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3D HARD SPHERE BOLTZMANN EQUATION: EXPLICIT STRUCTURE
AND THE TRANSITION PROCESS FROM POLYNOMIAL TAIL TO
GAUSSIAN TAIL

YU-CHU LIN, HAITAO WANG, AND KUNG-CHIEN WU

ABSTRACT. We study the Boltzmann equation with hard sphere in a near-equilibrium setting.
The initial data is compactly supported in the space variable and has a polynomial tail in
the microscopic velocity. We show that the solution can be decomposed into a particle-like part
(polynomial tail) and a fluid-like part (Gaussian tail). The particle-like part decays exponentially
in both space and time, while the fluid-like part corresponds to the behavior of the compressible
Navier-Stokes equation, which dominates the long time behavior and exhibits rich wave motion.
The nonlinear wave interactions in the fluid-like part are precisely characterized and therefore
we are able to distinguish the linear and nonlinear wave of the solution. It is notable that
although the solution has polynomial tail in the velocity initially, the transition process from
the polynomial to the Gaussian tail can be quantitatively revealed due to the collision with the
background global Maxwellian.
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1. INTRODUCTION

1.1. The model. The Boltzmann equation is a fundamental model in the collisional kinetic the-
ory, which describes the evolution of a phase space distribution function of moderately dilute gas.
Precisely, the Boltzmann equation reads

OF+¢-V.F=Q(F,F),
(1) (t,x,8) € RT x R? x R3,

F(Oa $,€) = FO(:L', g)a
where F (t,x, &) is the distribution function for particles at time ¢ > 0, position = (x1, z2, x3) €
R? and microscopic velocity & = (51, &, &3) € R3, and initial data Fy (2,£) > 0 is given. Here the
Boltzmann collision operator @ (,-) is given by

Q@.F)= [ [ lanllG€)F (€)= Gle) P (©)dnde.
where ¢ = £ — &, is the relative velocity and the post-collisional velocities satisfy
=—[(€-&)nn, &=&+[E-&) nn
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It is well known that the global Maxwellians are the steady solutions to the Boltzmann equation.
In the perturbation regime near the Maxwellian, we look for the solution in the form of

(2) F=M+f, Fyz,&)=M++cfo,
where € > 0 sufficiently small, with a perturbation function f to M. Here the global Maxwellian

M is normalized as
M= L ex fﬁ
a (2%)3/ 2 P 2

Substituting into , the perturbation function f satisfies the equation
f|t:O:F0(x7£)_M:€f07 (x7£) ERg XRSa

3)

where
Lf=QM, f)+Q(f;M).
In fact, £ can be split into
Lf=-v+K,
with

/ / g+ w] M (&) duwde. ~ (14 [€]).
Kf = //|q nl ML) £ (€) + F(€) M(E) — f (€)M (€)] dnde..

Note that this kind of perturbation (2) allows the initial data to have a polynomial tail in the
microscopic velocity, which is different from the standard perturbation, F' = M + /M f, where
initial data is assumed to have a Gaussian tail.

It is known that there are extensive studies on the standard perturbation, including the global
existence, time-asymptotic behavior, and even the pointwise structure, see [7, 16, 27, 28] and
the references therein. It would be very interesting to see that can we still obtain the precise
space-time structure of the solution for initial data with a polynomial tail?

Moreover, since the perturbation setting describes the collisions between a small amount of
released particles and the ambient particles that have reached thermal equilibrium, the physical
intuition suggests that the distribution of the released particles will also approach thermal equi-
librium over a long period, namely, it will become close to a Gaussian in terms of the microscopic
velocity. It is a challenge problem that is it possible to give a quantitative description of the
transition process?

The main goal of this paper is to answer the above two questions. Specifically, we will construct
a pointwise estimate of solution to with respect to all variables, space, time, and velocity.
The estimate not only exhibits the wave motion in space-time, but also reveals how the solution
transitions from a polynomial tail to a Gaussian tail.

1.2. Review of previous works. Concerning the polynomial tail perturbation for collisional
kinetic equation, there has been substantial progress recently. For the torus case, it was initiated
by Gualdani-Mischler-Mouhot [I7] for the Boltzmann equation with hard sphere. It was then
generalized by [§] for Landau equation, by [II, (18] for the Boltzmann equation without angular
cutoff, and by [5] for the Boltzmann equation with soft potentials. For the whole space case, we
refer to [9] 6] for the non-cutoff Boltzmann equation and [13] for the cutoff Boltzmann equation.
These works mainly focused on global existence and large time decay of the solution, whereas our
study aim at providing a more quantitative description of the structure of the solution.

Next, we review some space-time pointwise results closely related to the current study. It
was initiated by Liu [22] for 1D viscous conservation laws, then developed to multi-dimensional
compressible Navier-Stokes equation [I0, 12 23] 24]. There are two key ingredients. The first
is the construction of Green’s function for the linearized system, where rich wave phenomena,
such as dissipative Huygens wave, diffusion wave, Riesz wave are identified. The other one is the
careful estimate of nonlinear wave couplings between the above basic wave patterns. As is known,
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the long time behavior of the Boltzmann equation is governed by macroscopic fluid. There are
some parallel results for Boltzmann equation with standard Gaussian tail. The result for 1D hard
sphere Boltzmann equation was constructed by Liu-Yu [25]. As the nonlinear interaction is strong
in 1D, the authors need to extract the so called “kinetic Burger equations” to close the nonlinear
problem. Later, [26] 27] obtained the explicit structure of Green’s function for the linearized
Boltzmann equation with hard sphere in 3D. Recently, [20] constructed the explicit structure
of the relativistic Boltzmann equation for “hard ball”, an exponentially sharp ansatz similar to
structure in [TI0] was justified. In these works, the nonlinear interactions have been estimated to
the extent necessary to close the nonlinear ansatz.

The transition from polynomial tail to Gaussian tail is related to the decay estimates for large
velocities in the Boltzmann equation. For space homogeneous case, there are extensive studies on
L} moments or pointwise decay, both for polynomial and exponential weight, see [2, B} [T} [15]
and references therein. For space inhomogeneous case, the results are relatively fewer. Generation
of polynomial moments in Ll or pointwise sense was established under suitable moment bound
conditions for hard potential with or without cutoff, see [4, [I7, [19]. Different from the conditional
results, our result provides a dynamic process for Gaussian tail generation in the perturbation
regime.

1.3. Notations. Before stating our main results, we introduce some notations used in this paper.
We denote wg (§) = (€)? = (1+[€]2)8/2 | B € R. For the microscopic variable ¢, we denote

1/p
oler = ([ lode) it 1 <p< oo lgluz = sup lg(o)
R3 £ER3

and the weighted norms can be defined by

olez, = ([, [©"s

The L? inner product in R3 will be denoted by (-, Des des,

() 9(6)]

p 1/p .
d§) if 1 <p< oo, |g\Lé>o[f = sup
' £ER3

(f9)c = / F(6)g@)de.

For the Boltzmann equation with hard sphere, the natural norm in § is | - 72, which is defined as

9% = |© o|
9lrz = ng-

For the space variable x, we have similar notations, namely,

1/p
l9le = ( / |gpdx) f1<p<oo, lgli= = sup lg(a)]
R3 rER3

Finally, with X and ) being two normed spaces, we define

Hngy = ||g‘y|xa

and for simplicity, we denote

1/2
2
lolis = Nollgez = ( [ 1otz ac)

For any two functions f(z,t) and g(x,t), we define the space-time convolution as

fatysapg@t)= [ [ fe=yt=r)otw. ayar

For any two real numbers a and b, we define a A b = min{a, b}.
For simplicity of notations, hereafter, we abbreviate < C' to <, where C is a constant depending
only on fixed numbers.
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1.4. Main theorem and significant points of our results. In order to achieve our goal,
we introduce the decomposition f = f; + v Mf,. Here f; corresponds to the part with only
polynomial tail, while v/ M f, has Gaussian tail. Heuristically, the closer a distribution function
to a Gaussian, the closer the behavior resembles macroscopic hydrodynamics. Therefore, one may
expect f; behaves like particle, and f; behaves like fluid.

The following coupled system designed for f; and fs is to realize one’s intuition:

Ot +€-Vaft = —v(©) i + Kot + QU 1) +Q (1. VME) +Q (VM. 1)

Otfo+€-Vaufo=Lfs+Kpfi +T (fo, f2),

with initial data

J10,2,8) = fio (2, 8) =cfo(x,8), [f2(0,2,8) = fa0(x,8) =0,
where

b= [0 (44/50) -0 (o 1)

is the so called linearized Boltzmann collision operator,

Lo fo) = <= (VM2 VMP)

is the nonlinear Boltzmann collision operator, and K = K, + MY/2K, with
Ko :=xge=mh,  Ko=M1xgemk

for a constant R > 0 large enough, xy.; being the indicator function.
It is noted that similar decomposition was also employed in [6] for Boltzmann equation without
angular cutoff. Based on this decomposition, we have the main theorem as follows:

Theorem 1. Let 8 > 4 be sufficiently large. Assume that fo € Lg5Lg° is compactly supported in
the variable x for all &

fo(2,€) =0 for [z > 1, £ € R,
Then for any fixed 6 > 0, there exists € > 0 small enough such that the solution f of exists for

t > 0 and it can be decomposed as f = f1 + VM fa, where f1 and fo satisfy with the following
estimates:
For f1, we have

|1{<§>§t}f1‘ Se <§>*3 e Co[(O)%+(t+z])]
and
[Leysy 1] S e (€)™P emoli@t+(ttial)]

for some positive constant ¢ .
For fo, we have

2
|z

_ 2\ —3/2 B _
1{‘1|§Ct} (1 + t) 3/2 (1 + %) + (1 + t) 3/2 e D(1+t)

<
|J02|Lgfﬁ ~ € ,
Ly _zl=en bt

+(14+t)""e Do+t e &

9\ —3/2 o\ —
5 2 2] _3 (|| = ct)
1 14+t 14 2 14672 (14 2=
+ e 1z <(croyy |(1+1) ( +1+t> +(1+1) ( + T

for some positive constants D,Do,é(;. Here ¢ = \/5/3 is the sound speed associated with global
Mazwellian M.

Several remarks on the main theorem are in order:
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e The main result is the combinations of Theorems [9] and In Theorem [9 we
obtain the global wave structure, which is accurate in the time-like region but only shows
polynomial decay for f5 in the space-like region. In Theorem the estimate in space-like
region is further improved to be exponentially sharp. Theorem [15] describes the dynamic
process of transition from polynomial tail to Gaussian tail for fi.

e The result shows that the polynomial tail part f; decays exponentially in both space and
time, while Gaussian tail part v/ Mfy exhibits rich wave phenomena and dominates the
solution at large time. This is consistent with our intuition: the polynomial and Gaussian
tail parts are associated with particle-like and fluid-like behaviors, respectively.

e In the estimate of f», we see that the terms consist of ¢ and &2 orders. The & order
terms represent linear waves, such as Huygens, diffusion, and Riesz waves, as given by
the Green’s function. The €2 order terms arise from nonlinear interactions between these
basic waves. They consist of polynomial versions of Huygens and diffusion waves, primarily
concentrate inside the acoustic wave cone. Compared to the linear waves, the nonlinear
waves not only have a £2 order magnitude, but also decay faster by (1 +¢)~/2 than their
linear counterparts. However, previous works [10, 12| 20, 23, 24] only showed that they
have the same decay rates. Thus, our results provide a more accurate description for the
nonlinear effect, based on sharper estimates of nonlinear wave couplings.

e The polynomial tail of the solution is fully captured by f; part. The pointwise estimate of
f1 in velocity variable thus shows how the polynomial tail transitions to a Gaussian tail.
Specifically, f; only exhibits a polynomial tail initially, as time evolves it immediately
acquires an exponential tail. As time continues to evolve, the particles with velocity

(¢) < t will become Gaussian tail, while the non-Gaussian part is of the order e~
t2

and
any moments generated by the non-Gaussian part are bounded by e~ Therefore, as
time tends to infinity, the distribution function will eventually transit to a Gaussian tail;
but however, the transition cannot be completed in any finite time.

e The assumption that the initial data has compact support in space is unessential. It is
not hard to generalize to the case where the initial data decays polynomially in space, but
in this case, the space-like behavior should be modified accordingly. We do not pursue
this, as our focus is on the quantitative description of wave motion and the transition to
a Gaussian tail.

1.5. Ideas and strategies. We now outline the ideas and strategies for the proof of the main
theorem.

1.5.1. Global wave structure. Let us begin with Theorem [9] the global wave structure of the so-
lution. Consider the coupled system . Let S* and G* be the solution operators to the damped
transport equation and (standard) linearized Boltzmann equation respectively, namely, g(¢) = S?gq
solves

g +&-Vag+v(§)g=0, 9(0,z,8) =go,
and g(t) = Glgg solves
Og+&-Vag—Lg=0, 9(0,2,§) =go.
Then by Duhamel principle, solutions f; and fs to satisfy the following coupled integral system

(5)
hi(t) =e8"fo+ /0 S"TK fi(r)dr + /0 S TQUL 1) + QUL VM) + QUVMSa, f1)] (7)dr,

fg(t)z/o GtiT/bel(T)dT—F/o GtiTF(fQ,fQ)(T)dT.

The essential step for constructing global wave structure is to find out the accurate ansatz for the
solution.

We neglect the nonlinear effects for the time being. In the equation for f;, if R is chosen
sufficiently large, the integral operator s can be regarded as a perturbation of the damped
transport operator. This results in an exponential decay of f; in both space and time. We
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then substitute the estimate of f; into the integral equation for fs, requiring consideration of
fg G'""Kpf1(7)dr. The explicit structure of Green’s function G is constructed in [26] 27] (we
stated it in Lemma, showing rich wave structures, including a dissipative Huygens wave (acoustic
wave described by a moving heat kernel), a diffusion wave (thermal wave described by a stationary
heat kernel), a Riesz wave (related to vorticity of macroscopic fluid, described by a polynomial
analogue of diffusion wave confined in the wave cone), and a space-time exponential decay term.
The estimate of f5 is given by the convolution of the Green’s function and the source term K f1,
inheriting a structure similar to that of the Green’s function (see Lemmas [I9}21)). This indicates
that f; can be viewed as particle-like wave, while f; can be viewed as fluid-like wave.

Next, we incorporate nonlinear effects. In designing the coupled system, we intentionally placed
all nonlinear terms involving f; in the first equation of , as it describes the particle-like behavior.
The term I'(f2, f2) is included in the second equation, as it is associated with the fluid-like behavior.
The key term is f(f G'""T'(f2, f2)(7)dr, which accounts for the nonlinear wave interactions. A
fundamental property is that the nonlinear operator I' is purely microscopic, and when acted
upon by the Green’s operator, it gains an extra %—order time decay. Substituting the linear
estimates leads to the convolution estimates:

Diffusi H Ri E tial d
( iffusion+Huygens+Riesz+txponentia ecay) * ) (Diﬁusion—l—Huygens—i—Riesz+Exp0nential decay)z.

V1it+t (@t

The main effort is to provide sharp estimates of these convolutions. Without delving into the

details, we provide a heuristic explanation of the interaction process here. We illustrate this with
the convolution of two Huygens waves.

t (Je—yl—(t=s))? (ul=5)2
/ / (1+t— S>_5/26_%(1 + s)“ﬂfmdyds,
o Jrs

where ¢ = 1 for simplicity. The following figure is to explain the interaction process:

FIGURE 1. Interaction between two Huygens waves

Uyl—=s)

2
Here, the source (1 + s)~%e” ©1G+D is plotted as a forward cone with thickness /s, and the
(z—yl—(t=s))?

propagator (1 4+t — s)_5/ 2¢7 7 Dolt-9) is plotted as a backward cone with thickness /t — s.
The space is represented in 2D in the figure. The interaction essentially occurs in the following
space-time region:

{(.s)|llz =yl = (t = 5)| < O1)Vt — s and [ly| - s| < O(1)/s} .
Inside this region, the exponential term in Huygens wave is not effective, and the decay is mainly
due to time decay factor. The key point is the sharp estimate of the volume for this space-time
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region. In Section we first provide some heuristic calculations. In fact, our rigorous estimates
are greatly motivated by the heuristics. We identify the strong interaction region (which appears
in the regions D4 and Ds of Section @ and perform very careful estimates there. The results
match those obtained by the heuristic argument.

Through these sharp convolution estimates, we propose an appropriate ansatz, which is expo-
nential decay for f; and polynomially sharp for f; as the main focus here is the region inside wave
cone, where only polynomial decay can be expected. Justifying the ansatz involves even more
complicated convolution estimates, but the underlying idea remains similar. Additionally, the
damped transport operator St is used to compensate the loss of velocity decay from the nonlinear
operator I' in the justification for f; (see Lemmas [4| and . Our result distinguishes between
the linear and nonlinear parts of the solution, significantly improving upon previous results in
[10] [12] 20, 23] 24], where the nonlinear couplings and the linear part have the same decay rate.

1.5.2. Exponential decay outside the acoustic wave cone. In Theorem [9) we obtain space-time ex-
ponential decay for f1, but for fo, we only achieve a polynomial decay estimate. This is because
we designed a polynomial-type ansatz to facilitate the control of the nonlinear part of fs. This
ansatz is accurate for the structure inside the acoustic wave cone. However, since the initial data
has compact support in space and fo corresponds to a fluid structure that propagates at a finite
speed, we expect the solution to decay exponentially outside the wave cone.

To observe the behavior of f5 outside the cone, we multiply a suitable weight function on fs and
prove an L bound of the weighted solution through regularization and energy estimates. This
approach for obtaining the space asymptotic behavior of the Boltzmann equation was developed
in our previous work [21], and here it is adapted to handle fs.

It is worth mentioning that in our previous work, we proved exponential decay outside a wave
cone |x| < Mt for a sufficiently large M. Here, through careful calculation of the micro projection,
we show that fo indeed decays space-time exponentially outside the wave cone |z| < (¢ + )t for
any positive § (see Theorem , where c¢ is the sound speed. This result is more consistent with
physical reality.

1.5.3. The transition from polynomial tail to Gaussian tail. In the decomposition f = f1+v M fa,
the latter already exhibits Gaussian tail. Therefore, studying the transition process is equivalent
to examining the generation of the Gaussian tail for fi;. The mechanism for generating velocity
decay comes from e VO in the damped transport operator St:

Stgo = e gy (z — &t, ).
At first glance, it seems that f; can gain arbitrary velocity decay as time evolves. However, the

upper bound for velocity decay is limited by the coupling between f; and vV M fs, specifically by
the term

/Ot St—7 [Q(fl, VM) + Q(VMfs, fl)} (r)dr

in the second equation of . The velocity weight will ultimately be slowed down by v M f; as it
decay at most as a Gaussian. We design a suitable weighted function

£(€) min{ (&) At}

to capture this feature. By carefully analyzing the commutator between this weight function and
the K, Q operators, we complete the description of dynamic transition process (see Theorem .

It is interesting to note that the mechanism for gaining velocity weight and the limitation of
the maximal generation both stem from collisions with the global Maxwellian. This is entirely
consistent with our physical intuition.

1.6. Organization of the paper. The rest of this paper is organized as follows: In Section[2] we
first prepare some basic properties of the integral operator I, and present some estimates for the
damped transport equation and the linearized Boltzmann equation. In Section [3] we construct the
global wave structures of the solution, fully utilizing sharp nonlinear wave interactions. In Section
[ we apply the weighted energy estimate to prove that the solution indeed decays exponentially



8 YU-CHU LIN, HAITAO WANG, AND KUNG-CHIEN WU

in space-time outside the wave cone. In Section |5, we provide a quantitative description of how
solution approaches a Gaussian tail in terms of the microscopic velocity. Finally, we present the
proof of all kinds of wave interactions in Section [6}

2. PRELIMINARIES

To begin with, we study some essential properties of the collision frequency v (£), the operator
K and the collision operator @. It is well known that there exist two positive constants vy and 14
such that

wl@ <v(© = [ [ lanl M) dnde. < (0

for all ¢ € R3. In [5, Lemma 2.1 and Lemma 6.2], the following estimates of the collision kernel
have been proved.

Lemma 2 ([5]). For any 8 > 4, there exists a constant Cz > 0 depending only on B such that

w5 e e, < Oy 5 cu v
/RS €= 6l e ande. < 3 O+
and
ws (€) c v ()
/Rs S2| ( ) (é“*)dndg*S B (§)+Cﬂ(1+|5|>2'

where C' > 0 is a universal constant independent of 3. Here wg (§) = (€.

Using this lemma, one can get the estimates for the operators K and Q.

Lemma 3 ([5]). For any 8 > 4, there exists a constant Cz > 0 depending only on B such that

8 c, v (€
©7IKf] < (5 (€)+Cﬁ(1+|€‘> >f|L

and
(€7 Q7.9)] < Cov (@) 1fl1g, lolrss, -
Moreover, for any R > 0,
5 ¢ GCs
wesar O 1671 < (54 22 ) @1,

In order to study the first equation of , we introduce the damped transport operator St, that
is, Stgo is the solution of the equation:

5tg+fvmg+l/(§)9:0a 9(071555):90
Lemma 4. Let 8 >4 and M > 0. Assume that U (t,z,£) and h(t,x,&) satisfy

v Ut

tt|z|

< Ae” "¢
Lgs

and

+z

< Be— %
|h(t,x,§)|L§?ﬁ < Be

for some constants A,c >0 with 5> > % If g satisfies the integral equation

g (t2,6) :/O ST (Koh + U) (7,2, ) dr

then .
‘g(taxaé-”[,gfﬁ SQ(A'F’I]B)G_ e,

=n(B,R) = (g+g§).

where



BOLTZMANN EQUATION
Proof. Let y =z — (t — 1) £, we have

/ eV O (P [Ksh (r,x — E(t —7) &)+ U (r,x — £ (t — 7)) dr

0

©°g(t2.0)| =

t
< / ey (€) (v (€) e BT HED (68 1K,k (7, y, €)|) dr
0
t
+ [ (€ () e H T (€1 (1,6 dr
0
t
< 77/0 e EOI (@) sup e FOT (7, )] dr
y€ER3 ’

t
+/ e F Dy (6) - sup e FETHEWD YU (7,y,6)| o dr
0

yER3 £.8
tt|x|

< 2(A4nB)e” =

The proof is completed.
Lemma 5. Let o > 0 and p > 0. Assume that V (t,x,€) satisfies

o
O Vo] <aen <1 s |f|>

s 1+1¢
If g satisfies the integral equation
t
gta6)= [ 877V (o gar,
0

then

o iz \
o <
|9(t7$a§)|L§ﬂ _Ca,p(1+t) <1+ 111

for some constant Cy,, > 0.

Proof. The proof is similar to Lemma [d] It suffices to verify that

t 2 ’
/ e )y (&) sup e~ 2 E=THle=ul (1 4 )7 (1 + ol > dr
0

yER?

< Cup(l+8)7° 1+ﬂ B
- e 1+t

Let 0 <7 <t If |y| > |z| /2, then
W’ )" 2\ o) "
Y
1 <14 22— <4 (1 ,
( Jr1-1—7') _< Jr4(1—i—t)> - ( Jr1—|—1f>

)" 2\
o= B (t=T+lz—yl) (1+7)"° <1+y> <41 +7)° <1+ x ) )

and thus

1+7
If [y < [2] /2. then

2 p
% volx —p
6_70|$—y| <e~ Oi ‘ < Cfp (1 + |$|2) < Cp (1 + |1“ > 7

141¢

and so

_”To(t—r-&-lw—y\)(l_’_ )704 14 |y‘2 _p<C (1+ )70& - \x|2 -p
€ 4 1+7 - ! L+t .
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Therefore,

t 2\
/ e EH =)y, (&) sup e~ 2 E=mHlz=vl (1 4 )7 (1 4 £l dr
0 yER3 1+7

IN

2\ P ¢
<ca-+4ﬂ><14_'$' ) t/'e*49“*7h%€)0>+7)_ad7
1+t 0

IN

—p
o )
P
Co (Cp+4°) (1 4 1) <1+ )

Lemma 6. Let o > 0 and p > 0. Assume that W (t,z,§) satisfies

u@YJWWuast%s<1+ﬂ—u<y+“%;i:>)

If g satisfies the integral equation

t
g@@@:Ag4W@%@W

then

-p
—a (ct — |z])®
|g(t’x’§)|L§?B Sca,p (1+t) <1+ 1+¢

for some constant Cy,, > 0.

Proof. The proof is similar to Lemma [4] and it suffices to verify that

t 2\ *
/ e—@(t—T)V (6) sup e—VTO(t—T-Hx—yD (1 + T)ia (1 + 7(|y| _ CT) > dr
0

yG]R3 1 + 7

—a (ct — |9U|)2 -
< R
< Ca)p (1+t) <1+ 11

We consider two cases |z| > ct and |z| < ct.

Case 1: |z| > ct. We split R? into two parts

x| —ct r|—ct
wer iyl —erl > oy na (y e ROy - erf < L)
If |ly| — cT| §M%Ct,then
[z =yl = |lz[ =yl = [Je| = em + 7 = |y[[ = |J2| — e7| — [|y| — c7]
|z| —ct  |z|—ct
> |£E‘—Ct— = )

2 2
and thus

0 gy _ vollz|—ct| 2\ P (|z] — ct)? -’
e 2 Se 4 SC;O 1+(|J)|—Ct) SCP 1+17-|—t .

If ||ly| — c7| > m%d, then

(jyl —er)?\ " (el —ct)®\ " (. (zl—c)?) "
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Therefore,

t 2\ P
Gy 0 (o —a (Iyl —e7)
&) (t—7) 3 (t=7+|z—yl)
e 2 v(f)sup e 2 1+71 1+ = dr
A ) o, () ( (1+7)

2\ P t
(@+¥UG+621?)> [ emgasna
0

IN

< Ca(Cp+4) (147" (1 i W)

1+
Case 2: |z| < ct. IfOSTS%Jr%,then
; - t+|:1c| _ct—\x|>0
T= 27% )" 2 7

and thus

2 —pP
. —p +—
e0(t=T) < o Hetle) < o) (1 (et — \$|)2) <c, (1 L (c : Jr|~;U€|) > .

It implies that

e e » oy —en?\ "
/ e= 2 Ty (&) sup em 2 EHlEmUD (1 4 ) 1+ == dr
0

y€R3 1+T
-pP
(ct —|z)® /t — 9 (17) —a
< C,[14+ ——2 e 2 (&)1 +71) Y dr
p< o) (O 1+7)
—p
—« (Ct_|x‘)2
< -~V
< CoC,(147) <1+ Tt

If%—i—%STSt, |y|§%|$|,then

T —|z| _ ct— x|
> b
2 - 4 -

(jyl —er)?) " (ct—le)?\ " (et—la)?) "
(1 )7 (1 o) ()

If%Jr%STSt, |y|>%|z|,then

C
e — |yl >

and so

=yl > ly| — o] > cT — |z S ct — |z
Yy =y = D) = 1
and thus
2\ —P
vo i . , —p t—
e~ Hloul < o= Rlet—le) < o) (1 + (et — |x\)2) <c, (1 n <C|$|>> _
1+1¢
Consequently,
t g . SARUE AN
/ e” 2 Ty (&) sup e” 2 G HlzmYD (1 4 ) 1+ dr
%4’% yER3 (1 + T)
2\ 7P ¢
t— v _
< OW+QJG+@:|M)> [ e e arn
1+t o
<

e
Co (167 +C,) (141)~° (1 + (Ctl_ftD>

11
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Combining all the discussion, there exists a constant C, , > 0 such that

t e . oy, Ul =en?) "
/ em 2 Uy (&) sup e 2 Gtz ()T [ L dr
0

y€R3 1 + 7

B QWO+OQ<H<a—mW> |

1+t
as desired. 0

For the second equation of decomposition , we list some basic properties of the linearized
Boltzmann collision operator L and nonlinear operator I' as below.
It is well known that the null space of L
ker (L) = span {xo, X1, X2: X3, X4},

is a five-dimensional vector space, where

Xo = MY2 x; = &MY, x 3) M2, i=1,2,3.

1 ( 2
Let Py be the orthogonal projection with respect to the Lg inner product onto ker(L), and Py =
Id — Pgy. That is, for any g € L2,

4

Pog =Y {(xi»9)e Xi» P1g=g—Pog.
=0

The solution of the wave propagation is connected to the operator Po(¢ - w)Pg for w € S?

Pot - wE; = A E;
No=c, M= A2=A3=A4=0,c=\/§,
Eo \/;xw\fw X+ /b,

(6) Ey =/ 5x0 - \/] x+fX4,
on+\[X4,

E3=w;-X

E4 = w2 - Y .
where X = (1, X2, X3), and {w1,ws,w} is an orthonormal basis of R3.

Lemma 7 ([26]). The collision operator L consists of a multiplicative operator v(§) and an integral
operator K, namely,

Lf=—vf+Kf,
where v(€) ~ (1 +|£|) and
‘Kg‘Lg?n+l < C|g|L§?n ,neER,

for some universal constant C' > 0.
The nonlinear operator I' has the following estimate

|V71(€)F(ga h)|Loe S C |g‘L‘x’ |h|L<>C > N € R7
13 & £:m
for some universal constant C' > 0.
It is vital to get the space-time structure of the solution of the linearized Boltzmann equation
Oth+ & -V h = Lh,

and we denote G! as its solution operator.
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Lemma 8 (|26, 27]). The solution h = G'hy of the equation
Oh+&-Vyh=Lh, h(0,2,8) = ho (z,§) .

satisfies

z|—ct)?

_ _ _ =2
G ho (L+1) 2 e Dol 4 (14¢) Y2 e Do0rm
Gho Lo <Cl

=5 *z |h0|L'g<y>ﬁ

_ 2\ —3/2 e
e 1+ (14 EE) 7 4o

for any B > 3/2 and some constants C1, ¢y, Do > 0, where hg € Lg?,@(Lgo NLL). Moreover, if
P1hg =0, then

(zl—ct)? o _ _lal?
t (14+18)"%2 e Do+ 4 (141) 2 e D00
G h0|Lg°ﬂ =G ) 2\ —3/2 S |h0|L§°B'
, — || _ttl=| ,
+1{\z|§ct} (1+t) <1+71+t) +e co

3. GLOBAL WAVE STRUCTURE

In this section we will prove the global wave structure of the equation which is described in
the following theorem.

Theorem 9. Let § > 4 be sufficiently large. Assume that fo € LZ3L5° is compactly supported in
the variable x for all £

fo(x,€) =0 for |z| > 1, £ € R,
Then there exists € > 0 small enough such that the solution f of exists for t > 0 and it can be
written as f = f1 + VM fa, where fi and fo satisfy with

v
‘f1|LZf’[3 < 2Cie ||f0||L§f’ﬁL;o o4 (t+\z|),
and

|f2|L§?g

(z]—ct)?

(1+1t)%e Do+ 4 (1+1)

_ =2
e Do(1+t)

~3/2
< Be ||f0HLngL;°
I+t

+2¢ (< | ol )2 Ao (1 L2l g+(1+t)—3 Ly el =et® )
ONLgsle 1+1¢ 1+t

- 22\ 732 _ttlel
Farzen L4072 (14 ) 7 e

for some positive constants B,Cq, €, Dy, ¢q.

Proof. To clarify the space-time structures of the solutions f; and f> to , we design an iteration
{f"} with f* = f* + VM fI | as follows:
- O+ &V I+ v (O [T = K ff + U f5)

Of3 & Va3 = LT 4 oI+ T3 13)

with
T 0,2,6) = efo (2,€), fyTH(0,2,8) =0, f(t,x,&) = f3(t,z,&) =0,

where

UG 1) = QUL ) +Q (A VMEg) + @ (VM. £)
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We shall study the space-time structures of f{* and f3. Now we rewrite as integral forms:
P =S o+ fo ST () + UG 3 () dr = ST+ 1Y
= [y G (1) (ndr + [y GTT(E, 1) (ndr = f31 + £33

First, one can see that f{ = fllJ, fi= f21)1 and f11,2 = f21)2 = (. Since fj is compactly supported
in the unit ball with respect to the variable x uniformly for all £, we have

_*o
’f11|LgoB < ClEHfOHLgfﬁLZoe 3 (t+]z])

for some constant C;. In view of Lemmas and Lemmas [19]—[21] we get

t
s, = | [ &R () (r)ar
£.8 0 L
£.8
s r2 (Cv
< e ol i |20 (G040 40|
(1 +t)—2 e_(gzgaitzj + (1 +t)_3/2 e~ Do‘a(pl‘it)
. kg g e~ D)

_ 22\ 73/2 sl
+1{jz)<cty (1 +1) 8/ (1 + |1-&|-t) te

=S (Cm (1+R) +05)]

B
_g —Usl=en? _ajy -2
(L+6)"%e Dottt 4 (1+1) /e Doty

wlw

< 2C,CF [(27T)

.EHfOHLg‘fBL;" _3/2 N
F1{jai<ery (1 41) (Hm) +e e

2
Ed]

_ (zl-ct)? _
e Do(+t)

e Do+ 4 (141¢)

2 —3/2

(1+1t)"
< Be ||f0||LngL;° _3/2 |22\ 732, kel
+1jz)<ery (1 +1) (1 + ?t) te %

In fact, by definition of f{'y, we have f{’; = fll,1 for all n and so

n =R (t+|z])
|f171|L§?[1 < C15||fOHLg?ﬁLgce 2 .
Now we choose 8 > 4 and R > 0 sufficiently large such that the constant 7 (3, R) defined in
Lemma [ satisfies o c .
B
R ==+ = < -.
n(B, R) 5t <3
Fixing such § and R, we shall prove that if ¢ > 0 is sufficiently small, we have

_ ko
|f1n,2|L§cﬁ < Cie| follge, e = D,

_ Uzl—en)? _la?
(1+1)"2e Dol +(1 +t)73/2e By (1+0)

|f2n,1|Lg,cﬁ < s35||JCOHL§?[3Lgc a2 o] —3/2 et
Faen 1072 (14 1) T 4T

: NS o (- (o] —en?\
n < - - - -3
[F5al e, < 2€ (Bellfoll e, o) |1 4077 14 1+ (145 ,

for all n € N by induction on n, here the large constant € > 0 will be determined later.
By induction hypothesis and Lemma [3| we have

—1 n gn < ( nQOo n - n Oo)
|V U(f17f2)’L?’0ﬁ < C |J£1|L€ﬁ“‘2|J01|L5ﬁ|f2‘L57ﬁ

Cell foll e, e (401 + 3B (1 + 2¢Be ||fOHLg‘fBL;°>>

IN
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.615||f0HLg?ﬁLgo e~ 2 ()

By Lemma [4]

/0 (€)F ST L2 (r) + U 1) (r)] dr

‘flﬂ,_Q‘_l‘Lgfﬁ =

< [an(8.B) + 20<] follr, i (463 + 5 (14268 | foll 2 ) )]
Cre| foll e, Lo e # (HID
= — (el

CiellfollLg, L€
after we choose € > 0 sufficiently small such that

2Ce] follrze, e (401 + 2B (14 Be [ foll e ) ) < 1/2

Therefore,
_x
My L, <Celfollez,ree (b,

and so
v
’flTLH’Lgoﬁ < 2615||f0||L?5Lgoe_70(t+\x\)_

Likewise f4,, we have

|fn+1 . _ / Gt TIC n+1)( )
Legs Lg%
4 Cn
< 2C1€||f0||Lgf’BLg° (2m)te 5 (1+R)+Cps
c 2|2
(1+1) e Bt + (144732 motien 0
) = (t+lz)
“ +1 (1+t)_3/2 +\x\2 3/2+ _etim | Fot€ 7
{|z|<ct} ( 1+t) e <o
2 ([ Cv
< 2057 {(%)iei ( 51 (1+R) +CB>}
-2 —(E‘7Ct)2 —3/2 _A‘Ii‘z
(1+1) e DPo+o 4 (1+1¢) e Doi+n)
< Wollig o= ~3/2 2\ 32 sl
+1{jz)<cty (1 +1) (1+1+t) +e %
g —Uzl=et? _gjp —=L22
(1+1t) e DPot+d 4 (1+1) e Do(+o)
<

Be HfOHLg?ﬁL;O 32 ]2\ 372 _tilel
F1{je|<ety (1 +1) (1 + 1+t> te

Also, there exits a constant C3 > 1 depending on IA)O and ¢y such that

’fn+1’Loo
s g2 (Cu
(8) < 20,CF [(Qﬂ-)i o ( 61 (1+R)+Cﬁ)]

2 _(lflfct)z _3/2 _/\‘xiﬂ

(14+t)" "e Do+ 4+ (1+1%) Tt

€| foll e, e B -

Flqp<eny (14+1)72 (1 n ‘ﬂt) L -t

<

204CsC? [(277)3 o (Cgl (1+R) +Cﬁ>}

15
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<1+Jit>2441+ﬂ”<1+u11?)>

Sl ) L el =)
< %awuuﬁﬁf 1+t) 2|1+ -— +(1+1) 1+ ——

1+t

vl

€ ||f0HLngLgc (1+1)"

Since f;;l satisfies the equation
Ouf33" + & Vafydt = LEST +T(f3, f) with f357(0,2,€) =0,

we further decompose f3'3" into two parts as f3'3" = h{™" + hi*" where h{ ™", hi*! satisfy the
equations

Oy + & VLl + v () RTT =T (f5, £3),
Qb+ & Vahy T v (O By = Kf55
with 27 (0,2,€) = h3T (0,2,€) = 0. By induction hypothesis and 7

2 lre, = |f§l,1+f£2|Lg?ﬁ
2
<
< {‘Be”fo|L§?@Lgc +2¢ <%5||f0||LngL;°) }
(L+1)7 1+Qﬂi§igd+@+w*“ 1y -
1+t 1+t
<

- (=] — t)2 1 - | |2 i
T|—cC T

2 oo oo 1 2 1 1 3/2 1

sBEHfOH[g,BEm (1+1¢) ( + 141 ) +(1+1) —|—1 y ;

so that
_ n n n|2
|V 1F(f2’f2)}Lg°ﬁ < C|f2|L§f/3

8C <%€ HfO”LgfﬁLg")Q

2\ 2 2\ 3
ﬂ+t)4<1+“ﬂ+?)> +u+t)3<1+ﬂit>

In view of Lemmas [f| and [6] we have

"+

(9)

IN

10) = ]<5>’3 [srup e

IN

8C? (Be ||fo\|L;ﬂL;o)2
B (\1’| B ct)2 —2 _ \£|2 )
(1+1) <1+(1+t)> +(1+1) 3<1+(1+t)>

2\ 2 5 \ =3
¢ (Belfolye,ir) (1407 <1+<|x—ct>> A <1+ o )

IN

(1+1) (1+1)

As for h3T!, we have

| =0 [ sk (1157) (o ar
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It follows from Lemma [T that
1 n
v © Kt
€

In view of Lemma |8 and @D, together with convolution estimates in Section to be more
specific, Lemmas 2227 we obtain

58, = | @R (e

C
+1
< — |53 . -
o £,8-1

(Jz]—ct)? |z|2

|
(1+1) "2 e D007 + (1+14) 2 e Dot

—1 n o rn
< O , B *:n,t|1/ F(f2af2)|L§fﬁ
1 joj<et) (1+1) (1+1—+t) te e
5 (1_’_15)*%6_%4_(14_15)726_%
< Com8C (Be ol e, 1) [V
+1{|m\§ct} (1 + t) (1 + m) +e <o
—2 -3
_ —ct)? - kil
1ot q Uzl=ct)” 140721
*ac,t(+) (+ 1+t +(+) Jrl-i—t
, 2
< 8C"Cinn (%€||f0||Lg°ﬂL§°>

—ct)? - _ x| E
(1+1¢)72 <1+(|$|1+:) ) +(1+1) 2<1+1lt>

Therefore, using Lemmas [5] and [6]

.

C 2
(11) < 0'70802&1/1 (%5||f0||L§fBL;°)

L |z|? o 3 (Jz| = et)*)
(1+1¢) <1+1+t> +(1+41¢) <1+1—|—t>

2 2 ER (|2 = et)®\
< C(SBaHfoHLg?ﬁL;o) (1+1) <1+1+t Rl R

after we choose € > 0 sufficiently large. Combining and gives

155", < 2€(Be ol )2 1+ 1+ =/ _g+(1+t)3 GEL A
22 ILg, = Molleg, Lo 1+t 1+t

Consequently, we get the desired estimates for f'y, f3'y, f3'5 by induction on n.

Finally, it is straightforward to prove that {(f{*, f3)} is a Cauchy sequence in Less (LZ N Lgo).
As a consequence, (f{', f3') converges to (f1, f2) in Lg% (Li N Lg") and (f1, f2) solves the problem
with

— 20 (¢4
iz, < 2Cie | foll s, oo €™ % O,

and

|f2‘Lgf’B

_ (z]—ct)?

(1+1t)%e Do+ 4 (141)

___l=1?
e Do(+t)

~3/2
< Be HfoHLngL;o Iy WP\ "H2 et
+1{\m|§ct} (]. + t) (1 + 17+t> +e
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2 AN ol (el e
+2¢(%€||f0||Lgf’gL;°) (1+1) 1+1+t +(1+t) 2 1+17+t

The proof of Theorem [J]is completed. O

4. EXPONENTIAL DECAY OUTSIDE THE WAVE CONE

In Theorem [J] the estimate for fi is exponentially sharp, while the estimate of fo is only
polynomially sharp. The reason is that, to facilitate the closure of nonlinearity, we focused on
the structure inside sound wave cone, so we chose a polynomial ansatz. However, since our initial
data is compactly supported in space and f; represents the fluid part with an essentially finite
propagation speed. Therefore, we expect a faster decay in the space-like region.

In this section, we will improve the behavior of fs outside the sound wave cone. Indeed, we can
prove that fy has exponential decay both in space and time there. The result is stated as follows.

Theorem 10. Under the same assumption of Theorem[9, for any 0 < § < 1, ife > 0 is sufficiently
small, there exists a large positive constant D depending on &, such that for |x| > (c+ )¢,

_ {x)+t
‘f2|LgoB < Csee 5 ,

where the constant Cs > 0 is independent of time and Cs — oo as § — 0.

To attain this end, we consider the weighted nonlinear equation corresponding to . That is,

let u = fi, :=wf =u + vVMug, u; =wf; (i =1, 2), where the weight function is given by
— Mt
ot o (E20).

¢ < M < ¢+ 1 and sufficiently large ¢ > 0. Note that by Theorem [J] f; decays in space and time
exponentially, so that u; can be controlled if £ is large enough, that is, there exists cg > 0 such
that
Cot'

Lo ullpee, 2 See”

Jurll 2 - 12

&p
In view of , ug satisfies the equation

Opug + € - Vyus —w™t (Qpw + € - Vaw) ug = Lug + Kyug + T(f2, uz)
U2 (07x7€) =0.
After choosing ¢ > 0 large such that M/¢~! is small, we have
~ 3
v(t2,) =v(Q)+w (Qw+E- Vaw) = 7v(E).

Under this situation, we are ready to estimate us. Let 7" > 0 be a finite number. Denote

o _ -1 2 -1
Copr =& sup Mol s Cupr =2 sup luallpg s -
Also denote
o _ ~—1 3/2 2 _ -1 1 3/4
Cr=¢ ig}g (1+1) ||f2HLg§ﬁL;° ) sy, =¢ i;lo)( +1) Hf2||Lgf’ﬂL§ ,

which are finite due to Theorem [9l
To estimate uo, we design a Picard-type iteration: the zeroth order approximation ugo) is defined
as
ol + € Voul + 7€) ul” = Kyuy +T(f2,u2), ug” (0,2,€) =0,
and define the jth order approximation ugj ), j > 1, inductively as
o) +¢-Vul +7(€)ud) = Ku§ ™, u§ 7V (0,2,6) = 0.

Thus, the wave part and the remainder part are defined respectively as follows:

Wi =3 uf, R =y — Wi,
7=0
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RSZ”) solving the equation
ORI 4 & VR 4+ 5 (ORI = KRI™ + Kul™, R (0,,¢) = 0.

In fact, m = 6 is enough to get the H2 regularization estimate for the remainder part. Following
a similar argument as [2I], we have

Lemma 11. Let 8 > 4 be large enough. Then for 0 <t < T,

4 See ™ 4+ 208 (1477, ce o0t +e2C2, p (14+4) 72,
55 &

for all integers 7 > 0.

(J)
L, L2 S

Lemma 12. For 0 <t <T,

w

c0t+€2022T(1+t) 2

7|

N

L2H2

Proposition 13. (the H2 regularization estimate for Rgf)) Let0 < 6 < 1. Then for M = c+ 259
and large £ > 0, the corresponding weighted remainder RSS) satisfies

6 2 2
HREU) - < Cs (5+5 CHQ’T)

for some positive constant Cs, Cs — 0o as § — 0.

Proof. Note that

M €z

-1 . [ — =

w (Qw + & - V,w) / +€(x>’

’&Cl [w™ (Qw + & Vow)]| < £<|€|> 821_%_ [w™ (Opw + & - Vw)] 6<§>|
for 1 <4, 7 <3. Let 0 < 6 < 1. Consider the quantity
2
_ R(6)
H ’ L2r2 4334 Z’ =R ‘ L2r2 (4©4> Z ‘ iz T r2r2’

/2
where the constant ® = ( Jgs E?:o €] X?dg) > 1. The direct computation gives

M €z
<6>‘ _ M ST N (pp®) L p RO (PaRO 4P, RO
2dt H 1212 /R<< ‘ U@))( oRw” +PiRy, )( oRw” + 1RW) gdx
(6) 7(6) (6) 72(6)
+/n (LR, R >£+/Rs (Kul?, R >§dx,
1d
—— 1|9, RO
2dt‘ Cllzez
M
= ML (P00 R + P10, RY) , (Pod RIS + P10, RY) ) da
R3 E €<£L‘> ‘ ‘ ¢
+ L(8,R9), 8, RO dx
/Rs< ( ¢ ) ¢ >.§
+/ <R7(f)8xi [w_l (yw + & - V,w)) ,8xiR7S?)> dx+/ <K81iu§6),8mi7€7(f)> dz,
R3 3 R3 3
1d (6)’
2.dt Il Tt L2L2
= / M e (Poai,z.Rgf)—kPlaﬁ_mRSf)),(Poaﬁ_I.R$)+P16§_m_R§§)) dz
R3 €<£Z?> iTj iy i i ¢

i
+ /R (1 (o2,R9) 02, R+ /R (0 R 0y, [ G+ € V)] 8, R
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+/ <ami7z§,?> O, [w (Bew + & - Vw)] ,82izj72$f)>§da:
o (0 :

+/ <R£§>a§ﬂ, [w™? (8tw—|—f.vxw)]’aim']z§f')> du
R3 J iLj ¢

+/RS <K (aﬁix ) 2., f)>£dx.

Using the fact that in (6]

PO( || )Pog—/\l <gaE1> E1~9—)\2<g,E2>£E27337,g()7

where A\; = —\s = ¢, we have
1d
-—B(t
2dt ®)

- —% (M—c—6 35—%) HPORg?)]

Wé;li{_;( M~ e~ 5 - 6) [Pocs, R

GRS N = )
212 070 45 D2 4D 1212
1 D2

L2r2 <VO A7 A 4£©6> HP O R ’ L2L2}

2 3
+<463324> igl{_z(M_c_M)HPo i R(ﬁ)’wm B (”O_E_f;s_mﬁ HP Tt (6)‘L2L2 }

(6) (6) (6) (6)
+0Hu2 )L"‘L? R ’L2L2 4@4 Z [ ‘875‘“2 H L33 = R ‘Lng]
82 \? 6
o c\ “\ 92 ,R(G)’
+ <4®4> o |: T LgLi zix; " vw LEL.%
1/2
- > ez 494 gt 2 iz 4’}34 & x’ 212
< 30” (6)‘ Bt
> Ugy 1202 (t)

if we choose M = c + 256, and then choose ¢ > 0 sufficiently large such that vy — 1% — M > 0.

Under this choice, we have

t
6
\/B(t)g/o 3C’Hu;)HLgHngf,E—FszCz%T

by Lemma [I2] so that
=2

for some positive constant Cys, Cs — oo as § — 0. The proof of this proposition is complete. O

22
ram <Cs(e+e°Ch, 1),

Therefore, the Sobolev inequality implies that

6 2,2
R 1,,,, SCrterczn)

Combining this with Lemma [T1] we have

= 0]
el < WO, 0+ [RE] ...,

s el + 7Y

~ L, L YLz

< —cot | .2 -3 212

S eem '+ 2CR p(1+18)24Cs (e+°Ch, 1) -
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According to the wave-remainder decomposition, uy = W(7) + Rg ) and

R Z/Otexp (—/Ttﬁ(nx—(t—r)f,f)dr) (Kng?)) (r)dr.

t
< / ef%ug(tf‘r)
~J
L?Lgo 0

luzll oo poe S €™ +*CRr (14)72 + Cs (e +7C, ) -
By finite steps of bootstrap argument, we obtain the desired LngLgo estimate for ug. Similarly,

by Lemma Proposition and the bootstrap argument, we obtain Lgf’ﬁLi estimate for us as
well. We summarize the estimates for us as below.

Since
=)

=)

. (1) dr,

we get
_3
2

Proposition 14. Let 8 > 4 be large enough and let 0 < § < 1. Then for M = ¢ + 25 and large
£ > 0, the corresponding us satisfies

Clr<Ci[1+eCl, 1+ Cs(14+eC2, )]

Coor < Co [L+2C% 1+ Cs (1+2Cy, 7)]

for some positive constants C1 and Cy dependent on || fol| 1o

=, (LPNL2) but independent of T and §.

Now, we are ready to prove Theorem For any fixed 0 < § < 1, we take M = c + 256, and
consider the weight function
() — M t)

w(x,t) = exp < 7
with £ > 0 being chosen large. In view of Proposition choosing ¢ > 0 sufficiently small gives
|UQ|LOO S 0058,
s

for some positive constant C' dependent on ”fOHLg",;(L?ﬁLi)'
Note that |z| > (M +0)t = (c + 266) t, we have

s () 2(a)

() — Mt = 5+ 5 — Mt
2+m 2+m
57 (@) St _ (@) +e)
> > .
24 50 2455 T 4AM +6

Then for |z| > (c + 269) ¢,
§((2)+1)
(AM18)¢ w < w <
e |f2|L£,B < |’U,2|L£ﬁ <S 0058
which implies that
_ (@) +t)
|f2|L§oﬁ < CCsee™ GM+HL,

The proof of Theorem [10|is complete.

5. THE TRANSITION FROM POLYNOMIAL TAIL TO (GAUSSIAN TAIL

In this section, we study the behavior of f; in the microscopic variable as ¢ increases. We
provide a quantitative description of how the velocity variable transitions from a polynomial tail
to a Gaussian tail. The result is as follows:

Theorem 15. Let 3 > 4, R > 0 be sufficiently large and 0 < k < min{1/4, vy/2}. Assume that
Jo satisfies the same condition as in Theorem [ If e > 0 is sufficiently small, then there exists a
constant C'zg > 0 only depending on f such that

|1 (8,2, 6)] < Cpe (€)7 e E0 ||fo (2,0 1, v
orallt >0, x € R°, £ € R?, where p(&,t) = At). Consequently, for any fixed t > 0, then
f ll R3, £ € R3, wh 13 &) (& C ly, f fized h
B _k(£)?
Lpe<nfil Se(©) e @
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and
_ _kt?
Ligsahil Se(€) e
Firstly, we need some estimate for the weight function e*?(¢:). For simplicity, we define
(12) p(&t)=p(l,t), E€R® £ >0,

with p(z,t) = (1 + 22)1/2 ((1 + 22)1/2 /\t), t > 0. Now, we give an inequality regarding the

function p.
Lemma 16. Let p(z,t) be a function defined by
Pty = (14237 (1427 at)
forz€ R andt > 0. Then
plat) +5(b,1) =5 (Va2 +12,0)
for alla, b> 0.

Proof. 1f either a = 0 or b = 0, it is trivial. By symmetry, we may assume that b > a > 0 and so
Va2 +b%>b>a>0. In the following we discuss the inequality in four cases.

Case 1: t > Va2 +b% > b>a > 0. Then

p(a,t)Jrﬁ(b,t):2+a2+b2:1+ﬁ(\/m,t)zﬁ(\/m,t>.
Case 2: Va2 + b2 >b>a>t. Then

p(Vaz+wt) = (1+a+83)7e< (140 +140%)"%

< (1+a) Pt 0+ P t=5(at) +5(b,1).

Case 3: Va2 + b2 >t > b > a. Then

p(a,t)+p(b,t):2+a2+b22(1+a2+b2)1/2t=ﬁ( a2+b2,t).
Case 4: Va2 + b2 > b >t > a. Then

Pl 007 - [p(Va 1 i.)]

1/2] —(1+a®+5) ¢

- {1+a + (1417
(1+a)? +2(1+a?) (1+62) 2t — a2 >2(1+a?) 2 — a2 > 0.

As a = b > 0, it is a consequence of Case 1-Case 3. Gathering all the cases, the proof is
complete. O
According to this lemma, we can prove the following weighted estimate regarding ) and K.

Lemma 17. Let 8 > 4, k > 0 and let p(§,t) be defined by . Then there exists a constant
Cps > 0 depending only on B such that

<§> erP(&:t) C Cﬁ
W [ e s e e < 5+ i v @)

Moreover, if 0 < k < 7, we have

¢)? 1 err(&:t) C O
ay [ =g e 1 et < G+ ) O

erp(€L,t) orp (&)
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Proof. Let n =& —¢fandw =& —¢. Thennlw, & =&+, & =E+n+w, &, =&+ w. By
change of variables,

<§>5 erp(6:t)
|(§—€*)7’L| B B rp(€l 1) rp(€lt
RS Js2 (e (enfe p(&5ot) erp(€’,t)

dnde,

o wp(£.t)
R3 J{w : nlw} Il (E+w) (E+n)” e E+w,t) grp(E+m,

We split ¢ into two parts

§-mn 2
E=¢§+&L, 8= ( 77|2) ,Ellw, ELLw, €7 = || + 1L
Then
1/2 1/2
<§>5 oRlp(€)—p(E+n.)] e—ﬁ(l+|5”+w|2+\&_|2) ((1+|5H+W|2+‘5J—|2) /\t>
t- &+ n J " A
R nn {w:nlw} <1+|§||+w| + €1 )
(€)7 erlp(€—p(&4n.) o (e )2 (1w e 1) e
_ / ; / : s dedn.
R (€+n)" Inl R (1+|w| e )
Making a change of variable by @w = 4/1 + |§L|22 gives
o (1 HEL ) 2 [ (14w e ) /2]
/ 573 dw
2
¢ (1+ o + leL )
_ g2 (e ) P () [ (e ) (1 al?) P e
= (14 &, 572 dz
2
(1+12)
9 00 =R (EL)CI(ELICAT]
S / &
(€1) 1 ¢
If (¢€1) > t, then
2ﬂ' S 67N<§L><[<§L>C/\t] 27‘(‘ oo 67’{<‘£L>t<
B—2 / B—1 ac = B—2 / B—1 d¢
(€0 ¢ (D TN
27'[' e_ﬁ<fJ.>t 27{' e_ﬁp(gLat)
B2 )72 B2 ey
If (€1) < t, then (£,) ¢ < tfor ¢ <t/(£L) and thus
o /oo e—R(ELICI(EL)CAT] i = o /@1) e—r(€L)?¢? i /oo e—r(€L)Ct i
<fL>ﬁ72 1 ¢t <§L>ﬁ72 1 ¢t ) ¢t
27 1 > > 4 emreleLt)
< o€ | omrt?) < et
B=2()"" ( ) F—2 (e1)?
Therefore,
4 B [p(&,8)—p(&+n,t)—p(E1,t)]
1< g / <§> B—2 - dn.
B—=2Jes (€+m)" (1) ]

Observe that [¢, |*+€ +n|* = L P +e)>+26-n+[n* = €L P +|e)>+26 L n+nf* = € +|eL +nl*.
Hence,

pEt) —p(E+nt)—pErt) = pl,t) =o€ +nl 1) —p([EL] 1)
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< p( |¢|2+|s+n|2,t)—p<|£+n,t>—p<|§l,t>so

the last inequality being valid due to Lemma It follows
4 1 ()" A 1 )"
IS B— an = / B—2 5
B=2Jw Inl (g +0)° (€1) B=2 Jro & =&l (en" (1)

According to the estimate in the proof of [5, Lemma 2.11], there exists a constant Cz > 0 depending
only on § such that

4n L@ c, G\,
I§6_2/R3§/_£<€/>6<£> 2£_<5 <§>> )

where C' > 0 is a universal constant. This completes the proof of .
For the estimate of (14]), applying the same argument as , one gets

2 erpr(&:t)
/ (€ — &) - |<> ~1l¢ dnde,
R3 Js? (€

> erp(Elt) grp(€t)

1 )"
= 5= 2/Rs & — &] exle” (£,)P2 a'.

Then one can modify the argument in [5] Lemma 2.11] (in fact, it is easier) to conclude our
result. O

Corollary 18. Let 8 > 4, k > 0 and let p(&,t) be defined by . Then there exists a constant
Cg > 0 depending only on [ such that

D4)1Q (9. h)| < Cv (€)

() g‘ () h‘
Lgs

Moreover, for any R >0, and 0 < xk < + 1, we have

Xlel>ry "€V (€)° |Kf] < (g +ZQ> (&) e

LOC
£.8
Proof. We only prove the estimate of @) since the estimate of I is similar. By definition of @,

&0 (P 1Q (g,h)] < [erred

g

oc

Loo

<§> erP(&:t)
/RS 52 (€ =8) -l (€0’ <f )P enpEterp(€t)

dndg,

In view of Lemma

<§>5 erp(&t) )
/Rg - (€ — &) - n| )7 (@) FAETET dndg, < Chv (€)

for some C/g > 0. By straightforward computation,

/]Rs 2 I€=6)- <£ >5 kp(€x, T)dnd«f*

a7 w| —7d&x + - *
Vmgm <o <§*> “ /|5*>5| e <€*>5 *

2 [ 2 2 1
(4m) <ﬁ—3 + B—4 <§>ﬁ—4> '

IN

IN
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Hence,

e 1Q (g, h)] < Cyv (€)

) g‘ () h‘
L Lge

£.8 £,8

for some constant C,g > 0 only depending upon S, as desired. O
Proof of Theorem [15 In virtue of (4), f1 can be expressed as

fr=5'fo+ /0 ST Ko+ Q (1, 1)+ Q (VM) + Q (VM2 1) | (7) dr.
Let T > 0 be any number and denote

u(t,2,6) = (€)7 eV fy (t,2,6).
Multiplying <§>’8 e"P(&:1) on both sides of the integral equation gives

t
€ €0y = 8 ((© e f) + [ (97 O TQ 1) (r)dr
0

+f 9 05 K+ Q (£ VME) + @ (VEA )] (1) dr

= I+ II+I1IL
At first, it is easy to see
1 Il < H B o—vo(&)t+r(6)t H < L
(15) <<l ol < Wl

since kp (§,t) < K (&) t.
As for IT and III, we can find

eV OE=T) grp(E) < o= (0=R)(E)(E=T) rip(6,7)

for all £ and 0 < 7 < ¢. To see this, for (£) > t, we have p (§,t) = (£) ¢ and thus
e VO grp(6:t) — o (O)(E=T) or ()t < = (0—r)E)(E=T) oK) T — = (0=R)(E)(t=T) grp(£:7),

for (€) <t, we have p (£,t) = (£)?, so that
e O hplED) < ool (E-7) 5E)? _ o (o= RIENE—7) ()~ +r(E)
< e (0RO (=) o6

Therefore,

t
| < / e~ (=R O=T) R0 (P |Q (f1, f1) (7))
0

IIII| < /00 e~ (o—r)(&)(E—T7) <§>5 erip(€:T)
0

By Corollary [I8] we have

t C"V 2
(16) [ <CF sup [uffe / e~ (=R (¢) dr < —E (sup ||u||LmLm) :
0<t<T €7z Jo Vo — K \0<t¢<T &z

[st1 +Q (fl,mfz) +Q (\//T/lfg,flﬂ (T)’ dr.

Regarding III, in view of Theorem [ and Corollary together the fact that
PET) I = MO =15 < (@=L 1/
we have

/OO e~ (0= (1=7) ()3 prolE.r)
0

Q (1. VMP) +Q (VM. f1)| dr

t
/ e~ =rNOE="),, (£) g7

L?ﬁL;o 0

IN

6@(5#).//\4]62‘

205 sup |ullpsopo - sUP
0<t<T £ 7T 0<¢<T

IN

Cpe
(Vo - ||f0|LgfﬁL;o> OE?ETHU”L?L;?O .
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By Corollary

/°° e~ 0RO (=) (18 ore(&T) | K 1 | dr
0

C C > —(vo—k -7
< (S+5) s fullepx / =00 Oy (¢) dr
B8R 0

0<t<T

4 (C C‘*) sup [l < & sup [u]
u u 00 T oo —_ u u 0o T oo
vo—k \ B R2 ET Lely = 40§t£T LgLess

after choosing 8 > 4 and R > 0 sufficiently large. Hence,

1 Cye
(17) T < { 5+ foll e s | sup full e e
4 vy — 0<t<T ¢ e
Combining (15, (16)) and (17)), we have
1 055
o0 J oo < oo oo - oo oo o0 J oo
OE?ETHU”Lg Le = €Hf0||L§1ﬁLw + <4 + o — ||fOHL6 5 L2 ) OiltlgT”u”L& L3

C”V 2
g1
+ U oo .
Vg — R (0<t<T ” ”LwL >

Cﬁ - — > 1. Choosing € > 0 sufﬁmently small such that

We may assume that

CB&‘ 1 4051/1
o ollagyae < g ond (Gon) e lfo @l e <L
we obtain
" 2
BY1
sup_ [l < 2 oll e, 1 + ( ||u||LOOLm) .
0<t<T vy — K 0< <T
Since ||u(0a$a§)||Lg°Lgo =/ (vaag)HLgfﬁLgo =cllfo (I7§)HL§’BL§°7

//l/1

su Ul| 7007 00 9 xT o T oo
o luler < (5o ) <o (g o

for any finite T' > 0. Consequently,
()7 €0 |y (1,2, 6)] = fu (1,2, €)] < Tpe |lfo (@)l pe, 10
for some constant Cz > 0 depending only on 3, i.e.,
|1 (82,6 < Cpe (€)™ e 0 || fo (2,0 2, 1
for all t > 0, z € R?, £ € R3.

6. SOME CONVOLUTION ESTIMATES

In this section, we will compute the interactions between different wave patterns, which are
essential for determining the precise space-time structure of the solution. Although these esti-
mates appear complicated, there is a clear physical picture behind them (see Section for some
illustrations). The proofs in fact aim to translate this heuristic picture into refined convolution

estimates.

To facilitate the estimates, we decompose space-time domain into the following 5 regions:

={lz] < V1+t},
:{ct—\/1+t§|x|§ct+\/1+t},
Dy ={|z| > ct+V1+t},

1
Dy = {\/1+t§ |z| < 2ct} :
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1
Ds = {2ct§ || Sct—\/l—i—t} .

6.1. Linear interaction.

Lemma 19 (Diffusion wave convolved with exponential decay).

z|? t+ | . =2 ;
379 __lzl _tt|=] _3/2 _ttl=]
/ e Do(+t) *Xpp € €0 S (1 + t) / e D(1+t) +e e,

(1+1¢)
for some constants ¢ and D > 0.

Lemma 20 (Huygens wave convolved with exponential decay).

9 _ (zl—et)? _ t|z|

A = (14t) e Dol %, e <0
(Jz]—ct)? x|
2 —-= _ttl=

< (14t) "e Dpa+y e "7 |

for some constants ¢ and D > 0.

Lemma 21 (Riesz wave convolved with exponential decay).

||2 —-3/2
_ x _ t|=]
B = lcen (141 <1+> *pp e 0

A

for some constants ¢y, Do > 0.

The proof of Lemma [I9]is easy and hence we omit it.

Proof of Lemma (Huygens wave convolved with exponential decay). We rewrite

¢ o _Uyl=en? _ (t=m)tlz—yl
A= (I14+7) “e DolF7 e o dydr.
0 Jrs

We discuss the integral A in each domain D; (1 < i < 5) for which (z,t) belongs to.

Case 1: (z,t) € D;y. Direct computation gives

—3/2 |Qj|2 —3/2 otz o 7(11”_‘”‘)2
L{jaj<ety (1 +1) I+ — +e 0 4+ (1+t) e Doty

o ot _lz-y t Lo _Uul=en? _ (=m)tlz—y|
A § +7- e 2 €0 (1_|_7-) e Do(l+m) ¢ 0 d
R3 5 <
_o _Uul=en)? _ (t=m)+|z—y]
+ (1+7) e DolFe o dydr
5 >
__t _ <%t t _9 _lz—yl
S e %o 4 e Do (14+7) "€ e dydr
t JR3
2

¢ Lo _Qul=en? _(t=m)tlz—y|
+ (14+7) "e DolF e o dydr
5 >

Uyl=em?  _ (t—m)+|z—y]

t
__t _ _ct — —
S e %0 4 e Do —|—/ / (147)"%e Dol e o dydr.
y‘>c1'

Note that if § <7 <t, |y| > <, then

ct ct
|z —y| > |y| — |x\>——\/1—|— >—+§—\/1+t2§

¢ o _Uul=en? _(t=m)tlz—yl
(1+7) “e DolTFn e o dydr
5 >

for t > 40, so that

ydr

27
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_o _Uyl=en)?

< (1+7) e DolF" dydr

ly|><F

< e e /(1+ )" +2d7’<e 1600,

2

for ¢t > 40. Consequently,

< __t __ct __ct_ < t+]|x]
c 32D 16¢ - c
A N 2¢c0 4+ ¢ o +e o sSe B
1 1.4 1 c c
for all £ > 0, where 5 = 5 min{ Scs? 33Dg Toog }-

Case 2: (z,t) € D».
t (t=m)+lz—y|
/ / (1+t)%e ™ e  dydr
3 /R

—_9 ___t _
/ / (14+7) "€ 20e
RS
(] —ct)?

< T4 (14 2< A+ IS (L 4+t) e i

Case 3: (x,t) € D3. We split the integral A into four parts

L t
A / / +/ (~~)dyd7+/ / +/ (---) dydr
0 <y|<“";” lyl> e 5 itz iy 3

= A+ Ag + A + Ao,
Note that if |y| < m%, then

o+

o=yl > || — |y > |x|707: || —ct  c(t—7)
- - 2 2 2

if |y| > Irl%’ then
|| —er |z]—ct c(t—7)

—CT > =

ly| — 7 3 5 3

It immediately follows that

9 _lez=yl _ & _lz—yl
Ay < 14+7) "¢ 20 e Zoe 20 dydr
|y| < Lelfer
S / / 1+ e_‘gzoyle_ﬁ_ﬂ(%_z)dydT<e_ﬁ_ﬁ(%_%)56_;0_5‘;3,

R3

2 _g _Usl=en? ¢ |e—y| (zl=et)® ¢
AlZS (]__|_7—) e 4Dg(I+hH ¢ 2c0e  co <€ 1D (1+%) e Zeq
R3

o _Uzl=et)? _ (t—7)+|z—y]| _ (z]—ct)?

2 2

Az < g +¢) e iDoTFne o dydr < (1+1t)" " e o0+,
|y|> lzlter

As for Ao,

_g _Uul=en? _|a|—ct
Asr S (14 7) "€ DoUFT e 200 dydr
‘<|$|+CT
3 _lzl—et 3 _V/Ift _ |z|—ct
S e zCO / (1+7-) 2""2 d7-< (1+t)g 2¢q (1+t)2 icg ¢ 4co
t

2

_ _|z|7ct
S (417
since |z| — ¢t > /1 +t. Now we discuss two cases: (i) |z| —ct < £ (1+1), and (ii) |z| — ct >
1 (1+41t). For case (i),

2 (x| — ct)?

—ct >
ol —et =2 =5

b
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which follows that
_lz]—ct _ (z]—ct)?
e dcq < e 2co(IFt) |
For case (ii), it is easy to see
(1+¢t) <2(Jz| —ct)

and thus
|z| = |]z| — ct + ct] < (Jz] —ct) +ct < (14 2¢) (|z] —ct) <4 (Jz| — ct),
so that
_lzl—ct _lzl—et _ |z|—ct ) E] ¢ el
e dcg — e B8ecg e 8ep S e T6cy ¢ 32¢0 < e T6co e 32cq
Hence,
5 _ (z|=et)? t ||

Ag S(141t) “e 200F0 4 ¢ Tog e 3200,
Combining all above estimates, we have

(=] —et)? 4|

A<(14t)%e Da+n 4e =

for some constants ¢ and ﬁ > 0.

Case 4: (z,t) € Dy. We split the integral into two parts
2
3t
a= ([ ) e =i
R3

2t

5 lz—y| lz|
Ay 5/ / (1+7) 2 ™ e Todydr Se 30 < e Toe e

o Jes

since 1+t < |z| < ct/2.

For A,, we decompose R3 into two parts

t
A2:/ / +/ (- ) dydr =: Agy + Aso.
Fe \Jlyc=er Syt

3

For Ay,

If 2t <7 <t |y| < 2T then

T — |x] S¢et et _c >ct—|x|

oyl > 2 —
e B B iR T R T

If 2t <7 <t, |yl > EFT then

B B cr —|z| _ et _ ct—|z]
lz—yl =yl —|o| 2 —5— =2 5 > ———.

2 — 12— 12
Hence,
9 _Uul=en? _ (t—m)+lz—yl|
Ao < (1+7) "€ Do+ e o dydr
% y|<\"c\+cr
9 (ct—|z])?
S, _|_ e 144D0(1+f)
and
_9 _t—7 _|w—y\ _ct—
Ay < (14¢t) “e =0e 20 ¢ e dydT
24 ITH—CT
3t Jlyl>

ct—|z|
< (14t)” 2 o=

Since t > 1 and ct — |z| > & > ¢ (1 +t) for (x,t) € Dy,
c(l+1t) <4(ct—|z|),

and thus
|z| = |]z| — ct + ct| < ct — || + ct < 5(ct — |z]),
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which implies that

_ct—|=z| _ct—|z| _ ct—|z| _c(1+t) || _ =l

ct
e 24cg — g 48cy e 48cq 56 192¢cy @ 240cq 56_192%6 240¢q |

Therefore,

A22 5 eiﬁeiﬁ .
Combining this with A; and A1, we get the desired estimate

_ =l _g _ (et—|zD? ot )
A 5 e Bcoe Beoe (1 +t) e  T4aDo(1+1) 4 ¢ 96co @ 192¢

Case 5: (x,t) € D5s. We split the integral A into three parts

5 bt g
A= / +/ +/ / (- )dydr =: A; + As + A3.
o J4 $+5 ) IR

It immediately follows that

||

% o _lz—wl _ ¢t __t ot
A S (14+7) "€ 20 e Zodydr Se 20 e Teo deeq,
o Jrs

and

As

A

£+m 2
2T 2¢c _o _Uylzen)® _ (t=m)+|z—y|
(1+7) "€ DT+ e <o dydr
g e
t |zl
_9 215 _le—y] _t-r ,L(L,m)
(1+1) e 0 e e 20\2" 2)dydr
s e
|z

< (141 %e e,

AN

For As, we decompose R? into two parts

t
A3:/ / +/ () dydr = Az1 + Asa.
srhe stz Jiys e
If%+%§7‘§t, |y|§m$,then

T—|z| _ ct — |z
> .
2 - 4

er —ly| > °

If L+l <7<y |y|>‘z|¥,then

T — |x] - ct — |x|

C
|z —y| > |yl — |z| >

2 - 4
Hence,
Az = Az + Az
t ct—|x|)2 —T x—
S / / (14+1)"%e” I P dydr
$+5e Jlyi<tees
t _9 _lz—yl _t—7 _ ct—|z|
+ (14+1t) "e 20 e 20 e 50 dydr
$5 Jyl> =
_o _ let—|z)? _o _ct—lal
5 (1 + t) e 16Do(I+8) 4 (1 + t) e 8
Since VI+¢<ct—|z] < ¢ < S(1+1t), we have
2 (ct — |z|)?
c(l+1¢)
and thus
ct—la] (ct—|z])? _ ct—|x] _ (ct—zD?

1 2cgc2 (14t 8¢, 1 1+t
e coc ,Se roc(+), e co 56 coe(I+t) |
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Consequently,
o fet—leD? _g _ (et=|a])? _g _(et—|a]?
A2 5 (1 + t) e 2coc?(1+1) , A3 S (1 + t) e 16Do(I+0) 4 (1 + t) e dcoe(1+0) |
Combining this with A, we get the desired estimate. O

Proof of Lemma (Riesz wave convolved with exponential decay). We compute the integral
for two cases: |z| > ct and |z| < ct.

Case 1: |z| > ct. Let 0 < 7 <. If |z| > ¢t and |y| < c7, then
2=yl > lal — Iyl > [o] — et +ct — |y > |a] — ct > 0.
Hence,
-3/2

_ (=) t+|z—y| T)+\w yl 73/2 ‘y|
et (1 1 dyd
/ /]Rs Lul< }( +7) ( +1+7’> yar
lz]—ct [ t=r _lo=y ly|? o
e~ 20 / / 6_?706 2(:0 (1 + ) 3/2 (1 T y) dydT
R3 1+T
e (/ /)/ “)dydr =: By + Bs.
RS

It immediately follows that

A

_ ==yl |z|—ct

Bi<e 2c06 2c0 / / P +T)_3/2 dydT,Se_ﬁe_ 2c0
R3

As for B,
e 2 -3/2
By, = nn / / / W e (147)7%2 1+ 2 dydr
i<zl Sy Lzl 1+7
_lzl=et _ o _ _le—yl
< 2¢o e SCO/ / Co e 4co dyd’T
lyl< 3
_lzl—ect \ ct Jz—y|
1 t 3/2 ‘JJ| / / e 2¢ d d
+(1+1t) 1+t y|>"” Oe o yat
lo]—ct _ o g - lo=et 3 _lzl-et
S e 0 e 5 +(1+¢) e 20 S(1+¢) e 2o .

since |z| > ct.
Now, we consider the cases: 0 < |z|—ct < 2c (1 +1¢) and |x|—ct > 2¢(1 +¢). For 0 < |z|—ct <
2¢(1+t), we have

(Jz| = ct)?
t
ol =t = S aT e
so that
|| —ct (lz|—ct)?

e 20 < g 4eco(iFD)

For |z| — ct > 2c (1 4 t), it follows that

|x|7ct7m+mf t>m+f MJr*
2 2 2 2 7 2 2’
and thus
_lzl—et _lel+t
e 20 < e Ao .
Consequently,

¢ (t=7) 4]yl |y e
_=r)tfe—y] —3/2 Yy
o 1picen (1 1 dyd
/O/Rse " Hivicery (1H7) ( +1+r> "
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_3 _Uzl—en? _ Lzl
< (1+i) e eIt 4 g deg |

~

Case 2: |z| < ct. Direct computation gives

t/2 _G=ntemyl
B < dydr
RS
—3/2 |x| _G=ntiacyl
+(1+1) 142 dydr
1+t t)2 y|>\ \
_ NET _ _lz—yl
+(1+1¢) 8/2 g ey e e 70 dydr
t/2J|y|< gl
< e T 4 (14+1) 14 ol o
e %o
~ 1+t

| |2 -3/2
_ tt]=] _ x
S 0+ Lpgean (L+1) 77 <1+ 1+t> '

To sum up,

2\ —3/2 2
_ x _ tt|e| 5 _Uzl=ct)
B S sy (L+1) /7 <1 " 1|—||—t> +e 0 4 (141)Te oty

for some constants Dy, ¢y > 0.
6.2. Nonlinear wave interaction.

Lemma 22 (Diffusion wave convolved with Diffusion wave).

_3 -3
2 2
e L+ lol”
(1+1) <+1+t s g (L41) 7 + 1

N
_ xX
< (1+t)2<1+1|lt> .

Lemma 23 (Space-time exponential decay convolved with Huygens wave).

2 -2
s _ —ct
e 0 gy (141) (HW)

< 1+t (1+<x|_d)2> .

1+¢

Lemma 24 (Riesz wave convolved with Huygens wave).

3

- (g B (g el e
I' = Lg<ey (1+1) <1+1+t> kgt (141) <1+ T

N N
(1+t)‘2<1+|$> +(1+t)‘5/2<1+(|x|—“>> .

A

1+t 1+¢

Lemma 25 (Huygens wave convolved with Huygens wave).

-2
_5/p _Uzl=en? _ —ct)?
Jo= Q)R R, (140) <1+(||1+t)>
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3
2

< 4 <1+1'ﬂ2t) (140 (H_('f'l—j)?)

Lemma 26 (Huygens wave convolved with diffusion wave).

_ _ (=] —et)? _ |x|2 -
K = (1+8)7e mommm x, (1+1)7° (1
(14+072 R 1407 (14 155
2y} 2\ -
_ - —ct)
< 14021 Ed 148752 (1 (lz] — ¢
S (14 ( +1+t +(1+9) + 1+¢
Lemma 27 (Diffusion wave convolutied with Huygens wave).
-2
Lo e _ (|z] — ct)?
L = (1+t) e mo0mm 1+t 14+ =
(14+1t) "e Do k0 (1+1) ( + Tt
2\ "3 2\ ~
. - —ct)
< 1+072(1 |z 1407521 (lz| — ¢
SR (+1+t i+ M

We omit the proof of Lemma [22] and Lemma Before we proceed to the detailed proof of
Lemmas let us present some heuristic calculations to help understand the mechanism of
nonlinear wave interactions. We use two examples for illustration: the convolution of two Huygens
waves (Lemma [25) and convolution of diffusion wave with a Huygens wave (Lemma [27).

Heuristic estimate for Lemma[25 Set ¢ = 1 for simplicity. Then

t (2 =yl = (t=))> _5)3\ -2
(18) J= / / (141t —8) 52 “Doao (14 s)—4(1 + M) dyds.
0 R3 1 + s

_ U=yl =(t=s))? ) .
We can interpret (14t —s)~%/2¢” DPoG-9  as a receiver located at (z,t) that can only receive

signals along the wave cone concentrated on |x — y| = (¢ — s) with thickness v/t — s. Similarly,
—2
(1+s)™* (1 + W) can be viewed as a sender located at (0,0) that sends signals along the

wave cone concentrated on |y| = s with thickness /s.

_ thlal/c
A 2

~+t—s

(a) (b)

FIGURE 2. Interaction between two Huygens waves
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During the interaction process, the interaction becomes strong in the following space-time region

(See Figure 2(a))
(19) E = {(.9)|le =yl - (t— )| < O(1)F=s and |}yl - 5| < O(1)y/3}

Inside this region, the space decay terms in the convolution are of order O(1), and the decay
is mainly from time factor. The key point is the sharp estimate of the volume for the strong
interaction region.

If |z| > ¢, as s increases from 0 to ¢, the receiving and sending wave cones are almost disjoint,
so the interaction is very weak.

Now we focus the case where O(1)y/t < |z| < t — O(1)y/t. The interaction process starts at
s = (t—|z|)/2 and ends at s = (t + |[)/2 (See Figure 2(b)). To satisfy the condition in (19), one

has
{le —yl = (t—s) <OVt s,
|yl — 5| < O(1)V/s.

Let r = |y|, 6 be the angle between x and y, and set O(1) = 1. The above constraints are equivalent
to

(20) {|\/|x|2—|—r2—2r|xcos@—(t—s)|§\/t—s,

|T - S| < \/ga
The first equation of implies

2 2_ _ 2_ _ _ 3/2
Y I L
T|T TN

2? + 72— (t—5)* —(t—s) (t—29)*?
2r|x| r|z|

This leads to
(t _ 8)3/2

Acosb ~
7|zl

For s large, r ~ s, Ar ~ \/s. Then inside the strong interaction region, is approximated by

%‘wl (t— 8)3/2
Jz/ (L+t—9)"2(145)"s"V/s ~————ds
t=pe NN
’ r2dr N=————
sin 0d6O
el )
5/ o (=) (8™ sy
L T
2
% el .
s ([7" | (1 +t)_1(1 + 3)_5/2d8 +/ (1+t— 8)_1(1 +t)_5/2d5)m

2

t 1
S|A+) A+t —|2) 732+ 1+ )72 —.
S 07 A ) ) I

When v/t < |z| < t/2, it is bounded by

af )

146752271 < (1 t—2(1
(02 5 02 (14

When t/2 < |z| <t — /%, it is bounded by

t_2(1+t | ‘)—3/2_1_(1_;'_.&)—5/2 t2 (1+t>_1 <t_5/2(1+ (t_|x‘)2)71
e v _
T~ I < i
This is the desired estimate in Lemma 25 O

Heuristic estimate for Lemma[26, Set ¢ = 1, and one has

¢ _5yg —Ur—yl-(-s)? 5 ly|? -
K= / / (I+t—ys) e DolFt=a1 (14 ) 1+ dyds.
o JRr3 14

S
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_Uz—y|-(t=s)? .
Similar as heuristics argument of Lemma we view (14t — s)*5/26 Dol+t=s) a5 a recelver

-3
and (14 s)_3 (1 + %) as a sender, to have the following figure representing the interaction:

FicURE 3. Interaction between Huygens and diffusion wave

For O(1)v/t < |z| <t — O(1)v/%, the interaction occurs at s ~ t — || and its duration is of the
order y/s. So the volume of the interaction region in space-time is approximated by

3/2 .
s Vs
vol of space vol of time

The contribution of the integrand during the interaction is approximated by

(14t—s)"214s)"°

sxt—|z| '
So we conclude

Ka(l+t—5)""?(1+5)7%" ~ (L) 21+t — o)

saet—|z|
L+ (1 +[2) 2 S 1+ (1+ 111)73/2, VI < o] < /2,
Tl a et s @y (10 GERY T pa < e <1 - i
This yields the desired estimate in Lemma O

Other convolutions can be estimated heuristically in a similar manner. It turns out that the
convolutions in Lemmas 25 and 26] are the dominated ones among all the nonlinear wave couplings.

We now begin the rigorous proofs, transforming the previous heuristic calculations into refined
(and complex) convolution estimates!

Proof of Lemma (Riesz wave convolved with Huygens wave).

Case 1: (z,t) € D;. Direct computation gives

b ([ ) e
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e
(1+t)72/0 /RS (1—&-7‘)74 <1—i—<|y|1 +CT) > dydr

t 2 -
- - |z —y|
F(141) 4// Art—m 21+ 279 ) gyar
£ Jja—yl<e(t—r) Do (L+t—7)

S A+ +0+0) A+ S04y <1+ il ) B

N

Case 2: (x,t) € Dy. We split the integral I into two parts

= ([ ) [

t 2 -
L < (1+0* Lo (It =y 2 (10 2=l ) g
> S (1+1) //R {le—y|<e(t—m)} (L +1 =) <+D0(1+t_7) yar
t

< (1+t)*4/ I+t—7) Yar <@+t 1+0)%

For I, one can see that

o

~

4

1
N —ct)?
< (1472 <1+(m|1+(;)> .

For I, we further decompose R? into two parts

4 4
[1:</ / +/ / )(-~-)dydT=I11+112.
0 Jyl<2|x| 0 Jy|>2|x|

If [y| < 2 |z|, then we have

X
o=yl 2 Jol ~ i 2 2,
and thus
I < A+ 1+ = _2/2/ R Sl B ek M R
J=l” . T
o~ 1+t o Jas 1t Y

S 1+

A
_
+
N
()
VR /? 7 N
+
B
(V)
~—
|
o (NI
' S—
INEN
—
—
+
\]
~—
L
—~
—
+
\]
S~—
[SlIs
ISH
\]

Ifly| > 2|zl and 0 < 7 < L
2 2| 1 1
ly| — cT > g\x|7c72?+§(ct7\/1+t)f— > —+ —ct
for t > 40. We mention here that (z,t) € Dy with ¢ > 2E2VE€ (= 3.15) implies that [z| > /I + ¢.
Hence for ¢t > 40,

_3

% [ - o =yl i
1+|a:\2) 2/ / Loyi<e(t—ry T+t —=7) 14 T
o Jysz VST Do(1+t—1)

(1+7)7F (1 + W) dydr

Ly S

/N

N

1+7
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3 9 -
’ v —y|
1+|I‘ 2/ / (141t — )2<1+
{lv1>3 lr\}ﬂ{\z yl<e(t—7)} Do(1+t—1)

(1+7)” g<1+3”_y| ) dydr

o

A

1+t—71

_3 i 2 —2
(1+1af?) /O (1+T)—%/RB(1+15—T)—2 <1+DO|(”“;+3;|_T)> dydr

3 2\ "3
W+ (14 o) TS+ <1+1|“””J|rt> ,

and for 0 <t < 40,

A

N

o\ —2
,3 —c7)
12~ / /Rs. +T < 147 yar
(el —e®)
< o<1 t_5/2 1 Uz —ct). )
Thereupon,
3
LS+t |1+ ot 7§+(1+1t)‘5’/2 4 zl=eh” h
L~ 1+t 1+t ’
and so

o ) e (o (e —en?)
IS+t 1+ |+ 0+ )

Case 3: (x,t) € D3. We split the integral I into two parts

() L =n,

For I, we decompose R3 into two parts as follows:

2
I1:/ </ +/ )(...)dyd7_2111+.[12.
0 lyl< 3z ly|>3 ||

It Jy] < % o], then

\I*yl>m
>3
and thus
i < (1+6)72 e _// @an (1 W) g
o~ 1+t o Jrs o T 1+ var

2\ 4
< (1+t)—2<1+x|> .

If|y|>%|x| and 0 < 7 < %, we have

ly| —er >

37
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so that

_3 2 B
2 S le o2 TSl p(L+t—7)" Do(lFt—1)

o\ -
(1+7)3 <1+(|y1 +CTT) ) dydr
_3
2

e

=

2
—7) )72 |x—y|2 T
: H'x' //{y 2l {lo—yl <e(t r)}( Feen ) (H(l“— )> e
< <1+|x|2)_§/0 (1+T)*%./Rg(1+t—7) <1+(1|it_| )> dydr

s Lat o) 2 \ 7
< (1+t)—1/2(1+\x|2) <142 <2+2> <(+1)72 <1+1+t>

since |z| > /1 4 t. Therefore,

o\
L<O+H)7% (1 .
151+ <+1+t>

For I, we decompose R3 into two parts
t
IQZ/ / —|—/ ("')dyd72121+122.
5 \Jl—er<loze Jpy|—er> 2z

If ly| —er < MT_Ct, we have

| > o] |z| — ct >|33|—ct
T — - | —— ) —cT>"——
Yyl = B) = 5

and thus
In < (1+(\x|—ct 3// Y2 (1 4+ 7)7 1y ol —er)” _2dyd7
2 ~ R3 1+T
_3
< % (|x\—ct)2 e —1/2 —4 3
S el I AR By B (R I (R R
NE
s —ct)
< 1 ¢ 5/2 1 (|£L" c
S (44D ( T

If |y| —cT > ‘wl < then

- —ct)? e—y® )

e < (146414 Uzl=ct) // A+t—7) 2142 ¥
22 ( ) ( 1+t {|lz—y|<c(t—)} ) D0(1+t7'r)

< (a+0) <1+M> /(1+t )2 (14t —7)dr

1+t t
g
< -3 (|| —ct)
< (1+1) <1+1+t

e

dydr
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Therefore,

3
2

L<( +t)75/2 (1 n (|| — Ct)2>—

14¢

Combining all the estimates, we get desired estimate

2 - 9\ —
Is(1+1t) <1+1|gi|rt> (1472 <1+(|5”|_C’5)>

1+t
Case 4: (z,t) € Dy. In this region /1 +¢ < |z| < $. We split the integral I into three parts:

3
2

vl

3

t Tyl — et — )2 -2 2 —3
/O/Ra Q+t—7)"" <1+(| Zil|+t_(t7 ))) (147)72 <1+D0|(z|+7)> 1{jy|<erydydT

lz]|

-5 -5l t
= / +/ +/ / (-« )dydr =1 I1 + Iy + I3.
0 £zl t—zl | Jrs

1

2 2c

For I;, we decompose R? into two parts

=%
I :/ / +/ =:I11 + I1o.
0 ‘ylgc(t*g)*\ft\ ‘y|>c(t 7)—|=z|

fo<r<i- m and|y|<w then

ct — |z

ct—7)—lz—ylzclt-7)=|z[-lyl =2 —F—,

N
Ly < (1+t+|x|)_4<1+( 1+|f| ) //< (1+7) 2<1+DO|(‘71|+T)> dydr
y CT

2 -2
< (1+t)4<1+(1+|f|)> 1+ <+1) 15/4<1+(‘”51_+|9§)> .

IfOSTS%—IwC‘ and|y|>w,then

c(t—r71)— |z < ct — |z|
2 - 4 7

ly| >

and thus

s (154 ) (e ) S (PR SO SV ET ) A
12~ 2 " 2 * st 1+t var

(1+t)*4(1+(ct—|x|)> g/0 (1+7)" 1/2(1+t—7)3d7

2 2\ !
(1+6)~* <(Ct l2)” 1+t> 1+ <A+1)%? <1+ (et~ lal)” )

A

_3
2

A

2 2 1+t

since ¢t — |z| > &. Therefore,

572 (ct—|z))?)
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For I, we use the spherical coordinates to obtain

2
ok <\/|x2+r22r|9:|c0890(t7)>
L < 1+t—7) "1
2~ ﬂ / / tt-7) + 1+t—71

-2

_3

2 bl
(147)72 (1 + (1|71 T)> l{TSCT}rz sin OdOdrdr
- jal+r (z—ct-m)
< 1 4 17T 1 —2
~ L_m// +t-7) <+ 1+t—71 > 2(1+7)
55 [lz|—r]
r 2
1+ 1l <erdzdrd
< <1+T>> o trerydadri
1 t_% o 4+3 2 T2 7%
< B 1+t—7) ""2(1 o 14— 1 drd
Sl [ [Tareen ae (1 ) tpenydrds
2 2c
-
1 < -3 1
S el [ Casten e
-

3~

A
i
—
/N
—
+
o |—
o‘i
~__
|
[N
/N
—
+
~
o |—
o‘i
~_
—

N
< Q)24 <2 <1+ 2] ) .

by setting z = \/|a:|2 + 72 — 2r|z| cos 6 and sin 6df = ﬁdz.

For I5, we decompose R3 into two parts

¢
I3 = / / +/ =:I31 + I32.
¢zl ly|< zl=e=n) jy|> zl=e=n)

It -2 <7<y < =22 then

j#l—ct=7) _ |l

—yl—ct—7)>z|—|y|—c(t—7)> .
o=yl —e(t—m) > fo| —lyl —clt—r) > TS > B

Ift—%STSt, \y|>w,then

ol —e(t=7) _ o]

ly| > 5 2
Hence,
In < 1 7% )73 -2 WP -
o +|x\ /u /y<|x| e(t=7) Lt=—m) 2 +7) <1+Do(1+7)> ddr
5 2\ "3
S Q02 (1+el) TS0+ 2<1+(1|:”+|t)> ,

since |z| > /1 +t, and

L\ -
Iy < (14872 <1+ 2] )
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Therefore,

Combining all the estimates yields

1S40 <1+ d%) et <1+ el )

Case 5: (z,t) € D5. In this region ct/2 < |z| < ¢t — /1 +t. Now we split the integral I into
three parts

_92 _
_ [ —4 (Jz -yl —c(t—7))" —2 lyl?
=]

) </o *ﬁﬁjg(tl?)) +/;<t+a<t'z'>>> /R (o )dydr =L+ Lot I

2 2c

[N

For I, the estimate is the same as the I; of Case 4, so

s/ (ct—[a])*\
Il S (1 + t) 1 + 17“

For I, we use the spherical coordinates to obtain

-2

2
(\/x|2 + 72— 2r|x|cosf —c(t — T)>

(trs(t= ) e pm 4
L - L+t—7)" |1
> L,m /0 /0 (1+t-7) + 1+t—7
2 c
2 r? B
(1+7)" (1+D(1+)) 1{T<C7}r2 sin 0d@drdr
0 T -
1 3 [z |+ -~
1 [ a(3(=1E)) oo plaln —4 (z—c(t—7)’ -2
ol Sy 1z 0 /|w—r( 7 b o

2\

rll+ ——— 1

r ( + Dy (14 7)) {r<crydzdrdr
)

A
8
\
L
—
| ol
-
+
[SI[4)
=
|
o[
—~
=
_|_
~
|
q
S—
\
Nl
—~
=
+
ﬁ
S~—
L
.
ﬁ

N

_3 —1
1 3z t) 2 t |z
] (1 T e T3 s %

-1 —1/2 t [ a2 - t |zl -
S |x‘ (1+t) 1“‘1_@4'?—5 1+-—-——

< 1+ (1 + (Ctl_ﬁ|)2>

by setting z = \/|z|2 + 72 — 27 |z|cos § and sin 0df) = —E-dz.

|
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For I3, we decompose R? into two parts

t
132/ / +/ (- )dydr =: I3 + I3o.
l(t_;,_%(t_\ic\)) MSW |y|>w

2
If%(t+%(t—‘ic'))gfgt, Iy\SM,then

lz] —c(t—7) _ ct+|z] ct—lz| |z|
_ _ t— > > = —.
e —y|—c(t—7)> 5 > 3 3 + 1

It (t +3 (t - ‘ic')) <7<t |yl > E=UET hen

[z —c(t—7) _ ct—lz| |z
> =
Iyl > 2 S 1
Hence,
s (1 tet—a?) " [ dreentaen (e )
I ~ 1+ (et — |z / / +t—7 +7 + — ydT
" 3(e+3 (- 2)) Dt er Do (1+7)
2 t
s (1+et-lal?) [ (L4t =) (1 4+ 7)Y
Hor3(-12)

) Cl — | 2\
© a0 (1 ) S 1 (HW) |

On the other hand,

t ? )
o S 007 iy e OO0 (HDO&T)) v

2
5 (1 +t)717/4.

By interpolation, one has

(S

.\
I S (1+¢)"18/4 (1 4 et = fal)” )

1+t
FOI‘IgQ,
t
Iy < / (1+ 2| —c (t = 7)) (14 1)~ 1/2
Hrra(-)
—et—m?)
/ 1+t—7)" 1+(|:c yi—¢c T dydr
ly|> lel=ett=m) 1+t—171
' -3 —445 _1
5/ (I+z|—ct—7)""Q+t—1) 2 (1+7) 2dr
Hora(-)
2\ —3
< “7/2 < (1 -1/2 1 S <1an?(1 ||
S WrTPsa a5 00 (e o)
so that .
LSO+t 21+ Ll R P C )
8 (1+1) 1+t
To sum up,
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Proof of Lemma [25, (Huygens wave convolved with Huygens wave).

Case 1: (z,t) € Dy U Dy. Direct computation gives

t 2\ —2
J < 2 1 t 75/2 1 —4 1 (‘y| B CT) d d
s [T Lavorraen (1 M) agar

t _ _ (z—yl—c(t—r))? _
+/ / (L+t—7) "2 P T (141) " dydr
t R3
2
%

(1+t)_5/2/ (1+T)_4(1+T)gd7+(1+t)_4/t(1+t7')_5/2 (1+i-nidr
0 t

A

2

< (L4072

Case 2: (x,t) € D3. We split the integral J into four parts

L t
J = / / +/ (-~-)dyd7'—|—/ / +/ (
0 lyl—er<lEzet iyl —er> Lelzet £ \Jlyl—er<lzlzet Jyy|—er> l2izet
= Ju + Jiz + Ja1 + Joa.
Note that if |y| — e7 < MT_Ct, then
x| —ct

oyl —e(t—7)> fal ~fy et —7) > T

Hence,

=~
A\

t —2
z _(zl—en? _ —cr)?
(1+8) e Dot (147)"* [ 1+ (gl = er)” dydr
0 Jiyl—erglelzet Lt

(lz]—ct)?

dr < (1+1)"%% e Dot

[N

2 (|z|—ct)?
S [ e EE e e
0

For Jy2, we have

i 52 _Ur—ul_eGor)? 4 (ly| — CT)2 -
Jiz S / / e 1+t—7) e DodF=m " (147) 14— dydr
0 \y|—c‘r>%
%

1+7
2
< / Att=n) Pt —n)E )2 (14 (] - e)?)  ar
0
S (4 —et) ™,
and
T < / / (46 (L 7)7 (1 [y] — or) " dydr
0 |y|—c7'>7|z|;‘:t

< /2 1+ t)_5/2 (1+ T)_Q/ . (147 —cr) *rdrdr

0 cT+ 55—
< 5 —5/2 2 [ —4 2
< (1+7%) (I+7) " (I1+7r)""(r4+cr)’drdr

0 m;ct

%

< / (1+ t)_5/2 (1+ 7')_2 [7"_1 +er-r 24 (07)2 7‘_3} et dr

0 r=a—
< (14172 [(1 el —ct) " I @2+t (14 |z —ct) P+t (1+ |z] —ct)

-+ ) dydr
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< 14tz —et) [1+1n(2+t) Q+vitn +t(1+m)‘2]

< A+ (14 Ja| —et)

~

which implies that

2
3

ol

Jis = ghg%@hg%5[0+¢ufcw“ﬂ ﬁ1+w—w2@+¢ufco—1

< (14873 (14 |2 —ct)

(1+14)3 <1 4 Uzl =et) Ct)2> 7

For J; and Joo, it follows that

A

-2
t (|z|—ct)? (z—y|—c(t=7))2 - 2
Jo1 S/ / / (1+t77_)75/2672D0(1+t)67 2Do(1+t—7) (1+t)74 1+M dydr
y|—cr< lzi=ct 1+7
4 _Usl-en? [t _5/2 s
S (1+¢) e 2o [ (14+¢t—7) (I4+t—7)2dr
%
_3 _(zl=et)?
S (e s,
—2
¢ _ (lz—yl—c(i=7))? —c7)?
Joo S // (At — )52 e oS gyt (14 W=D} gr
§ Jlyl—er>lelzet L4
—2
t 2
_ 5 — —ct
s [are-nareniasg (14 B2 e
t 1+1¢
(o = e”\
_ I —cC
< Q40?1+ =L .
S (149 ( + 1+¢ )

Gathering all the estimates, we can conclude that

2 —1
JS A+t <1+(|”C1 ;tt) ) .

Case 3: (z,t) € Dy. We split the integral into four parts

e </” f . /2+ " /;a(w':'))/w(m)dym

4 4c

= Ji+Jo+J3+ J4

For .J;, we decompose R? into two parts

t_ =]

le/ ¢ / +/ / (-")dydT:2J11+J12.
0 <=5zt Jpy>eglel f JRs

o< <ty <<zl then
ct—lz| _ ct
- -l -yl zclt-7)—lel -2 T 2 S,
Hence
t_ =] 2\ —2
17 dc (|z|—ct)? _
Jii S / / (1+t75)75/2cfm(1+7)74 1+7(|y| c7) dydr
0 ly|< =5 L+7
|zl
z|—ct)? i_ﬁ (|z|—ct)?
S 1+ 2D°““)/ (1+7) A+ dr S (1+1) "2 e 20000,
0
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and

t

-4 _ (z—y|=c(t=7))? _
Jiz S / / (14t —7)2 e Por=  (147)72 (1 + (ct — |x\)2) dydr
ly|> <5l
< 4 i —5/2 5 —2
< 1+ (I+t—7) (I+t—7)2(1+7) "dr
0
_3
—4 -1 -3 —5/2 |55|2 ’
S A+t AP s a1 2
since v1+t < |z| < <, so that

3
2 -2
(zl—ect)®
JiS ) e i + 1+ <1+|$|> :

For J; and Js,

t —2
2 (z—yl—c(t—7))2 _ 2
/ / (1+ t)*5/2 e Dotim (14 7->*4 1+ M dydr
sl Jro LT

-2
_ t _ Uz—yl—e(t—r)> —cr)?
(1+t) 5/2 <1_|_ |£E|) / / Dg(1+t T) <1+(|y| CT) > dydT
R3 1+T

N
s<Lu>mu+o4u+ﬁsﬂ+ﬂ7”5“+”2G+fﬂJ |

Jo

A

A

e

J3

A

$+i(e+Eh) (o—y]—e(t—))2 —er?)

2

—2

Ll e [ (g~ er)’
14 = (-1 1+1)" Soaren o (14 W)
<+4< C)) * //Rs ’ T yar

< (140 Pa+0d<a+n)? <1+:'3|> :

AN

e

1+t

due to Lemma 5.4 of [24].
For J;, we decompose R? into two parts

¢
J4:/ / -l—/ ()dydTZ Ja1 + Jao.
gi(er ) \Jpi<leget Jpy)s leipe

1L+ 4 (t+ ) < m <yl < BB then

ct 1 |z| +ct _ ct—|z| _ ct
—lyl> =+ - > >
cr =yl = 5 + 7 (et + Jz]) s 2 2y
Ift+1 (t+ @) <7<t |yl > HF then
z|+ct ct 1
eyl —clt-7) = - lel el -2 I e Sy L e g )
ct—|z| _ ct
> s =
= 4 =8
Hence,
—2
¢ _ (e—yl—ct—m)2 B t— |lz)?
Ju S / / (1+4t—7)2 e Dotre=mr (1 41)~* 4 etz dydr
$+3(e+1E) Sl e 1+t
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9\ —2
< a+¢)4<1+(d£1?)> (1+1)

_3
< DT SA) A )P S (1) <1+ s ) ,

1+t
¢ —5/2 _(et—lz)? _ (Jw—yl—c(t=7))2 4
Jio S (I+t—71) e Dot e 2DoFi=n (1 +1¢) ~ dydr
S+5(e+1E) Syl =g
4 _(et=lzp? [ 5.5
S (+nte ”’“””/ (1+t—7) "3 dr
s+i(e+1)

3
-2
< (A4t PeE <+t <1+ lﬂt> .

for some C > 0, so that

3
2

N
LS+ (1 + 1|$+t>

As a result,

|ac|2 i (z|—ct)?
J§(1+w‘2<r+1+t> + (1+1t)77/% e 200050

for (x,t) € Dy.

-

Case 4: (x,t) € Ds. We split the integral J into five parts
H

- Setielh o psaierlh e 5
J= / ,/ /‘ / +/ /"QnmmT:Ejh
Ge+ie+lh  Ji+ieridh ) Jre i=1

For Ji, we decompose R3 into two parts

,;.

[z]

-
J1:/ / +/ ()dydT: J11+J12.
0 lyl<stslel Jyyl>etslel

IfOSTSi % ly| < et ‘ml , then
ct — |z
ct—m)—le—ylzclt-7)= (el +y) 2 ——
fo<r<%- 4i ly] > <5 ‘zl , then
ct — |x]
ly| —ct > ———.
Hence,
ra= (ct—lz)2 (ly| — er)? -
Jn < / /1 (Lt 6) 2 Borrn (147) ™ (14 W) gy
ly |<Cf |z 1+7

ct—|z|

(ct—|z)? (ct—|z)?

4
S (144727 Dotiin / (L) dr < (14 1)~ Borrmr
0

For Ji5, we have

x

- 5/2 _ (z—y|—c(t=7))2 _9 9
@) RS () (14 (et fal)?) dydr
y‘>cf
ct—|x|

(1+(ct—|w|)) /0 (1+7) 2dr

Ji2

A

A
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S (+et—la)™,

and
t_ x| %)
4 dc
Jiz S / (1+t)_5/2(1+7)_2/ ||(1+r—cr)_4r2drd7'

0 ctgz

ct—4\z\

S (1402472 (1+ct = [z)) " dr
0

S 1+ Atet—la))
which implies that

2
3

ol

Ji2 S (i) (Jlg)%N[(1+ct—\x|)—4f[(1+t)—5/2(1+ct—|x|)—1]

2 —1
< a4+ (1 tet—|a)? (1+t)_§<1+((:tl_+|j)> .

Therefore, we get

2 —1
(ct— \J.\ _
JS A+ e B 4 (144) §<1+<Ctl+j|)> .

For Js, we use the spherical coordinates to obtain

£ g qm (VI 2Tl eon o —et—m)? _en?)
Jo S (1+t- 7)75/2 e Do (IF6-7) (1+7) 41+ r=cr)” r? sin OdOdrdr
~o Sl 1+7
|zl+r (z—c(t—m))? (r—cr)? -

S / / / 1—|—t—7')_5/2 e Doari-n (147)* <1—|—> rz—dzdrdT

i [l —r| 147 ]

3 oo (oo _5)2 —lz=eti=m)? 4 (r— 07)2 - 1
S / / / (1+t—7) e DolF= (14 7) 1+ -— rz—dzdrdr

Lzl Jo Jo 147 |z|

3 o0 _543 4 (r—cr)? o
< / / I4+t—7)"2"2(1+7) 14— —drdr

L Jo L47 ||

4 4c

%

S (it |x|_1/ e

4

N

c

3
2

< A+ 2A4ct—|z) 2 <A+ A+t —|z)E (1 +et—|z]) 2

-1
2
_ t —
< 1+ 5/2<1+<C1+'j')> ,

by setting z = \/|1:| + 72 — 2r|z|cosf and sin 0df = T de.
For Js3, we use the spherical coordinates again to obtain

slel 4o (\/mfcuw)z 2\ 2
4c 4 —
Jz < / / / —5/2 - Do(ITt—7) 1+ t)74 (1 + <7”1+CT)> r2 sin 0dOdrdr
T
+3 ||+ (z—e(t—r))2 (r—cr)’ - 1
S / / / (1+4+1t— 7')_5/2 e Dour-n (1+44)74 1+ —TX rz—dzdrdr
l|z|—r| I+7 ||
B4t oo 2\ 2
< 5 3 —
< A4ttt Rt o F T Glull Lok A
~ 1
5 0 T
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Nr‘

A

(1+1) 7/2/ (14+t—7)""dr

e )

—1
t_
< (1+1) 5/2<1+c al) > .

14¢

For Jy4, similar to Js, we have
|z

lely
Ji S (1+t)_7/2/3\| (l—l—t—T)_ldT
e

()" g

< (1) (1 4 let=l2l)” x|)2>_

[N

e+

7/2

A

(1+1t)”

1+1¢

For Js, we decompose R? into two parts

t
J5:/ / +/ ()dyd’]’: J51+J52~
srt(ealzy \pyiclelper  Jyy)s lelper

14+ 4 0+ ) < r <yl < BB then

|x| + ct < ct7|x|'

iyl = < 2 (et 4 Jal)
cT — —+-(c —
TTW=5 Ty ‘ 2 = 1
If%—l—i(t—i—%)grgt, |y|>7|x|;°t,then
x|+ ct ct 1 ct — |x
eyl —elt—1) > lyl—lal—c@-m> T e &L e > Sl
2 2 4 4
Hence,
-2
t _ _ (z—y|—c(t=7))> _ t — 2
Jsa S / / (1+t—7)"% e Do (141" 14 el dydr
(i) Jns g e
(ct—Ja)*)
Cl — |
< (1 t_4 14+ — t —
S +9) <+ = ) (et — Jo])
—2
- t — |a))?
< 1+3(1 ((:7
S a4 ( plez il
t _5jo o (et=leD?  _ (a—yl_e(t=r)? 4
J52 g (1+t—’r) e 2Dg(lfect—Iz]) ¢ 2Dg(1+t—7) (1+t) dyd,r
s+5(eHE) Jlyl> e
(ct—lep ! 5.5
s (epem (4t—r) g
pri(eriz)
g _(et—lz)
< (14t) e 2P0 .

Gathering all the estimates, we have

3
2\ ~2
J< 1+ 1+—|x|

o\ -
+ (14872 (1 + 7(@11‘3;') )



BOLTZMANN EQUATION
Proof of Lemma [26] (Huygens wave convolved with diffusion wave).

Case 1: (z,t) € D;. Direct computation gives

49

1 2 -3
K < 1t*5/2/2/1 S (TN R
< a2 [ aen (10 ) e
3 K 5/2 (|x—y\—c(t—r))2 -~
1 B 1 —-7) 1
+(1+1) /;/JRS( +t—1) <+ Do (1 t=7) ) dydr

: _ : 5

< u+o*“/‘u+rr%1+ﬂ%@w441+o*/1u+t—ﬂ*”u+t—ﬂ5m

0 %

o

2 2
< (1+t)‘5/2+(1+t)‘3(1+t)5(1+t)‘2<1+1|x+t> .

Case 2: (x,t) € Dy. We split the integral K into two parts

é
(/ /)/ Y dydr = K1 + Ko.
For K1, it is easy to see
3 P\~
A+t 21+ 1+ 2 dyd
/ /RS + (14+71)" +1+T ydr
3

K,

A

3 2
< /4 A+ 0+ 20+ dr <O+ <1+ <1+ (ol = et)”
0

For K5, we decompose R3 into two parts

t
K2:/ / +/ ("')dydT:ZK21+K22.
fe \wi<lst Jw>5

It readily follows that

_3 |x| _5/2 —Uz—yloet=m)?
Koy 5 (1+41) (1+t—1) e Do(+t=7) ~ dydr
T1t) Sy
< A+t 1+ =/ (1+t —5/2 3
< —7) (I+t—T7)2dr
1 + t %t

AN
_ X
< (1+t)2<1+1+t> .

If 3t <7<t |yl <2, then

x| ct _ 1 ct

e —yl—c(t—7) > |z|—|y|—clt—7)> |2—‘—Z2§(ct—\/1+t)—z
L et (et VITT) e
8 8 2 8

for t > 11. Hence, there exists a universal constant C > 0 such that

-3
Koy < (141" // (1+t— 5/2<1+1|y> dydr
R3 + 7
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t ‘
< (1—|—t)73e_%/ (1+t—7)75/2(1+7)%d7
3¢
< eESA+y? 1y (al=et”)
e A
~ ~ 1+1¢

for t > 11, and

(Il —et®)
< C<Att) (1 + “)
for 0 <t < 11. Therefore we can conclude that

[ - (2| - ct)’ -
KS(+0)72 1+ 2 ++172 (144820 :
AL <+1+t> 1+ 1+t

Case 3: (z,t) € D3. We split the integral K into four parts

% t
K = / / +/ (-~~)dyd7’+/ / +/ (-++)dydr
0 \Jlygt=g=r Sy =g 3 \Jwisll=ge=n Jyyselege=n

= K1+ K2+ Ko + K.
If |y| < W, then

—c(t— —ct
oyl —e(t—7)> ol ~ Iy~ et —7) > IZCEET) _lHlmetber
Hence,
t -3
2 _ Uzl=et)®4(em)?
Ki S / / (1+t—7)75/2e 4Do(1Ft—7) (1+7) 1+ 2 |y| dydr
0 Jlylglzl=gt=n L+
5/2 —lsl-et)? (2 _3 3 —5/2 —Uzl-et)?
S (146 77 ~ e I+7)""(A4+7)2dydr S (1+1) e TDoFn
0
3 -3
Ky < (1+t)‘5/2// <1+T+|y|2> dydr
0 |y‘>\w\—c2(t,—7')
< (1+t)*5/2/ /‘ ( )(1+r) r2drdr < 5/2/ (1+|z| —ct+ecr)Pdr
0 z—cztfr 0
— _ _ —ct)
< A+ A+l —ct) 2 S (1+1) 7/2<1+ (laf = )
141
9 _ Uzl—et)?+(er)? \y| -
Ky S // 1+t —7) e mmrr (14 (14 ) dydr
jyl< lel=ee=n) 1+7

(Jz]—ct)?

(z|—ct)?
g e 4Dg(i+D) g~ é/ (1+t—7‘)75/2(1+7) 2d7’<€ Ce 4D (1+¢)
t
2

for some C > 0, and

_ — ct) 242 _ Ue—yl—e(t=)?
Kpn < (1+07°(1+ (ol —er) e / / (1+t—7)" e DomH=n —dydr
1+t R3
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A
—
+
Nt

w
VR
—
+

2 - t .
1+t+t> /£(1+t—7)75/2(1+t—7')§d7'

< 140 (1 + (] = et Ct)Q)

It implies that

—1

2

_ —ct
K<+ <1+('$'1+°t) ) |

Case 4: (x,t) € D,. First note that /1 +¢ < |z] < ct/2 in this region. Now we split the integral
K into three parts

t_lx| t— Lzl t
2 2c 2c
K= / +/ -|-/ / (++)dydr =: K1 + K> + Ks.

For K, we decompose R3 into two parts

t_ |z

27 2¢c
Kl:/ / +/ ("')dydT:5K11+K12.
0 ly|<st=n=lel  Jjy s ei=n)=lzl

IfOSTS% |2i|y|<w,then
c(t—71)—|z| _ ct— |z
t— — — > > .
e(t—7) — fa| — fy > LD oo
IngTgéflgc‘,|y|>wthen
||>ct—\x|
Y 1 .

Hence, we have

S e i -
Kll S 1 + + m 16D0(1+t) 1 Jr,r) 14 =7 (|y‘ ) dydT
2 2c ly|< St=n)=lal 147
5/2 _ U=zl=ct)? 3= 21 343 5/2 (lz|—ct)?
S (1 + t) 16D (1+1t) (1 + 7—) 2 d7- < (1 + t) e 4D0(1+t)
0
t_ |zl —3
27 2¢
12 S T 1+ 14+ 12— T++ ydr
55 e
: / / (=)o r0rtdrdr < (14+0) 7 (L et — [2])
—1
< —7/2 |1“ — Ct
~ 1+t ’
so that

(2] —et)®)
_ | — C

For K5, we use the spherical coordinates to obtain

= oo e (VIe P72 =2rlzl cos 9—c(t—)) P2\ 3
K, = / / (1+t— 7_)—5/2 e Do(tt—7) (1+ 7-)_3 <1 + T ) 72 sin d@drdr
T

7 |zl (z—c(t—r))? . AN
B / / / (It —7) e B (147) 2 (14 L 222 drdr
L_|2| [lz|—7| 1+7 7"‘ |
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t— L=l |z|4+r (er—(ct—=))2 2 -3 d
S / - / / A+]z) e o (1+6) 2 (14— ) rZdrdr

§-H llzl 7| L+t Ed

|+ R

< / / I+ z) 2 VI+t(1+)" ( > rzdzdr

|x| || —7|

79 s |z|+r
< (T4 ) (1+1¢) 2/ / ( ) rzdzdr
lle|—]
|| |a:|+r 2 || 2 \ -3

< 124 t*g/ / il // ! dzd
SO (@+z) V(40 i + 13 zdr + . . 1 2dr
< 7/2 3 1 2 2N\’ r2 r -

1 R4 1 d d
Y F T +1+t) r [l (14 1+t> :

-3
< (1 T2 el 40 el (10 (14
S @)+ e[+ 2] (L+1) T
-3

S A+l P+ <4072 <1+1|””+|t> .

by setting z = \/|a:|2 + 72 — 2r|z| cos @ and sin 0df = =+ dz.

rlz]

For K3, we split R? into two parts

t
K3:/ / +/ (-++)dydr =: K31 + K.
tf% |y|§\m\—c2(t—-r) |y|>\m\—c2(t—-r)

- < r <y fy| < B2 hen

—c(t—
oyl —e(t—7)> ol ~lyl —c(t —7) > LT 5
- <7<yl > 22T then

ol —ct=7) _ |al

lyl > 5 >
Hence,
5 \ —3
Ko < (142 ’/ / A+n (1422 gyar
- =l s 1+T
3 3
< (A4?) 2/ L (L) dr
t=5
’ _3
< (+0? 1+ )
~ 1+t 3
Kz S 1—&—1&—m _3 |33| / / +t—7’)75/2€_%+;)>)2dyd7
~ 2c 1+t Lzl Jyy)> lzlzett=r) 7)
< (14e- BN (g J2E / (L+t—m) 214t —7)idr
~ 2c 1+t¢ ¢zl

o\
_ X
< (1+t)2<1+1+t> ,
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so that

Wl

K.<(1+8"2%(1 ﬂ
35S (1+1) <+1+t

To sum up,

KSO+072 1+ il g)+(1+t)_5/2 1y rlmen®y
~ 1+1 1+t

Case 5: (x,t) € Ds. We split the integral K into three parts

|z

% G ¢
K = / +/ +/ / (---)dydr =: K1 + K3 + K.
o i e e

For K1, the estimate is the same as the term K; of Case 4 and so

—5/2 (|z| - ct)® B
Ky S(1+41¢) 1+ BT

For K5, we use the spherical coordinates to obtain

GRS (z—yl-c(t—7)2 -
K, < /2|| /(1+ )72 e PatE= T (14 7)7 <1+1|’_/F ) dydr
3 zi
% (\/ \2+r2727‘|z\cosefc(t—T))z 2 -3
S / / / (1+1¢) 52 ¢ Do (1+D) (1—1—7)73 (1—|— ! ) r? sin Odfdrdr
147
§ |xH—r (s—c(t—1))2 2 -3
< a / / 5/26_ Do 0z (14 ct — |a]) ™ (1+r> L dzdrdr
l|z|— r| 147 |z|
% m"'r _ (er—(ct—z)2 2 -3
S (1+t)_7/2(1+ct—|x\)_3/ / / Do(1+1) z(l—I— L ) rdzdrdr
elrl L4
< a +t)—7/2(1+ct—|x\)—3(1+t)%
|| \93|+7" r+|z| r2 -3
/ / > rdzdr+/ / < ) rdzdr
|z|—r H'C7f—| | || || 1+ct—|z|
3 ! 2 r - - 2 r? _3d
< 1+ °(Q1 t — 14— d 14—
s aro e | [ (v ) e [ () o
S @+ (et —[a) ™ [lol (L+ et — o) ? + Jo] (1+ et = Ja)® (1 + [2])~°]
S A+ (Adet—|e) 2 SO+ A tet—|z)? (1+ct—|af)
-1
- t—|z|)°
SRR Al S Clt )i I
S (149 + 1+1¢

For K5, we decompose R3 into two parts

t
K3=/ / —i—/ (++)dydr = K31 + Ksa.
g(t_M) |ylg\w\*62(t*‘f) |y|>\w\*62(t*‘f)

c

13 (- ) <r <t [yl < BT then

|| —c(t—7) S ct—|:c\'

[ —yl—clt—7) = |z[ - [yl —c(t—7) > 5

|
N
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1£3 (= 2) < v <ty > =D then

[z —c(t—7) ||
>
vl 2 - 4
Hence, we use the spherical coordinates to obtain
t S et lal)? VIFIZH 2 2w  cos b—e(t-m))”
K31 f} / / / 1 +t— 7—)*5/2 e 32(130(1‘+‘t)77—) e ( 2Dg(1+t—7) )
3
2 -3
.(1+T)*3 <1+ ) 7% sin OdOdrdr
1+7
(ct—|z])? = el (z—c(t=1))2
5 e 32D0(1+t)/ / / (1—|—t—7')_5/2 6_W2(1+T)_3
% || —r
r2
1+ — L dzdrdr
147 ||
1 _(e—lzp? [ _5/2 5 3
< —e 32D I+t—71) I+7) " (A+t—7)2(L+7)dr
] 312
1 _ (et—a)? Fe+3(e-1) ¢ 1 L
< —e 32D+ +/ 14+t—7) 1+7) "dr
2 30— B3
SRS [ sl e\ 8 B\ e _ ¢
e o1+t x x _9 x
< S0 (12t 142 (= 146 2m (1428 2
S (5 (3 (-8)) o)
673(2(:;;7‘(?23) 3/2 5/2 (Ct*I)Q -
< —— A4+t <S(1+t) 14+ —-"
s S ey gy (14 G20 )
by setting z = \/|x\2 + 72 — 2r |z| cos @ and sin df = apdz. As for K3, direct computation gives
_ Ue—yl—c(t=m))? -3
K3y S / / (1+t—7)""e DomFi=n (1+ |y|2) dydr
3t |y|>Lel=ett=m) T>
A
S / +/ / (- )dydr
$0-2) Hor3(-12) ) D> e
= Kso1 + K322,

we then have

3(t+3(e-12) (z—yl-c(t—7)) -3
Kz S / / (1+t—7')_5/267W (1—|—\y|2> dydr
sty Sy
Her3(e- 2
S A4t—7)2 A+ a|—c(t—7)) " dr
$0-2)
< (14720 +ct—|z))?

N
_
+
N
|
i
~
[\v]
/-~
=
+
a
~
\
B}
¢
~_

< t 1+t —5/2 _% ) ) fgd ;
i 5 J (U t=7) 2 T (14 y?)  dydr
3 ) Iyl > el=sg=n)
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It implies that

(et — o))" M
K3 < (1+1)7°? <1+1+t> +(1+t)‘2<1+ ) .

As a consequence,

K< (1467 <1+ et = le))” |x)2>_1 +(1+t)72 <1+ o >_
~ 1+i

Proof of Lemma [27, (Diffusion wave convolution with Huygens wave).

Case 1: (z,t) € D;. We split the integral into two parts to obtain

(/Oa/g [y
1+1)72 /02 /W 1+7)" (1 + (y|1:_CTT)2>2dydT

4 k 2 |:c—y|2 -~
1+1t)" l+t—7) " [1+ " dyd
+(1+1) /Z/RS( +t—71) +D0(1+t_7) ydr

t

L

A

(M

< (1+t)*2/E (1+7)"*(1+7)
0 t/2

A

3
2\ "2
1+0)2< 1+t 2|1+ il .
( ) TS ) < 1417

Case 2: (z,t) € Dy. We split the integral into two parts:

$ t
L:(/ —I—/)/ (--+)dydr =: Ly + Lo.
0 t R3
First one can see

t 2 —2
L, < (1 —4 1 21 |z —yl
s S (141 /;/RB( +t—7) ( +D0(1+t—7) dydr

.\
< (14t)? <1+(|x|11(;t) )

As for Ly, we further decompose R? into two parts:

%
L1:/ (/ +/ )()dydT: Li1 4+ Lqs.
0 lyl<3lzl  J]yl>3]=|

If |y| < 2 |z, then we have .
x

—yl > _ > 7
|z —y| > |z| = |y > 3

d7+(1+t)*4/ (1+t—7)"%dr
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2\ 2 .t 2\ 2
< —2 || : —4 (yl —e7)
Lii S(1+1) (1—1— 1 ; \y|§§|w|(1+T) 1+ Trr dydr

2 2
] |z]

2, .
S (1+t)_2<1+1x+t> /O(1+T)_4(1+7)3d75(1+t)_2<1+1x+t> )

and thus

If ly| > 2 |z| and 0 < 7 < £, then
2 2 ct _ct ct 2 ct
—er>tlrl—er> (et —VIHt) = > — — — 1 t> —
ly] c7_3\x| c7_3(c +) 2_12-1-12 3 + Z 13
for t > 40. Hence,

t 2 -2 9 —2
i 1+t—7)"2(1 _lr—yl 1 ~a (4 (lyl = er)” v
/0 /lylziw( Hen ( T De(i ) A+ R yar
: I R
< - [F 2 eyl —
~ (1+t) /O/RS(l—i—t T) <1+D0(1—|—t—7—)> (1+T) dydr

< (1) <1+(x|1:;t) )

whenever ¢ > 40, and

-2 |£13 - y|2 4 (‘y| _ CT)2
A I <1+Do(1+t—7)> o (”m) dydr

< CS+n)P (1 4 Uzl = ct)” _Ct)2>_

rofes

~ 1+1¢

whenever 0 < ¢ < 40. Therefore, we get

(1o et "
— Tr| —C

Combining all the estimates, we have

S P\ Sy Uel=ct®)
L<(14t) 1+m +(1+1) 1+17+t

Case 3: (z,t) € D3. We split the integral into two parts

For L, we further decompose the space domain into two parts:

L1:/ (/ —|—/ >(-~')dydT:ZL11+L12.
0 ly| <3z ly|> 3|z

If [y| < 3 |z[, then

and thus
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< u+¢y2<1+ﬂ2>

1+¢

Nlw

If |y 2%|x| and 0 <71 < %7W6 have

iyl —er = 2 el = S = Ll + 5 (o] - ct)
yimer=3 2 76 2
so that
: o o lewl® —2 2\ 2
Lis 5 L+t =72 0= (14 7) 7 (L7 + (o = o)) dydr
0 Jiyl=3al
2 -2 % 2 _ ‘17y|2 _9
S (1lel=et?) " [ [ @eton e T (140 dyar
0 R3
-2 1+t n2\ "
S (14 (el = e?) (1+t)1/25< . +(|w;°)> (1+1)/2

o\ —2
_ x| —ct
N (1+t) 5/2<1+(||1 t)>

since |z| — ¢t > /1 +t for (z,t) € D3. Therefore, we obtain
o2\ CEOAN
_ x _ x| —c
Li <+t 21+ 2 1+) 2 (1 L .
13+ <+1+t> + 1+ M
Next for Ls, we decompose R? into two parts

t
L2:/ / +/ ("')dydTZI L21+L22.
3 \Jlyl—er<izlzet Jyl—er> lzlzet

2

If |y —er < m%“, we have

| > o] |z| — ct c >|a:|—ct
x— - | ———— ) —cT > ——
Yyl = B Z 5

S0
2 —2 t R
—ct _9 ___lz—yl® _
La 5 1+M // (1+t—7) "€ 2T =7) (1+7)"*dydr
1+t % R3
(e —en®)
< (140721 z|—c
> M ’
and

(ol — et [ o=y
Ln 3 L / / (1+t*7)_267m(1+7)_4dyd7
1+t ¢ Jrs

Therefore,

LS(+)7° <1+ il >_ + (1412 <1+W>_

Case 4: (z,t) € Dy U Ds. Observe that

\/1+t<@<z
2c T 2¢c T 2



58 YU-CHU LIN, HAITAO WANG, AND KUNG-CHIEN WU

We split the integral into three parts:

L_</2 / )/ ) dydr =: Ly + Lo + Ls.
|| t R3

For Ly, we decompose R? into two parts {|y| < 2 |z[} and {|y| > 2|z|}. If |y| > 3|z| and

0<r< %, then
_3 2\ —2
(1+t)7% (1 / / 1+ 1+ (vl = er)” dydr

ly|< ].+’T

-2 2 lz—yl|
+(1+Ir|) / / (14t—7)"2e Do0H—7 (1+7) *dydr
0 Jlyl>*t

_3 -2
2 2 2
_ T x 1+t _
< (1+t)2<1+| ) +<|2|+2> (1+¢)7/2

ly — 7>*11||
c x|.
Y 2
['hus,

Ly

A

1+t

3
2

< (1+1)72 (1+ 2 >_ 

1+t
As for Ly and L3, it immediately follows that

2 o —y|2 o2\ 7
Ly < [l/ I+t—71)" 2o W(1+7)’4 1+7(‘y| c7) dydr
e /RS

1+7
% |lz—y|2
(1+1t)7? (1 + x') / (1 +T)*2/ e~ Dot+7 dydr
2c % R3
2 (1 BN gt
(1+1) 1+2C (1+1)

2 —2
_ X
< (1+0) 5/2<1+1|J|rt> ,

A

N

and

t _le—yl?
Ly < (1+ t)74/ / (14t—7)"%e Dol+=n dydr
t R3

_3 -3
< A+ g (1+ |x|2) R e () (1+ 1'1) :

since v/1 +t < |z| < ct. Therefore, we have

3

-3

L<(1+6)72 1+7|x| .
S( ) < 111

O
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