

The Sobolev inequality immediately gets the following.
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Theorem 4.4 (Space-like region for 0 < γ < 3/2). Let 0 < γ < 3/2 and let f be the

solution to equation (1.2). Assume that the initial condition f0 has compact support in

the x variable and is bounded in L2
v(e

4α〈v〉γ ) for α > 0 small enough. Then there exists

a positive constant C = C(M) such that for 〈x〉 ≥ 2Mt,

|f |L2
v
� (1 + t−9/4)e−C(〈x〉+t)

γ
3−γ ‖f0‖L2(e4α〈v〉γ ) .

5. Conclusion. In this paper, we obtain the quantitative pointwise behavior of the

solutions of the Fokker-Planck equation with potential Φ(v), where

Φ =
1

γ
〈v〉γ +Φ0 , γ > 0, Φ0 is a fixed constant .

The structure of the solution sensitively depends on the potential function. For hard

potentials, we extend the result [10] with the Gaussian velocity weight eα|ξ|
2

to more

general exponential velocity weights eα|ξ|
p

, 0 < p ≤ 2. For Maxwellian molecules and

soft potentials, our result is the first attempt aiming at the pointwise structure of the

solution.

In the time-like region (t large), the solution is the heat kernel-type (1+ t)−3/2e−C |x|2
t+1

for γ ≥ 3/2, almost heat kernel-type (1 + t)−3/2
(
1 + |x|2

1+t

)−N

for 1 ≤ γ < 3/2, and has

polynomial decay (1 + t)−3/2 for 0 < γ < 1.

In the space-like region (|x| large), the solution has exponential decay e−C|x| for γ >

3/2 and sub-exponential decay e−C|x|
γ

3−γ
for 0 < γ < 3/2, respectively.

Lastly, we would like to remark that our results can be easily generalized to arbi-

trary dimension d. In fact, we only need to modify the wave-remainder decomposition

to guarantee the remainder part owns enough regularity, so that the weighted energy

estimate for space-like region can be applied. It turns out the time decay will change

from (1+t)−3/2 to (1+t)−d/2 for the time-like region, while the behavior in the space-like

region remains the same.
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