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Abstract

The purpose of this paper is to study the well-posedness problem for weak

solutions of Navier—Stokes equations in gas dynamics. We consider rough initial
data, in BV N L'. The well-posedness theory of Liu and Yu (Commun Pure Appl
Math 75(2):223-348, 2022) for the isentropic Navier—Stokes equations is extended
to the Navier—Stokes equations with an additional equation for the conservation of
energy. A key step is to treat the energy equation as mainly for the dissipation of the
temperature. The dissipation is analyzed through the heat kernel with BV variable
coefficient constructed in Liu and Yu (2022). This step is natural from the physical
point of view, but estimates for the temperature are required to be sufficiently robust
for the validity of the conservation of energy in the weak sense; for this, we establish
the regularity of the solutions, particularly the estimates of their time derivatives
through refined estimates of the heat kernel.
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1. Introduction

Consider the compressible Navier—Stokes (NS for short) equations in Lagrangian
coordinates:

vy —uy =0,

[ MUy
ut+px—< v )x’ (11)

I, K %
(e+ zu”) + (pu)y = (_ex + _uux)
2 v v

X
Here v is the specific volume, u is the velocity, e is the specific internal energy,

6 is the temperature, ;o and « are the viscosity and heat conductivity coefficients,
respectively, and are assumed to be positive constants. We consider the ideal gases

Ko
p(vs 9) =, e = CU09 (12)
v

where K, and heat capacity c, are both positive constants. This system can also be
written in terms of (v, u, 0):

Vy — Uy =0,

u
uz+px=<ﬂ x) :
X

v (1.3)
p w K
O + iy — — (ux)* = (—ex) :
Cy CyV CyV ¥

The main purpose of this work is to study the well-posedness and time-asymptotic
behavior of system (1.3) with initial data being a rough perturbation around a
constant state. Without loss of generality, the constant state is assumed to be
(v,u,0) = (1,0, 1). The initial data (v, u, 6)(x,0) = (vg, ug, 6p)(x) is given
to satisfy

lvo — 1l + llvoll gy + lluoll 1 + lluollgy + 160 — 1l + lollzy <8 < 1,
(1.4)

where L )1( denotes the L! norm in the space variable x, and | - || gy denotes the total
variation norm.

Our main results are stated as follows:

Theorem 1.1. (Local existence and regularity, Theorem 4.1) Suppose that the initial
data for (1.3) satisfies (1.4). Then, there exist positive constants t; and Cy such that
the system (1.3) admits a weak solution (v, u, 0) fort € (0, t;) satisfying
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e s G Do s Nty s 7 Tt Dl
- { VGl G

101 = Uiy« 10C.0) = Lz o 10Co)llg o V10Dl
. { VI8 Dl s 116,02

max {00, 0 llgv, 1060 = gy s 1060 = e V7 luC 0l | <2658,

} <2048,

} <2048,

v—1l=vl+v) vix,1)= Z [v] (@)h(x —z), v} is continuous,
7<X,2€2
x=zT x=z"
ven| | =2050| |, ze 9,
X=z X=

where h(x) is the Heaviside step function, 9 is the discontinuity set of vo; Moreover,
. X 2
the fluxes of u and 0, (i.e. “** — p and ot — I (p u; — CULU (uz) )dz ), are

v cy

both globally Lipschitz continuous with respect to x for any t > 0, and the specific
volume v(x, t) has the following Holder continuous properties for 0 < s < f,

(t — s)[log(r — s)|
NG ,

v, 1) = v, )y = 2C48
f—

7,
(. 1) = v( )l = 2C38(r — ).

G, 1) —v(, 8) e = 2C48

Theorem 1.2. (Stability and uniqueness, Theorem 5.1)

Suppose there are two solutions (v, u®, 0%) and (v?, ub, 6%) 10 the Navier-
Stokes equations (1.3) with the regularity properties stated in Proposition 2.1, and
for a small 5, their initial data both satisfy

lvollav + llwollsv + 1601l 8v + llvo — Tt + lluoll 1 + 10 — Tt < Ba.
Then, there exist t, > 0 and C, > 0 such that, for0 <t < t,,
o — Pl + e = Py + 6% = 61y < Co (166 — 0§ e + 166 — 6§
+ Nl — uglleze + luf — ugllpy + 0§ — vl + oG — vglle + llvf — Ugllgv)-

Theorem 1.3. (Global existence, Theorem 6.1) There exist §* > 0 and ¢ > 0 so
that for any initial data (vo, ug, 6p) of (1.3) satisfying

lvo — iy + llvollgy + lluollzr + lluollgy + 160 — izt + l6oligy < & < 8%,

the solution constructed in Theorems 4.1 and 5.1 satisfies

H«/t—l-_l(v(-, D= 1)‘ L + H\/H_lu(.’ t)’
+ [V + [ Vicn]

it [VFTeC D]

< €e fort € (0, +00).

Le
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The well-posedness problem for the compressible Navier—Stokes equations is
established by Nash [10] and Itaya [4] for initial data being Holder continuous. The
system is rewritten as a nonlinear parabolic equation, where the fundamental solu-
tion for variable coefficient parabolic equation played a key role in the construction
of solution. For Holder data, the classical frozen coefficient and parametrix method
is sufficient for the construction of fundamental solution. Based on the local exis-
tence result, Kanel [5] and Kazhikhov—Shelukin [6] derived a priori energy-type
estimate and thus obtained the global solution. The energy method is then applied
to compressible Navier—Stokes equations in 3-D to obtain the global existence by
Matsumura and Nishida [9] for initial data in high order Sobolev’s space, where
a existence theory is provided based on estimates of constant coefficient linear
parabolic system.

On the other hand, the quasi-linear and hyperbolic-parabolic nature of (1.1)
allows the initial discontinuities in specific volume v to propagate in later time.
Nash and Itaya’s theory are not applicable when the coefficients in equations of u
and 0 cease to be Holder continuous. Later, the constructions of weak solutions are
studied by Hoff [2,3], Lions [7] and Feireisl [1], etc. The piecewise energy estimate
is carried out and total variation estimate is obtained by Hoff [2]. The constructions
in [7] and [1] are applicable to more general data, for example, in the presence
of vacuum. There is no well-posedness theory for the weak solutions obtained by
these approaches.

Liu and Yu [8] initiated a new approach of establishing weak solutions in a
constructive way and obtained the well-posedness theory as well as properties of
the solution for the isentropic Navier—Stokes equations

vy —uy =0,

Ui+ py = (MZx)x. (L.5)

This is based on the construction of the fundamental solution to the heat equation
with BV coefficient,

(0 — Oxped)H(x, £5 y; ) =0,
H(x, 0; y; ) = 8(x — ),

where u = p(x) is a BV function with the property

inf n(x) >0, fulsy < 1.
xeR

We will use the system (1.3) and consider the iteration scheme

n+l n+1 __
v —u =0,

1
n+1 n pn _ Mug-i_
& +”(”’9)x—< a (1.6)

Un

etn+1+p(vn,9n)un_ M (uﬁ)2=< K Qn+l> ,
" X

X X
Cy Cy cyV!
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and initial step is set to be
%, u%, 6% = (1,0, 1).

With the set-ups in Theorem 1.1 and Theorem 1.2, the second and third equations in
(1.6) are inhomogeneous heat equations with BV coefficients. Therefore, we can use
the heat kernels approach. The consideration of the dissipation of the temperature
6 is natural from the viewpoint of physics. However, in general, the two systems
(1.1) and (1.3) are not necessarily equivalent in the weak sense unless the solution
fulfills appropriate regularity property. One of our main analytical efforts is to gain
the required regularity property. For this, we take full advantage of heat kernel with
BV conductivity to study the well-posdenss of (1.3).

Compared to the theory in [8] for the isentropic compressible Navier—Stokes
equation (1.5), our theory for the full Navier—Stokes system (1.1) has several phys-
ical considerations and analytical difficulties. The second equation in (1.5) is a
diffusion equation for u. As the equation is given in a conservative form, when us-
ing Green’s function as a test function, the weak formulation automatically yields an
integral representation of (v, u), which are convenient for transferring the derivative
on nonlinear source term, and thus for investigating the time-asymptotic behaviors.
However, for full NS (1.1), it is a problem to choose whether (v, u, e + u? /2) or
(v, u, 0) as unknown functions. Considering the diffusion term in the third equation
of (1.1), temperature 6 would be a good candidate, while a non-conservative form
is not convenient for studying time-asymptotic behaviors. If the solution is only
constructed in distribution sense, one does not have equivalence between (1.1) and
(1.3), and there is a gap between local theory and global existence.

The problem is resolved by carefully investigating the regularity of the weak
solution for (1.3). We develop new Holder in time estimates for heat kernel (see
Lemma 2.3). Based on it, we show that 6 is Holder continuos in time, which helps
us to prove u; is in L N L', Interestingly, this in turn improves 6 from Holder
continuity to differentiable in time. With this regularity, the function (v, u, ¢,0 +
u? /2) is a weak solution to conservative form (1.1). This serves as a basis towards
the global stability.

It is also worth mentioning that Holder-type estimates of heat kernel is crucial
even in the construction of weak solution for (1.3) due to the pressure term p(v, 6),
unlike isentropic gas, which is not needed.

Another novelty of this paper is the uniqueness of the solution. In Theorem 1.2
of [8], the authors proved that the constructed weak solution for isentropic model
depends on initial data continuously. In the current paper, from the regularity result,
we identify the function space of the constructed weak solution to (1.3). More
importantly, we prove stability of the solution in this function space, which in turn
yields that given any weak solution in distribution sense, it must be identical to the
one we constructed as long as it belongs to the aforementioned space.

These results largely rely on the various quantitative estimates of fundamental
solution for heat equation with BV variable coefficient, which captures the quasi-
linear structure of the equation (1.3), and represents the solution accurately.

The analysis for Theorem 1.3 is done in the same framework as that of [8].
One follows its procedure to replace the Green’s function for a linearized 2 x 2
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system by a 3 x 3 system to build “an effective Green’s function”, derives an integral
representation, and performs a priori estimate to conclude Theorem 1.3. It should be
noted that the regularity in time of velocity u and temperature 6 plays an important
role in the a priori estimate.

The rest of this paper is organized as follows. In Section 2, one introduces
preliminary notions and prepares various refined estimates of BV coefficient heat
kernel, which serves as basic tools in later analysis. In Section 3, one performs
an iteration scheme and proves its convergence to construct the weak solution of
(1.3). In Section 4, one studies the regularity and justifies that (v, u, ¢,6 + u2/2) is
a weak solution of (1.1). In Section 5, one establishes stability and uniqueness. In
Section 6 one gives the sketch of proof of Theorem 1.3. Some standard but lengthy
calculations for necessary estimates are carried out in [12] without obstructing the
integrality of this paper and make this paper concise.

2. Preliminaries

In this section, we will provide some preliminary concepts and results that will
be used in the later sections. We first give definitions of the weak solutions and a
regularity property, then we introduce various estimates of the fundamental solution
to heat equation with BV conductivity coefficient, which will serve as basic tools
in the construction of local well-posed theory.

Definition 2.1. A tuple (v, u, 6) is a weak solution to the equation (1.3) in the
distribution sense if for any test function ¢(x, t) € C(l) (R x [0, +00)),

+o00
/ / [oxu — prv]dxdt = / ¢(x, 0)v(x, 0)dx,
0 R R

+00
/ / gax —wtu] dxdr = / o(x, 0)u(x, 0)dx, 2.1)

[0 () o2

The weak solution of the linearized equation (1.6) can be defined similarly.

) :| dxdr = f o(x,0)0(x, 0)dx.

Proposition 2.1. For the weak solution (v, u, 0) of (1.3), the function (v, u, c,0 +
u?/2) is a weak solution of (1.3) if it satisfies

vx. ) —1eC ([o, 1); L' (R) N L®(R) N Bv) ,
u, ) € L% (0,6 WHRNLE®)), Vil € L (0,1 LYR),
Viug(x, 1) € L® (0, t: LI(R)>, tug(x, 1) € L (0, 1; L¥(R)) (2.2)

0, e L% (0, WH R NLE®)), Vil (x,1) € L% (0,155 L*(R))

Vib,(x, 1) € L® (0, te: LI(R)) 16 (x. 1) € L® (0, 15: LX(R)) :

see Corollary 4.1 for the proof.
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Next, one provides estimates for the fundamental solution H (x, t; y, to; p) (heat
kernel) of a heat equation with a BV function coefficient p in x,

(0 + 0xp(x, )0y )u = 0.

A BV function f can be decomposed as the sum of a continuous part and a discrete
part,

. . y=a+
F&x) = fe(x) + fa(x), fciscontinuous, fy(x) = Z f(y)‘v_ h(x —a),
aED ,a<x y=e-
where & is the discontinuity set of f(x) and A(-) is the Heaviside function. The
total variation can be represented as

1 £ sy = /R dfd+ 3| =, 23)

a9

Here fR|d fe| stands for the Lebesgue—Stieltjes integral. According to Lebesgue
decomposition, the continuous function f,. contains an absolutely continuous part
and a singular part (for example, the Cantor function is continuous and has only
singular part). In particular, when f, is absolutely continuous, one has

/|dfc| =f|8xfc|dx~ (2.4)
R R

Lebesgue—Stieltjes integral works for both absolutely continuous and singular part
of f.. The estimates of singular part usually rely on analysis of Stieltjes sum, which
requires lengthy computations. Nevertheless, we found that in our calculations
the estimates of the absolutely part and singular part would be similar, and the
calculations for absolutely continuous part can be adapted to the singular part with
only minor modifications (see (3.12), (3.18) and Remark 3.1 (3) for example).
Therefore, for the readability, throughout this paper our analysis will focus on the
absolutely continuous part, since the integral form (2.4) is much more convenient
for estimates. Then, we claim similar estimates for the singular case without detailed
proof. In the following, we adopt the following notation for the total variation of
the continuous part of a BV function

f |8xf|dx5/|dfc|- (2.5)
R\Z R

The fundamental solution H(x,¢; y, ty; p) is defined as a weak solution of the
initial value problem:

0y — D0 H(x,t; 9,10, 0) =0, > t,
{u o (x, 1)dx) H(x, 13y, 105 p) =10, 06

H(x, to; y, to; p) = 8(x — ),

i.e.

/ /(—d)t(x,l)H(x,t;y,to;p)
o R
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+ox(x, )p(x, ) Hy(x, 15 y, to; p)) dxdt = = (y, o)

for all test functions ¢; and p (x, t) is assumed to satisfy for some positive constants
p and 8,

_ 1
loG) =Bl S8 oG DIBY S 8xy (5 Dlloc S 8, max <$ l), 0<de <1,

Q2.7)

2 ={z| p(z, t) is not continuous at z} is invariant in 7.

The construction H (x, t; y, to; p) with p as a BV-function in x was introduced
in [8] and we summarize the results from [8] for the construction in this paper. The
new estimates obtained by the construction of [8] are listed in Lemmas 2.2 to 2.5.
The detailed calculations for the new estimates will be presented in the “Appendix”.

Lemma 2.1. (Liu and Yu [8]) Suppose the conditions of p in (2.7) hold. Then, there
exist positive constants Cy. and ty << 1 such that the weak solution of (2.6) exists
and satisfies the following estimates for t € (ty, to + ty)

x—y)?
- e_c(*(tl)ro)
H(x,t;y,to; S Cy————, 2.8
|H(x,1;y, 105 p)| = Cx N (2.8)
_ -y?
e Cy(t—10)
|Hi(x 15y 103 )1 + |Hy (e 1y, p)| S Comrr, (2.9)

x—p?

t
/ Hy(x,t: y.s: p)ds| < Coe &7, (2.10)
0]

El

t
/ Hy(x, 15,10, p)dt
fo

Lemma 2.2. Under the same consideration as in Lemma 2.1, for t € (1, to + 1)
the weak solution of (2.6) satisfies

)2
e_cg*(fii)[())
|Hey(x, 5y, 103 p)| + | Hi(x, 15y, 103 p)| £ C*( T (2.11)
r—1y)2
_a—p?
<C e Cix(t—10)
Hpy(x, t; y, to; SCi——»
| ry (X, 15y, fo ,0)| = Gy  —10)2
2.12)
! S(x — )
Hyy(x, 75y, 10; p)dT — ————
/,0 Y p(x., to)
! petn) = plx.7) e
x,t9) —p(x, T e Cxl—
- [P L ey )| £ G @.13)
0 p(x, ty) t—1p
t 8 X —
/Hxv(x,t;y,s;p)dhLM
o i P(y,t)
o) = p(y, ) &
p(y. 1) —p(y,s ¢ Ty
— | B g (et y, s p)ds| £ Cheeo (2.14)
/to p(y. 1) Wt BB e " V1o
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s(x —y)

t
f Hyx(x, T3y, t0; p)dt = —
10 p(xvt())

t
- ——0x [/ (p(x,7) — p(x,10) He(x, T35y, fo; p)dr}
,O(X, [()) i)
_ (x—y)2
O e )
+ O) | [8xp(x, to)|e “=0) + e | forx ¢ 9, (2.15)
! 1
Hyxy(x,T; 9, 10; p)dT =
/m ™ p(x, o)

t
x [m —y) —f 0] (0. 7) = p(x. 1) oy (75 v, 10 p)]dr}
0]

dxp(x, to) [ /’
- 5 |[dx—y) — p(x, ) — p(x,t0)) Hyy(x, T3y, t0; p)dT
P2(x. 10) n=) ! Vo 73y
_a=n? _a—y)?
Culi=tg) o Cxli-1g)
+ 0(1) forx ¢ 9, (2.16)

0y 0 (x, + )
e

t _ (x—y)?
/ Hi(x,t;y,s; 0)ds = H(x,t —ty; y; uh) —8(x — ¥) 4+ O(1)d4e &0
0]

where ' (1) = p(-, 1). 2.17)

Notice that the estimates for the terms involving twice x —derivatives do not hold
when x € &, which is due to the presence of Dirac-delta functions in Hy, if x € Z.
Moreover, the zeroth order estimate actually can be extended to be global in time,
while the higher order estimates are obtained only for local time so far.

In addition to the pointwise estimates of heat kernel itself, the following Holder
continuity property of heat kernel is also needed in construction of local solution:

Lemma 2.3. (Holder continuity in time) Suppose the conditions in (2.7) hold for
p. Then the following estimates hold whenty < s <t < 1:

(t —s5) [log(t —s)|
(s —10)(t — o)

(1 — ) [log(t — s)|
Vs —1o(t —19)

(1 —s) [log(t — )|

(s —10)3/2(t —19)

(t —s5) [log(t —s)|
(s —10)( — o)

IHe(-, 15y, t05 p) — He (85,105 p) oo = Cxe

’

| Hy(\ 15y, t0; p) — He (-, 85y, 105 p)Il; < Coe

|Hey (. 13y, t0: p) = Hyy (-, 533,103 p)|| o, S C

|Hey (. 1y, t0; p) — Hey (- 55 3, 103 p)|| | < Ci

An iteration scheme for proving the existence of local solution leads to a con-
sideration of the solutions to heat equations (2.6) with different heat conductivities
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p“ and p?. Thus, we need the comparison estimates between two heat kernels with
different conductivity coefficients. In what follows we denote that

Il = sup 1£C.0)lzee.

oe(0,t)
ANy = sup [1fC o)L,
0e(0,t4)
I ligy = sup [ f(,0o)lBy. (2.13)
o0e(0,t)

Lemma 2.4. (Comparison estimates, Corollaries 4.4 and 4.5 in [8]) Suppose that
the conditions in (2.7) hold for p® and p®. Then, there exist positive constants
ty L 1 and Cy such that for t € (to, to + t3)

x—y)?
b eics*(t;z‘o) b
[H 1,105 0% = HG 15y, 10 09| < G| |0 = |
t—1 00
‘Hx(x,t;y,to;p“)—Hx(x,t;y,to; pb)),
‘Hy(x,t;y,to;p”)—Hy(x,t;y,to; p”))
(x— v)z
e TGk 10)
éC*—[Ilog(t— “—p H‘ “—p H‘
r—1
+VI—1 ( —pm llog t| p‘—pb] ) ,
IIOgtI 00

t
/[Hx(x,t;y,to;p“)—Hx(x,t;y,to;pb)]df
1o

< Cre - [ p _pbm a_ pbm
BV
“—pbm Iy (s 3 (p* .

1 |log 7| 00

Lemma 2.5. Under the considerations in Lemma 2.4, there exist positive constants
ty L 1 and Cy such that, fort € (19, to + tz),

‘ny(x, 5y, to; p°) — Hyy(x,t;y,

‘Hr(x, 15y, to; p*) — He(x, 15y, to; ph)‘

,Cf/\'(—)’)z)

e *rfto

SC—[I - “— |

+1—1 ( —p H‘ +|ogt|‘ f [p“—pb] H ):|
[log 7| %

t
/ [Hy(x, t;y,s; p%) — Hy(x,t;y,s; pb)] ds
I

0
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<cC 7C(X<_y)tz) a b a b
< w1 — _
< e ST o= |+ [l =],
T
+H p° —pbm Y s (" = o[ |,
1 |log 7| 0

)

t
/ [Hx(x, t;y, ;0% — He(x, 13y, s; pb)] ds
fo

t
/ [Hy(x,t;y,to;p“)—Hy(x,r;y,to;pb)]dr
I

0

< e [[|o - ||+ o -
= 0 BV
T
+H p“—pbm iy (s ¥ — oM |
1 |log 7| o

t
[ny(x, Ty, to; p) — Hey(x, T35y, 10; pb)] drt

S~

0

1 1
= — b —
[pa(x,ro) ,Ob(x,lo)] =)
_/t [pa(xvt)_pa(xvto)
1 pa(-xato)

Hyy(x, T3y, t0; p%)
0

B pb(x,;lz(;’/;;)(x, tO)ny(x, . pb)i| dr

&y
T [
o=l + o = 2l + et = o

t
/[ny(x,t;y,s;p“)—ny(x,t;y,S;p")]ds
1

0

1 1
= — S —
[p“(y, n o pb(y, t)} =)

t a a
Py, ) = p%(y,s) a
+/[ Hyy(x,t;y,8; 0%)
% pe(y. 1) Y

J

b b
p’(y,1) = p’(y,s) b]
- Hyy(x,t;y,8;,07)|ds
PP(y, 1) H
_a=y)?
o1 e G 1 a b a b
+ 0 [iog = [ = |+ [ =],
T
+H p“—pbm iy i 3 (0" — Pl |-
1 [log | o

385



386 HA1TAO WANG, SHIH-HSIEN YU & XIONGTAO ZHANG

Lastly, according to the symmetry of the heat equation, the following symmetric
properties of the heat kernel hold; their proofs are direct consequences of the proper
integrals of the equation (2.6) and are therefore omitted.

Lemma 2.6. For the heat equation in conservative form (2.6), the solution has the
following properties:

/ H(x,t;y,7; p)dx =/ H(x,t;y,t; p)dy =1,
R R

/ Hy(x,t;y,7; p)dx = / Hy(x,t;y,7; p)dy =0,
R R

/ Hy(x,t;y,7; p)dx =f Hy(x,t;y,1; p)dy =0,
R R

/Hz(x,t;y,t;p)dX=/ Hi(x,t;y,7; p)dy =0,
R R

[ H;(x,t;y,t; p)dx = f H;(x,t;y,t; p)dy =0.
R R

Remark 2.1. Following the observations in [8], we make the following two re-
marks:

(1) In order to balance the equation (2.6), p(x, ) Hy(x, t; v, ty; p) is actually con-
tinuous with respect to x. When consider the backward equation, one also has
p(y,t0)Hy(x,t;y, to; p) is continuous with respect to y.

(2) The weak solution of the heat equation (2.6) can be defined similarly as Def-
inition 2.1. In fact, if the equation (2.6) has a source term in the following
conservative form,

u(x,t) = (p(x, Hux(x, 1) + g(x, 1)), ,

then the mild solution constructed by heat kernel and Duhamel’s principle
is also a weak solution to the above equation in the distribution sense, pro-
vided g(x, t) is a BV function with respect to x. Furthermore, the flux term
(p(x, Hux(x,t) + g(x,t)) is continuous with respect to x if one of the follow-
ing two properties holds:

(a) g(x, 1) is Lipschitz continuous with respect to x, i.e.,

lgx (-, Dlloo < +00.
(b) g(x, t) is Holder continuous with respect to ¢ in the sense that

(t —5)

lg(x, 1) — g, )| = C—

, O<s<t, O<a<l.
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3. Local Existence

In this section, we will use the linear system (1.6) to design an iteration scheme
to approximate the solution of (1.3). By making full use of the refined estimates
of heat kernel in Section 2, we are able to prove that the sequence of approximate
solutions form a Cauchy sequence in an appropriate topology, which yields a weak
solution to (1.3). Here we remark that in general, a weak solution of (1.3) is not
necessarily a weak solution of (1.1) due to the nonlinearity. In next section, after
obtaining enough regularity of the weak solution obtained here, one can show it is
indeed a solution to (1.1).

Consider

vy —uy =0,

u
o= (M)
X

v
%8 K (3.1)
0 + ﬁ“x - (“x)z = < 9x) ,
Cy vV GV X

(v.u,6)| _ = (vo, o, bo),
t=0

where the initial data is a small perturbation around the constant state (1, 0, 1). We
set

vo=1+vy, wuo=uy 6o=1+6;,
and assume the initial perturbation (v, ug, 6;) satisfies the smallness condition
lvgllgynet + lugllgyart + 165l gvart =8 < 1. (3.2)

The L* norm of a L'-integrable function can be bounded by its BV norm. One
actually knows from (3.2) that the L* norm of the initial data is bounded by § as
well.

3.1. Iteration scheme
Following Itaya [4], we use (1.6) and (3.1) to construct an iteration as follows:

th-l—l _ U;l+1 — O,

UnJrl
Utn‘l’l _(lu X ) :_p(1+vn71+®n)x7
X

14 vn
®n+1 1 Vn, 1 en
@;1+1_ K X :_p( + + )U;l—’— 12 (U;l)2,
cy (I +V7T) X Cy cy (1+ VM)

N I N

O U e% =(0,0,0).
(3.3)
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The last equality in (3.3) means that we choose the initial step to be the unperturbed
constant state. Clearly the right-side of (3.3) vanishes for n = 0, so one has

vi-ul=o,

1 1) _

oh = (ut), 0.

@}_<K®}C) o, (3.4)
Cy x

V' Ut eh| =g ub o).

This equation is solved by using heat kernel with constant heat conductivity, and
one immediately has the following estimates:

Lemma 3.1. Suppose the initial data (vg, ug, 0y) satisfies the condition (3.2). Then,
there exists a positive constant Cy such that, the following estimates hold for the
solution to equations (3.4):

max{HUlc,r)\ uten] L uien),,.
Ly Ly L}
«/;HU;(.,t)HLOC, tHUzl('vt) Lm}§Cﬁ8, 0<t <y,
max{H@l(-,r)\ eten] . [eten] .
LL L Ll
«/EH@}C(.,t)HLOO, tH@}(.,t) Loo} < Cyé, 0<t<ty,
max{ﬁHV)c,r)HLw, VG 0llay,
1 1
HV(x,t)‘L}, ‘V(x,z)‘w}gcﬁa, 0<r<t,
VD = VI Dley < 62, 0<s<i<t,
= ﬁ = =
1 .X:Z+ X= +
‘V (-,t)) ‘= o () ) z€92, 0<t<ty,
xX=z" xX=z"

where t; is a sufficiently small positive number constructed in Lemma 2.1, 9 is the
discontinuity set of vg.

To obtain a uniform estimates for the sequence of approximate solutions to (3.3)
by induction, we propose the ansatz that, for all n < k, the equation (3.3) admits a
solution (V", U", @) with the following estimates:
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0<é,mm<kl, 1Sn<k, O0<rt<t,

max {070y (0760 U260,y VELUZC 0], ] < 200,

max{”@)”(-,t)”lli, ”(“)n("t)HLgo’ H(")ﬁ('vt)“L;, J \/;||®¥('v’)“Lgo} S 2C,

max { IV Coollav. [Vl VD] VEIV D] | £ 2628, B

(r — s)[log(z — 5|
N )

7€ 9.

V"G, 1) =V, 9)llpy = 2C48 0=s<t,

" x=zt o =
vieo| —=2fwol T
X=Z X=Z

The above ansatz is motivated by Lemma 3.1, which implies that it holds for the
initial step. In what follows, we will show that (V¥1, U1 ©*1) also satisfies
the ansatz (3.5). For simplicity of presentation, we introduce the following notations
for (3.3):

"
“k51+—vk’ N, 1) = —d, p(1 + VE 1+ 65,
Kk_ K
T (L VR (3.6)
p+Vh 1404 0 02
Nk x,t) = — U ( )
2( ) cy X c (1+Vk) x

With the ansatz (3.5), U k+1 and @%t1 of (3.3) are governed by heat equation
with BV conductivity and source. We will study this by applying the estimates
of heat kernel in Section 2. According to Lemma 2.1 and Remark 2.1, we can
apply Duhamel’s principle to construct the weak solution (VA+!, Ukl @+ to
equation (3.3) as follows:

Uk+1(x,t):/ H(x,t; v, 0; ,uk) up(y)dy
R
t
+/ / H, (x,t;y,s;uk> p(1+ VK 14+ 605dyds, (3.7)
0 JR\Z
00 = [ H (rri3.00) 6500
R

t
+ / / H (x, £y, s; /ck> Nzk(y,s)dyds. (3.8)
0 JR

From Lemma 2.1 and Remark 2.1, the integral representations (3.7) and (3.8) yield
a weak solution of (3.3).

The following Lemmas 3.2, 3.3, and 3.4 are devoted to justify the ansatz (3.5)
for ©KF1, U**+1 and V! respectively. We assume that the initial data (g, us, 63)
satisfy the condition (3.2), and that the ansatz (3.5) holds for n < k.

Lemma 3.2. For sufficiently small § and ts, the ansatz (3.5) and the following time
difference estimates hold for ! when 0 < s <t < ty:

1OFH (1) — (9l
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<0 t—s

o) =9
- ff f f st '

1051 (1) — O ()1

<0(1)(Sﬁ+5(tfs)+827+«/tfsf8+«/t758)

105ty — O ()

<0(1)<v ;cig[(t—S)ler«/t_serv«[ 62+«/t—s\log(t—s)|8)

Proof. The proof consists of several estimates:

o (Estimate of || ©%T1|| =) By (3.8),
®];+1(x,t) = / H, (x t;y,0; /ck) 05 (y)dy
f / X, 1y, 8K )./\/'zk(y, s)dyds. (3.9)
By ansatz (3.5), /,Lk satisfies (2.7) for p = &, so, from Lemma 2.1,

[ [ (eoriv 008 6500
_a=y?

e Cxt C;(S
<C dvIOX e < —— 3.10
< /R Ol < (3.10)

for C; properly large. For the second term in (3.9), one combines the constitutive
relation (1.2) and the ansatz (3.5) to have

x,t,y S1K )J\/zk(y,s)dyds

://‘HX (x,t;y,s;lck>‘
0 JR

K (l + @k(y,s))
Cy (1 + Vk(y, s))

2
u (UkG.9)
e (14 VE(y, 5))

e C*(t r) ‘U (yas)‘
<0(1)8// +— dyds

Vs Vs
e

for sufficiently small §. Together with (3.9) and (3.10), one obtains

2C46
105! (x, 1)l < 2,

NG

Us(y.9)| + dyds
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o (Estimates of ||®'§+1||L)1(, [©%H || and @K+ lIiL1) Use the representation
(3.9) of @ *! again to obtain

/|®§“|dx g/ V Hy (.17, 0:64) 65 )y
R R IJR
'
—|—/ / /Hx (x,t;y,s;/ck)/\le‘(y,s)dyds
RI1JO JR

For the first term of (3.11), since fR H.(x,t; w,0; Kk)dw = 0 by Lemma 2.6,
we can introduce the anti-derivative of H,(x, ¢; y, 0; Kk) with respect to y,

dx

dx.

@3.11)

[ oo He(x, 15w, 0; kF)dw fory < x,

Wix,t;y,0; KKy =
( Y ) {—f}oo Hy(x,t; w,0; k¥)dw,  fory > x.

As 65 is a BV function, one can apply integration by parts for Stieltjes integral

to have
dx = /
R

A

é//(mx,r; ¥, 0:165)| |d65 ()] dx
RJR
_a-?

e Cxt
< 0(1)/ dx - |65 1lBy < C:é (3.12)
R 0 g

/dW (x,t;y,O; Kk)%‘(y) /W(x,t;y,O; Kk)def)k()’) dx
R R

for properly large C;. Now for the second term of (3.11), one uses Lemma 2.1,
ansatz (3.5) to obtain that

t
f / /Hx (x,t; ¥, 5 /ck>N2k(y,S)dyds
RI1JO JR
t
=///‘Hx(x,t;y,s;fc")‘
RJO JR

dx

2
k

K 1+@k , nl\US(y,s)

K(0ke0) || e(00) )

ey (1+ VE(y, 5)) co (L+ VE(y, 5))

7(){—)')2

<0(1)f/t/ﬂ‘y"( 5) <1+i)d dsdux
- wlo Jo 1—s 1TV )

< 0(1) (3¢?+52) < C.6

for small § and #;. One combines the above estimates, (3.12) and (3.11), to yield
that

/R|®§“|dx <208.
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The estimates for zeroth order terms are straightforward,
105 I £2C48, O £ 2648

o (Estimatesof || OKT1(., t) — OKH1(. g)| L) Form the representation (3.8), one
has

Oy, n — ey, s)

= [ (1 (versz0it) = 1 (s 006%) ) 5 21
R
t Ky
+/ /H(y,t;z,r;lck>]\/2k(z, r)dzdt+/ /(H (y,t;z,t;/ck)
s JR 0 JR

—H (y, $;2,T; Ick))Nzk(z, 7)dzdt

=11 +1r + 1.
(3.13)

For the first term Z7, in view of the estimate of H; in (2.11) of Lemma 2.2 and
initial condition (3.2), one directly obtains that

|Il|—‘// y,0; zOK)Gg(z)dadz

0(1)5d 03t ).
s NSO Vst

For the second term Z», one combines the form of A5 in (3.6), Lemma 2.1 and
the ansatz (3.5) to obtain that

k k
/H(ytzr/ck)< p(l+V l+®) (,r)
(ll—Ll—Vk (Uk(Z‘C))dZd‘C

< eC*(l T) <_ )
0(1)f/]R — (7 dzde

0“’/ (f ff)

oo (50 157)

Next, for the third term Z3, in view of the estimates of H; in (2.11) and the
ansatz (3.5), one has

f<y ~)

<0(1)/f . sdodz

25| =

A
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23] =

H y, 17,71, Kk) - H (y, 8§27, 7T; Kk>)N2k(z, 7)dzdt

y,a L, T K )do ’./\/k(z r)‘dzdr

<o) (ﬂ SR/ —s) +0(1)8? ( st _ls)4> . (.14

\/; \/E s4

The estimates of Z7, Z> and 73 together yield that

‘®k+l(y’ 1 — ®k+1(y’ s)‘

<0(1)((6+82)ﬁ+5\/' + 81—

LYl | 2l _ls)4>.

\/_ s4

With a similar argument, one can obtain the Holder continuity in time of
O%*1(x, 1) and ®F!(x, 1) in L' sense, and the details are omitted. O

Lemma 3.3. For sufficiently small § and t;, the ansatz (3.5) holds for U**1 when
0<rt <.

Proof. We split the proof into several estimates.

o (Estimate of |[UK+! llLge) From (3.7),
Uit = / H, (x,t; v, 0; uk) ug(y)dy
R

t
+ / / Hyy (x, ty,s; Mk> p(1+ Vk, 1+ @k)dyds.
0 JR\Z
(3.15)

By the ansatz (3.5) for vk, uk in (3.6) satisfies the condition (2.7) with p =
Thus, one can apply Lemma 2.1 to obtain

/ ‘Hx (x,t; v, 0; uk>
R

where C, is constructed in Lemma 2.1, and C; is properly large. One then
substitutes the constitutive relation (1.2) into A lk and splits it into three parts:

_es \)2

(o)

i
(3.16)

e
ug (| dy < C*/R dyllugllege =

t
// ny(x,t;y,s;uk)p(HV",1+®")dyds
R\2

K (146, 1)
H £y, ——— ~dyd
//w o (v tivsint) S 1+ Ve o0
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! Ok (y,s) — OF(y, t
+K/ / H,yy (x,t;y,s;,uk) o, 5) o )dyds
R\2

1+ VKE(y, 1)

t
+ K/ / H,yy (x, ty,s; uk> (1 + @k(y, s))
0 JR\Z

1 1
— dyd
(1+V’<<y,s> 1+vk<y,r)> e
=11 +1, + 1s. (3.17)

For the estimate of Z7, one applies integration by parts to get

K (14 0%y, 1)
I = //R\ijy x,t,ysu) L FVEG. D) ————— ~dyds
(l—i-@(y,t))
=K H,(x,t;y,s; dy | ———————= ) d
/0|:/R\@ <“““>>( [+ VEG.0)

L+04(y,n) =z
H ( 1Y, 55 k>( ‘
+% x | X Yy, S5 1 1+Vk(y,t) y=z+
Z

=TI + 1.

Recall the discussion in Section 2 and our adoption (2.5), the above integration
by part is actually in Stieltjes sense. As V¥ is away from zero and bounded,
it is easy to check that 1/V* is also a BV function. Then, if the continuous
part of V¥ is absolutely continuous, one applies the ansatz (3.5), the estimates
of the heat kernel in Lemma 2.1 to obtain the following estimates of Z;; for
0<t<t,

IZul = Hy

R\2
KOK(y, 0) (1 + Vk(y, 1)) — KVK (1 + ©F(y,
“ (x . S'Mk) Yoo (1+ Ve, 0) 2y( + 0k (y, 1) dyds
(14 Vk(y, 1)

(x— ‘)2 ZCg
0 (KX (142048
// ety (K7 (14+26:) dyds (3.18)
R\Z L=y (1- 2Cj8)

w2 [ KIVE (1 +2Cs8
+ / Cue~ CI‘*(z—‘.\-) Lj) dy
R\Z (1—2Cy9)

C.8
ds-l—Ol/ de <o)s <
(1 [Vyldy ()_4\[

O(I’J/ N

On the other hand, if V¥ contains singular part, then we have the following
estimate of Riemann—Stieltjes sum:

>

i=1

1 N

1+ vk(x, 1+ VR

VEQ) — VExZy)
(14 VEQ) (1 + VE(xi—1))
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XX IVRe) = VR

= (1 —2C;:8)2
IV¥lIBy

(1 —2C:8)%

[IA

This is similar as the estimates of ‘8y ( )) in (3.18), where we assume

1

1+VE(y)
the continuous part of V* is absolutely continuous. Thus we claim the estimates
(3.18) exactly holds for BV function V¥ with singular part. This verifies the
validation of our adoption (2.5) and discussions in Section 2.
For 7;,, by the ansatz (3.5), Ok(, 1) is Lipschitz continuous with respect to x.
Additionally, it follows from Lemma 2.1 that H, (x, ty,s; ,uk) is continuous
with respect to y. Therefore one combines Lemma 2.1, ansatz (3.5) and initial
condition (3.2) to have for 0 < ¢ < #; that

K (1465, 0)p==
I - 7t7 b k) T < N
izl = Z/ A N
€9
Sl 22K (14 K1 +2C649) y=2" Cid
< Cre O Vk ‘ < oM
x i . (Dl 0||BV_4\/—

for sufficiently small #;. This finishes the estimates of Z; in (3.10).
Next, for Z, in (3.17), by Lemma 2.2 and the time difference estimate of OF in
Lemma 3.2, one obtains

t
|12|§K//
0 JrR\2

o) ((3 +82) + 257 + 232)
G
4.i

For the last part Z3 in (3.17), again by Lemma 2.1 and the ansatz (3.5),

|0k (y, 5) — ©F(y, t)!
1+ VE(y, 1)

dyds

H.Xy (-xat; y,SQMk>’

A

A

73| = K H,, (x,t; ¥V, S Mk)‘
R\Z Js
VE(y,
)1+®k(y,s)‘< V20 0 2>drdyds < 0()svi
(1—|Vky, )
<G8
T4t

This, together with (3.16), (3.17), the estimates of Z11, Z12, Z» and the repre-
sentation of U1, gives that

C4é
IUKH Y e < % 1T+ Tl + T3
Cid | Ci8  C8 | Ci8 _2Cy8

NN AW N R

(3.19)

A
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o (Estimate of |[UK*! ll1) From (3.15),

/ |U)]C‘+l|dx g/ ‘/ H, (x, t;y,0; ,uk) ug(y)dy
R R [JR
'
+ f / / Hyy (x,t;y,s;uk)p(l+Vk,l+®k)dyds
R Jo JrR\2

Following the estimates as in (3.12), the first term is bounded by

I

For the second term of (3.20), one uses Lemma 2.1, ansatz (3.5), the adoption
(2.5) and similar integration by parts as in (3.17) to have

t
. Lk k k
/R/O/R\@ny<x,t,y,s,u)p<l+\/,1+®>dyds
:K/ [t/ H<xl~yg-,uk)a M dy
klJo |Jreg TN T\ 1+ VEG,s)
oy (148 )
-I-ZHA-(Jc,z‘,y,s,/dL>7y=2+ ds

k
37 1+V (y’s)
o)
< | === (16*¢, 9 1+/ [VE(y, )ldy + 2 ds
0 Vt—s * & R ;

< 0V1s £ Cy8. (3.22)

dx

(3.20)
dx.

dx = O(D)luglipy = Cyd. (3.21)

/R Hy (x,17,0; 1t ) () dy

dx

dx

* y=z"
UO (y) )y:ZJr

Combining (3.20), (3.21) and (3.22), we have, for sufficiently small #;, that
IO ol £2C48, 0 <t <1y (3.23)

The estimates of zeroth order terms are more straightforward, thus we omit the
details and obtain

IUSC 0l + 105 Dlee £ OVIS £2C48, 0 <1t <1y (324)

for t4 sufficiently small. Finally, we combine (3.19), (3.23) and (3.24) to finish
the proof. O

Lemma 3.4. For sufficiently small § and ty, the ansatz (3.5) holds for VKL when
0 < s <t < tz. Moreover; the following Lipschitz continuity in time property
holds,

2

€9

§0(1)/3t<1+%)dtz

€9

k+1 at k+1 et
viten|—vi ("S)H

+ t—s

NG

v(O| | =03

Z
Z

Proof. We split the proof into several parts.
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o (Estimates of | V™! || e, [|[VE+! || o0 and [ VK| 11,) One combines the initial
condition (3.2), the first equation in (3.3), the estimates (3.19) and (3.23) in
Lemma 3.3 to obtain for 0 < ¢ < fy < 1 that,

2C48

ﬁ ’
t

IVEL Dl < vglleee + / IVEL G $) I peeds
0

< 8 +4Ce /18 £ 2Cy8,

k+1 k+1
IV Dl = 107 G D <

(3.25)

t
IV Dl < Il + /0 101G 9y ds < 842658 < 264,

o (Estimate of fR\ 9 |VE+1(x, t)|dx) We will only calculate the case when the

continuous part of V¥ is absolutely continuous. Then, we claim that similar
estimates also hold when V¥ contains singular part, and explain in Remark 3.1
(3) how to adapt our computations for that case. Now for V¥ without singular
part, one uses the equation (3.3) and the representation of U k+1 i 3.7) to
construct the following estimate for the integration of |V)g‘+1 (x,t)jonx ¢ Z:

./R\@
t
g/ i |(”3)x|dx+/ / f Hyy (x,s;y,O; u") ug(y)dyds|dx
R\Z rR\Z Vo JR

t ps
+/ / / Hyxy (x,s;y,r;uk) p(l—l—Vk, 1+®k)dydtds
R\2 R\2

=11 +1r +13. (3.26)

Vi (s, r)( dx

dx

The term 7 is controlled by ||v || gy . For the second term 7, one combines the
initial condition (3.2), the heat kernel estimate (2.15) in Lemma 2.2 to obtain
for0 <t <ty < 1 that

*))“

2
zz<ch\j/((l sl o+ < Ji )"0())|d)dx

+ lf I+ (x))/ s(x —y)+19, f 1 () — Vi )
wlag s T PNy T + VEG, 5)

X Hy(x,s;y,0; u )dsD uo(y)dy‘ dx

S Co/Camlluglipr + OMllvgllpy lugl + IIMOHLI + */ (I +v5(x)

dx

// 1 (903 (x) — VE(x, s>)<1+v3<x>><1+vk<x,s>)H (o 51 . 0 i ydsut () dy
X ’ 9 E} E) 0

(I +v5 ()2 (1 + VE(x, 5))?

+ f/ (14 v5(x))
R\Z

vy () — VE, 9) ((L+ o () VG, s)) o R
g fR/o TR0 1 Vh a2 elo s 0 idsugdy) dx
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1
+ 7/ (1 + 55
w o

w (i) — VEx, ) (Bxvi () (1 + VE(x, 5))) o kg
) ﬁ{/ T+ v )2 (1 + VE(x, 9))2 He(, 553,01 s )y

+ 7-/ (1+v0(x))
nJrR\Z

' Con () = Vi) T A
« ‘/R<3(x_y)+|:/ (1+U8‘(x))(1+\/k(x S))Hxx(x,s,yvO,M )ds ug()’)d) dx

J’_
Co/Comlluglipr + OMllvgllpy lluglpr + ——llugli L

1+
+0(1)/ — ||v*||3v+|\V"(-,s)HBv lugllzoeds +
0 \/E 0 ) 0

1
il
X (Hs(sz; ¥, 0; puF) + MHX(LS; v, 0; ;L")) dsug(y)dy| dx
(14 VE(x, 5))?

2428
< (cﬂ/c*n n L) 5+ 0(1)5

Lol

+25
< (C*\/C*n + —) s+ 0(1)82.
w

llug

tu (v(’;(x) — V¥, s))

V"(x o0)do Hy(x, 5; y, 0; uX)dsu(y)dy| d

For the third term Z3, one switches the integration order of t and s, applies
(2.16) in Lemma 2.2 and ansatz (3.5) to obtain that

t t K (0k(y,v) — VE(y, T
I3 < / / / / Hyyy (x, S;V, T; uk) ds ( v )k v )) dydr|dx
rR\2 |Jo JrR\Z Jt 1+ Vi, 7)

; _ oy x—1)?

< 0(1)/ / / oo e+ < ) g

< X, T X
0o Jrg \Jrg \I'" N/ t—t

x (’@k(y, z)‘ n ‘Vk(y, r)‘) dydr

! Vkx, t
+/ // WDy
rR2 |Jo JR2 M

K (0k(y, 1) = Vi, 1)

1+ Vk(y, 1)
Vk(x 7)
+ // / WAGe ) — i) Hy (st v, o by
R\Z R\2

K (&, 1) - Vk<y, 1))

l+Vk(y, 7)
t 1 Vk |
+/ ff VO D6y
re 1Jo Jr u

K (0 @y, 1) — VE(y, 1)
1+ Vk(y, 7)

dydr|dx

dydr|dx

dydr|dx
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v,
R\2

K (&F
KA

t 1 Vk , t
f [ w/ (u’;(x,s)fu’i(x,r)) Hyy(x, 55y, 13 pb)ds
0o Jr\2 2 T

(0,1 — Vi, D)

+ ],
R\Z

¢ (®k(ys I) - Vk(y5 T))

dydr|d
1+ VE(y, 1) e

t 1 Vk , t
/ / w/ (M"(x,s) —M"(x,r)) Hyyy(x, 53y, T3 uF)ds
0 JrR\2 " -

dydr|dx

1+ Vk(y, 1)

< 08>+ o(1)1s.

Now we combine the estimates of 7, 7>, 73, representation (3.26), and choose
C; to be properly large to get

o (Estimate of

Vi (x, t)( dr $2C:8, 0 <t <t < 1.

oo

7T
vk, t)‘ ‘) Since (V¥, U*, ©F) is a weak solution to (3.3) at
.

k-th step, in view of Remark 2.1, both ©F and the flux

Uk
(% —p (14 Vs @k—‘)>

are continuous with respect to x, which implies that

k+1 & k+1
VR G| = Uk e

s Vk 7+ MU§+1 ‘ ‘
= — —— —p(14+V*:,14+06
- Wtz (1 + VK P ))
. K (l + Vk)2 zt
/L(l + @k) z-

Now, one integrates the above equality with respect to time from O to #, applies

the ansatz (3.

Vk+1(-,l)

ol

X sup
0<o<t

< (1+ 01 +0()h)

7t

-t

5) and estimates in Lemma 3.3 to obtain that

K(1+[V¥Lx)
1 — ©K e

+lf[ ulo] +
wdo \1—=IV¥ze
Z+

2+ 21VHIe)
VAT ds
1 — [ ©K e

VEC, o)

+

z+
vz‘;<~>L,‘ <2

v ()

0<t<t, (3.27)

Z
-

for sufficiently small #;.
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o (Estimate of fR\@ [VE+H1(x, t) — VET1(x, 5)|dx) In this step, we show the

Holder continuity in time of the BV norm of the specific volume V**!. Similar
to (3.26), we have the following estimate:

oo
<Ll
o

R\2

=71+ 1. (3.28)

Vf“(x, t) — Vf“(x, s)‘ dx

(0, 05y, 05 1o yud(y)dydo | d

ey (X, 03y, T3 uk)p(l + Vk, 1+ @k)dydrda dx

For the first term Z; in (3.28), one defines the anti-derivative of H, (x, o} z, 0; Mk)
with respect to z and applies integration by parts to get

t
/ f Hox(x, 05y, 0; 1lFyug(y)dydo
s R

y t
= _/ [/ / H, (x,0;7,0; uk)dadz] dyug(y)dy
R\Z LJ—00 Js

y=at
_ Z |:/ / H. . (x,0;2,0; )dodzuo(y)] . (3.29)

= y=a~

Next, one recalls the estimate of (A.37), and applies the similar argument to
find the representation of the time integral of H,, (x, 0; z, 0; ka ) as follows:

t
/ Hyy(x, 05 2, T3 Wf)do
s
X
= Vi(x, f)/ (H(w, tiz, T uby — Hw, s; 2, T Hk)) dw
—00

! 1 1
VEG, - Hy(x,0;z,t; 1b)d
+ Vix f)/s <1+vk(x,a) 1+V’<(x,r)> (x, 05z, T; u)do

+ (1 4 vEG, r)) (H(x, iz, T i) — Hx, 512, 7 Mk)) T (1 T+ VE, r))

! 1 1
— H Loz, T pbd
X/s <1+vk(x,o> 1+vk(x,r)> w038, T ) do

! 1 1
k _ ek
+ (1 +V (x,t))l 0y (1 Viao) 11 VR T)) Hy(x,o0;x,1; u")do.
(3.30)

When y < x, one integrates the above representation with respect to z from
—oo to y, and applies the estimates of H in Lemma 2.1 to obtain that

y t
‘/ / Hyo(x,0; 2, 7; pF)dodz
—0Q JS
t
< 0(1)/
A

-2 (x \)

}0 do + 0(1)[

(x,rr)‘ +

K
(3.31)
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Meanwhile, when y > x, one uses the symmetric property of Hy, (x, o; z, 0; 1X):

y t 0o pt
‘/ / Hyc(x,0:2,1; ,uk)dodz = ‘—/ / Hi (x,0;z,1; ka)dO'dZ
oo Js v Js

<x \)2 <x »)2
< 0(1)[

)) g do + 0 /
Substituting (3.31) and (3.32) into (3.29), and integrating with respect to x, we
obtain

do.
(3.32)

(x, J)‘

T2 00) (1 +6) |uf] 5, — \f < 0(1)57

Next consider 7 in (3.28). One changes the order of the integration, and applies
integration by parts to obtain that

s t
Izé/ / / [/ Hxx(x,a;y,r;u")da]
R [Jo Jr2 L/s

xdyp (14040, 0, 1+ Vi, 0)) dydr | dx

y=ot

+ Hyy . dop (1 +6F 1+ V&, ] d
[ S [ o matnion (1000 v )]~ e

ae? y=a

+/ // [/ Hxx(x,a;y,r:uk)da}ﬁy
rR2 |Js Jr\2 L/

X p (1 + 0 (y, 1), 1+ VE(y, r)) dydr) dx

+ Hyx 4 d
Joo | Z[ oozt

aed

dx

:(1+

X p (1 10k, 1), 1+ VE(y, r))}’::ai dr|dx

=T+ T+ T3+ 14 (333)

In the remaining part of the proof, one denotes the pressure term p ( 1+60%(y, 1),
1+ Vk(y, r)) by p(y, t) for simplicity. For 71, in view of (3.30) and Holder
continuity in time of V¥, one has the following estimates:

5 t
Ti =/ / / [/ Hm(x,v;y,r;uk)da]
rz [Jo Jr2 LJs

x dyp(y, r)dydr| dx

5 X
< / / / Vi, T) [/ (He oy, moph) —H@s y, o u"))dZ]
Rz [Jo Jr\2 —0

x dyp(y, r)dydt| dx

s t k _ .k
+ / / / Vi@, o) [/ (Wi o) = Wit ) Hx(x,o;y,r;uk)da}
R\2 [J0 JR\Z s M

x Ay p(y, r)dydt| dx

" /]R\@ /ol /R\yv <1 + Vi r)>
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x [HGe 15y, w5 1) = B s v, 70 0y p(y, Ddyde | dx

+/M /0 /w (14 Vi o)

f’ (1, 0) = pf(x, 1)

X

+
R\2

Hy(x,0;9,7; uk)da} dyp(y, t)dydr|dx

m
/OS /R\j (1 T Vk(x,t)>

x _/t 9, (“k(x’a);“k(x’f)) Hx(x,o;y,r;uk)dai| 8y p(y. )dydr|dx
< 0(_1)5 [(r — 5 llog(t — ) + & :[:)S 8]. (3.34)
T is estimated in a similar way:
T, < 0(1)5 [(z — 5) flog(t — )] + & j/;)sa} : (3.35)

Next, for T3 and T4, applying (3.30) again and following the analysis of 77, we
obtain that

T3 < 08t —s), s < 08t — ). (3.36)

Substituting the estimates of T;, j = 1...4 in (3.34), (3.35) and (3.36) into
(3.33), and using the fact § <« 1 and 0 < s < # < 1 to obtain

T, < 0(1)(t — s)|log(t — s)|.

Now we plug the estimates of 7| and 7, into (3.28) to obtain

Joo

<208

VI (x, 1) — VR (2, s)‘ dx < 0(1)8 (% + (1 — 5)|log(t — s)|>

(r —s)[log(r — )|
ﬁ b
where the last inequality is due to the smallness of ¢ and s.
zt zt
o (Estimate of ) |VK+I(., t)‘ — VL s))
€9 z z
of V¥+1 and follows the estimates of (3.27) to obtain that

2

(3.37)

) One uses the representation

k+1 o k+1 o
vt v (u)H

2€9
t 1 Z+
<o [ (14 5=)ar L]l
5 €9 ‘

r—s
< P
S 0(1)é N

This, together with (3.37), implies that the BV norm of V" is Holder continuous
with respect to ¢. The proof of this lemma is therefore complete. O
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Remark 3.1. Several remarks are given as follows:

(1) The construction of C; depends only on C, (which appears in the estimates of
heat kernel in Section 2) and the coefficients of the initial step, i.e., i, k and ¢y,.
When § < §* for some fixed positive number §*, ﬁ is uniformly bounded
according to the ansatz (3.5). Thus the coefficient C, is uniformly bounded
when we apply Lemmas 2.1, 2.2, 2.4 and 2.5 for the estimates of the solution
to (3.3), due to the fact that the heat equations in (3.3) have uniform bounded
heat conductivity ﬁ In conclusion, Cy and C, are both uniformly bounded
when § is small. As the choice of the small time #; depends only on Cy, we
know that f; is small but uniform with respect to § < 6*.

(2) From Lemma 3.4 one shows that VA*! is a BV function. In fact, from (3.27)

we have the expression of U )]C‘ :

k+1 z k+1 z
Vi | = U |

_ 1+Vk H’U)]c(+l
I 1+ Vk

7+

—p(1+Vk,1+®k)+p(1+Vk,1+®k))

/LU)’C(+1

Rk _
Asboth® and( e — P

tity immediately implies that VX! is BV if and only if V¥ is BV by virtue of
(2.3). Therefore, we only need to show v!is BV. As U! is a solution of a
homogeneous heat equation with constant coefficient, U I is smooth. Thus V!
is BV as soon as va‘ is BV, and it owns the same discontinuities as the initial
data v?'. Therefore, we can combine the estimates in Lemma 3.4 to conclude
that \/9<+1 is BV.

(3) In the proof of Lemma 3.4, V¥*1 is decomposed into continuous part and dis-
crete part, and its total variation is bounded by the sum of fR\ 2 10 VLG dx

and) g

to be absolutely continuous. This requirement is actually unnecessary, as we
can estimate the total variation alternatively. Given a partition & = {x;, j € Z}
of R, by the representation of Vk+1 one has

(1 +Vk 14+ @k)> are continuous, the above iden-

n
Z

VKL 1) ’ . It appears that one needs the continuous part of V<!
-

DVE G = VR ()
JEZ

t
<Y i) = vh oD+ D/O /R

JEZL JEZL
X (Hx(xj, 3y, 0; uky — Hy(xj-1,7;y,0; Mk)) up(y)dydr|
t T
- ZI/ / / (ny(xj, T3y, 55 1) — Hey(xjo1, T3y, 85 uk))
ez 0 JO R

x p(14+ V¥ 14+ 0% (y, s)dydsdr|.
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Following the similar estimates as for (3.26), one can conclude the right hand
side is bounded by O(1)§ uniformly. Taking supremum over the partition, one
finishes the BV estimate. The Holder continuity in time of BV norm for V!
can also be obtained in this way.

3.2. Convergence of the scheme

In this part, we will show that the sequence of approximate solutions (V", U", ®")
constructed from the iteration (3.3) is a Cauchy sequence in an appropriate topol-
ogy, and the topology is strong enough that the limit is a weak solution to system
(3.1).

By taking the difference of the solutions at n 4 1-th and n-th steps, one gets the
equation for difference functions in two consecutive steps:

ar (Vn+l _ Vn) _ ax (Un+l _ Un) — 0’

m (Un+1 _ Un) /LU" (Vn _ Vn—l) B
9 Un+l —U"— 9 x)—_3g x n AN l’
' e S e A\ Trvma vy | TN

(@ —@n) kO (v —yn-l)
P @Il+] en P X 9 X n n—1 ,
' )= cy(1+ V) e+ V(L + Vel Ny =N

Vit (x, 0) — V'(x,0) = U (x,0) — U"(x,0) = ©"F(x,0) — ©"(x,0) =0,

(3.38)

where, for brevity of presentation, we have used the notations in (3.6).
From the expression (1.2) of pressure p and the estimates of iteration scheme
(3.5), one infers that

B K(@)n _ G)nfl) K(anl _ Vn)(l + @nfl)
NN =p - 3.39
b "( 1+ V7 (1+ V=1 + V) (3.39)
B ur /LU” Unfl B /LU”71
n _ am=l _ _ Zx no__ x x n—1 _ x
NE =Nz e (” 1+V”)+ o (p e
) [( vyt 4 |en - @”*'D un |+ | — v ) (ur)?
+ (1+|ur+ U;’"D U — U;’"H. (3.40)

For the estimate of the difference of ®", we use (3.38) to express the difference in
terms of the variable coefficient heat kernel

®n+l ®n ! H . . n K®; (Vn_vn_l) dvd
( - )(x9t)_/0 /R )’(-xsts))srv’( )(1+Vn)(1+vn_1)(y,f) y T

t
+/ / H(x,t;y,T; k™) (NZ" —Nznfl) (y, 7)dydr.
0o JR
(3.41)

Lemma 3.5. (™1 — @™) There exists a positive constant Cy, such that, for suffi-

ciently small § and t;, and for 0 <t < t,

®n+1(.’ ) — (_Dn(.7 1)
[log 7]

]
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ur—up! )
ozl )

e —er!
[log 7|

~flogt|

<G (i +9) (Mv —v|

|or*tc.0 - ec.0),

o]

Un_Un—l
& (i +3) [[v = v+ flor e+ 1 =gzl )
b(ﬂJr )< 1Jr 1 |log 7| |
Ortl(.n - o0
log? | o0
S 6<W”—"* W W"—V“W
b (/12 +8) 14 o TV ]
JT (U" U”*‘) ur -yt e" — @1
logz| \°*  °F [log | oo
|y .0 —eic.n],
[log 7|
<& (i +9) ([|vr = vl + v = v, + v =]
(Wi +3) N s |
s (o 5]l -
[log 7| o | 1

Moreover, the following Holder continuity in time estimates hold:

‘(@”“ (x,1) — O"1(x, s)) — (0" (x, 1) — O"(x, s))‘

t_
<o+ 2 yn —yn-l
Vs
N 00
V}’l _ Vl’l—] H + ‘ Vn _ Vn—l Hl
Un 1
+ VT ur—ur! + |log s|
[lo lo
gT| o0 | grl 1
en @n—l
+ illogs| )
Hogz| |l

H (@”“(., 1 — e, s)) — (0", 1) — O, %)) H1

t_
< oI +9¥ = ( vr— v
Js 00
VVL _ Vn—l H + ‘ Vn _ V}’l—l H
1
U Un 1
+‘ VT (U —un- ‘) ’ + Jsllogs]|
[log 7| [log 7| 1
" @n—l
 Vilogs )
[log 7| o

Here the norm |||-||| is defined in (2.18).

Proof. The proofs are split into several parts.
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o (Estimates of [||©"! —©"||_ and |[|©"! —©"||,)By (3.41), Lemma2.1,
estimates of iteration scheme (3.5), and (3.40), one obtains that

‘<®n+1 _ ®n) (x. 1)

<oy

o
" — @n—l
+ o()si H)V _ V"_lm +llog ]| 2—2—
00 [log 7| o
Un — Un—l
n 0(1)52)Hv" - v"—lw + o) (ﬁ+5) log r] |f| 22—
o [log 7| 1
eO" — @rlfl
< o) («/?+8) H‘V” - V”’lm +—
00 |log 7| 0

n n—1

X X

+ |logt|
llog 7|

1)
In a similar manner, one can get the L! estimate of zeroth order,

/R)(@)"“ - @”) (x,z)(dx

< 0() (Vi+9)

Un — Un—l
(v = vl + e = e+ vaosn |

X
|log |

)
. JVi(ertl_en) . .

o (Estimate of ||| — gt |llo0) The equation for difference between consec-
utive iterations (3.41) is not sufficient for first order estimate due to presence
of high order derivatives in the source term. Hence we start with the integral
representation from (3.9)

O (x, 1) — ©"(x,1)

=fR<H (x.1:5,0; K”)—H(x,t; v, 0; K”‘1>) 6o (v)dy
! n—1 n n—1
+/0 /RH(x,t; v, 8K )(N2 (y,s) =N, (yJ))dde

t
+ / / (H (x, £y, s; K”) —H (x, £y, s; K”q))NZ"(y, s)dyds.
0 JR
(3.42)
The differentiation of (3.42) is put on the heat kernel:

O (x, 1) — O (x, 1)

=/ (Hx (x,1;,0;«") — H, (x,t; ¥, 0; K”‘1)> 65 (y)dy
R

+ /Ot /R H, (X, 1y, s; K"J) (Nzn(y,S) - N s)) dyds
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[ / x 1y, 8K ) H, (x,t; y,s;x"il))./\f;(y,s)dyds.
(3.43)

For the first term, one recalls the definition of «” in (3.6), then applies the initial
condition (3.2), Lemma 2.4 to obtain that

(H (x,1:y,0; k") — H, (x t;y,0; K"_1>)96<(}’)dy’

[ [H (3153, 05") = He (135,00 ) | dyl05 ) e
_ =y’
sous [ v o)
R % BV
[y = v +H VT (v - v H i|dy
llog 7| o
5
cov o v |
= ()ﬁ [log | ot .
R
log ] .

Next, for the second term, one recalls the expression of A5 in (3.6), (3.40), and
combines the ansatz (3.5), Lemma 2.1 to obtain that

x £y, T k" )(Nz"(y,r)—/\/'z’“](y, ‘L’)) dyds

@n_@n—l
< o) mv"—vn—lm + log 1] ||| Z—2—
[log 7| 00
logt| ||| U — U]
+0(1)—H)v" - lm +0(1)(5+¢?)'° e
00 llog | 1
1
+ 06 + vihoe!! ﬁ Un-uU "‘ H (3.45)
NG |10gf|

For the last term in (3.43), applying the comparison estimate in Lemma 2.4,
and using the estimates in (3.5) to obtain that

(x.1;y,T: k") — Hy (x,t; y,r;fc"_1>>N2"(y,r)dydr

(f+5)
Vi

v+

= 00 2 o o v+ - v

BV

H :| . (3.46)

|1(ff| (ve-vz)
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Now, considering that § and #; are sufficiently small, one combines (3.43),
(3.44), (3.45), and (3.46) to conclude that

‘@”“( 1 — @;(x,z)(

Jlog 1|
<o (i) |l = v+ v v
00 BV
+ Vn_vn—lm
1
L= (U _un 1) H +mU;’—U§"1
|log | o [log | 1
e — "~ 1
HZ=2—] |
llog 7l [l

where C}, is a positive constant. Note that according to Remark 3.1, Cj, is uniform
bounded due to the uniform boundedness of Cy4 and C, when § is small.

o (Estimate of H‘

J

<

|10gfl

" (x, 1) — O (x, t)‘ dx

(H (x t;y,0; K") — H, (x,t;y,O; Ic'“l)) 05 (y)dy|dx

dx

x ty, T k" )(Nz”(y, t)*Nﬁ”l(y,r)) dydr

dx.
(3.47)

/ Hx (x, 25y, T3 6") — Hy (x, 5y, T K”’l))Nz”(y, T)dydr
R

For the first integral, by Lemma 2.4 and integration by parts, one follows the
arguments as in (3.12) to obtain that

/R [I‘Q (HX (x, 133,05 ") — Hy (x, 5y, 0; anl)) 6y (y)dy|dx
< o3 (1togel |v7 = ve=t|| 4[|y - v
o0 BV

i (vi-uy- 1) Lo> (3.48)

llog |
For the second term, one follows the estimates in (3.45) and integrates with
respect to x to get

v =vl, +|

x ty, T k" )(Nz'l(y, t)—./\/;_l(y, r)) dydr|dx

o

- !f],) + owetvr - v

oo

+0() (J+a) llog /|

U Un 1
‘ Ur— (3.49)

[log |

1
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Finally, according to comparison estimates in Lemma 2.4 and (3.5), the last
term can be estimated as follows,

(x.t;y,T: k") — Hy (x,t; y,r;fc"_1>)J\/2"(y,7:)dydr dx

g 0(1)8 (ﬁ+a) (nogel v = v+ WV v

BV
+ [l =y + —ﬁ vy -ui) (3.50)
IIOgTI
Combining (3.47), (3.48), (3.49) and (3.50), we conclude
" (x, 1) — 6" ,t‘d
IlogtI/R‘ o 1) = Or(x, 1) dx
< (viro) ([Jvr vt o+ v = vl + v - vl
00 BV 1
s (o - )|+ |2+ e - o)
log 7| o [log 7| A

(Estimateof || [©"1(.,t) — @™ (-, s)] = [O"(-, ) — O"(-, 8)] [lLo) Accord-
ing to the representation (3.13), one has

(@"'H(x, 1 — " (x, s)) —(O"(x.1) — O"(x, %))
f/ x 0:y,0;k ) Hy (x,a;y,O; K”_l))ég(y)dady
+/ / H(x,t;y,r;/c")—H<x,t;y,t;K"71)>./\/'2”(y,7:)dydr
s JR
+ ! H X t . n—l) (Nn _ n—1
LY. THK 2T =N T, f)) dydr
/ // (x.o5y,7:«") — Hy (x,rr;y,r;lc’l_l»./\/'f(y, 7)dodydr
. . n—1 n n—1
+/ // H, x,a,y,r,x )(./\/'z(y,r)—/\/'2 (y,r))dadydr
0 JRJs

=1+ +I3+ 74+ Is. (3.51)

The estimates of Z;’s are very similar to the previous arguments, thus we omit
the details and directly list the results as below. For any « € (0, 1],

t—s [t\“
il = 0o (=) fogs|

=(4)

yn — anl ‘H
0o

v — anl H’
BV

Vv — anl ‘H
1

\/? n _ yrn—1 H )
e -]
\T,] < 0(1)80 <f+5< ) ) vt
(\f+8) (t — s)|log 1| ( —or! H ur—uyr-! )
31 = o) Jt [log 7| o [log 7| )
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+0(1)5(’£”<1+ i )
ser27¢

v — V}l*lm ,

o0

_ 1—a _ o
174 £ 015 (Vs +3) |:<t : S) +z ts (2) } Vn_Vn—lHLO
r l—a a
+ 03 (V5 +9) (t_s> +t_s(f)
S t S
n n—1 n n—1
< (llv = vl + v =vil,)
[(r=s\"" =5 (\“VI VT /0 e
+ 05 (Vs +9) ( . ) +— (;) H [log 7| (UX—UX )Hoo
11—« o
:fsgomsﬁ[(’_s) +’_S<’)}
S t R
n n—1 @n_@n—l
< ([[v?=v M + Jlog s ||| ——
[log 7| 0o
sows | (42) T2 (Y e v
U uUr— 1
£ o) (V5 +9)" mﬂx :
[log 7| 1
—s\'Y = ur n]
+0(1)(ﬁ+5)s|1ogs|[( S ) +— ( ) }H \logrl - H
(3.52)
Now, we combine (3.51), (3.52) and set o = % to obtain
(07 0.0y = 0" (5, )) = (€7 (x.1) = ©"(x, )|
l‘_
< OMWi+8)> S(m@WW—V“W
Js o0
+\HV”—V"‘1!H v =
BV 1
Un_Un—l
H (U —un- ‘)H + llog s| ‘—X
|log 7| o [log 7| I

+ sllog s|

on _@n—l
‘ [log 7|

J

With a similar argument as above, one can also obtain that

H (@”“(-, 1 — et s)) — (O, 1) — @, s))’ L

Vi—s n_ yn—
(el v

v =l + =

S0Vt +3)

e¢]

1
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Un 1
VT (U —ur- 1) +f|1ogs| Tx T
[log 7| Ilgfl 1
® Onfl
+ Jslog s| —“ )
log7| |l

Finally, we have completed the proof of this Lemma by combining all the above
estimates. O

Next, we study the iteration difference for U”. It turns out the difference estimate
for ®" in Lemma 3.5 plays an important role in studying the difference for U”
through the pressure term.

Lemma 3.6. (U1 — UM) There exists a positive constant C, such that, for suffi-
ciently small § and t;, when 0 <t < t,

H (U”“ - U") . r)H <c (f|1ogt| +5>
(e
(o —um) o] 6 (Vies)

< (v ==l + e =erl).

e |7 ey el = ()

OO

[log 7]
<l = vl v =l
e BV
+ flvr=v|
1
L[z =oey
logz| |,
+ \/? (Un_Un—l)
logz| \"*  °F 0
-1
L[ =" )
[log 7| -
Un+1_Un ot
H(x x)( )||1§Cb(ﬁ+8)
[log 7]

(v =l v = v]

(v - vz
llog |

BV

+

1

s =o)L

[log 7|
)

+ gt (v = vl +flor el

(@' — o)

I Togel
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Proof. We only show the details of the first order error in infinity norm, and the
other estimates can be constructed in a similar way. For the estimate of the iteration
error of U, we use (3.7) to obtain the following representation:

(U;+1—-Ug)(x,n

=/R(Hx (x.1:y,0; ") — Hy (x,t; v, 0; u””)) ug(y)dy

t
+// (ny(x,t;y,s;u”)—ny(x,t;y,sm”_l»
0 JR\Z

x p(I1+ V" 14+ 60"(y,s)dyds

t
+ f / Hyy (x, £y, s; /L”_1>
0 JrR\2

(PA+ V140" = p(1+ V™! 14077 (3, 5)dyds
=T+ 1)+ 1s. (3.53)

The estimate of 7 is similar as (3.44). For Z,, one recalls the Lipschitz continuity
of V" and Holder continuity of ®” with respect to time variable, and follows the
estimates in Lemma 3.2 and Lemma 3.3 to obtain

7] < o<1)%(|logr| H(V - V"_lm

e ¢]

el

+ v vty vl +
BV 1 |log 7|

_1
Ut —un )

X

L)

(3.54)
1zl < 03 (jtogl[| v — v |

o0

ﬁ(w—wﬂ

+ vty v =l +
BV 1 |log 7|

L)

(3.55)

For the last term Z3 in (3.53), we use the interpolation method in the estimate for
U! in Lemma 3.3 and split 73 into five parts:

t
1Z5] = /O /R@ny(x,t;y,s;u”_l)
\9

x [(©"0v9) = 0" 0) = (0" s — 0" (1) |

dyds

v (y,s)

t
[ [ sty (0700 -0 0nn)
0o JR\Z

X ( ! - ! )dyds
v (y,s) vy, 1)

t
/ / Hyy(x, 5 y,s;u”_l)<1+®"_l(y7S))
0 JR\Z

+
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(o v0) - (60 w600
X - — - dyds
vi(y,s)  vi(y,t) vi=l(y,s) v l(y, 1)

st (007 gus — 0 )

R\Z

1 1
X - dyds
vi(y, ) vy, 1)

, oy (1H0"y 140
/ Hey(x, 15y, 53 1" ])< - ALE — ) )dyds
R\2 v (y, 1) v l(y, 1)

5
=> Ty (3.56)
j=1

For 735, 734 and 735, one can apply Lemma 2.2 and Lemma 3.2, and follow the
similar computations as before to yield

& 8(t — e —er!
mzon [ [ s, o),
R\ (t —S) N llogt| |lls
— " 1
< 0(1)8+/t|logt] , (3.57)
[lo gf| 00
t c*(r s) /, —
Ta < 0(1)/ f SRR SH)V" yr- 1‘“ dyds
0 Jrg (t —s)Y
< 0(1)5)an - v”—lw , (3.58)
o0
en — @n—l
Tss < O(l)(|logt| 27 |\l o+ ‘Hv - v"—lm ) (3.59)
[log 7| o 00

For the other two terms Z3; and 733, we need the estimates of time differences of
®" and v". In fact, according to the ®’s Holder estimate in Lemma 3.5, one has

e C*(’ \) Ky
<
<o [ fm (t_swz (Vr+8) = (logsix + X2 dyds

< 0<1>/0 ﬁ (llogs|X1 + X2)ds £ O(1) (Vi +8) (log|X1 + Xa),

— n _ yn—l U;liU;lil
A Y et |
— n _ yn—lI n _ yn—lI \/? n _ prn—1
Xo = V7= gy 4 V7 = v+ | w2 - o)
®n7®nfl
- 3.60
||l 660

On the other hand, for Z33, one follows the similar idea to take advantage of the
Lipschitz continuity of V" with respect to time variable to obtain the estimates as
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follows:
e EET 1 logel || VF )
¥ = ()/ /R\j(f—s)3/2/ JT ‘ |logr|( . * ) Ooys
! g<))2) 8(t )
e w(t—s — 5
oo 1 flv = vl F g avas
0 Jmg (=92 Vi
< 0()illogl|| Y= (v - U;’1>H’ +omavi|[v - v
ogt| ~ I~
(3.61)
Combine (3.56)-(3.61) to obtain
z31 < 01y (Vi +3) (ogl|[ v = v+ v — v
o0 BV
o |
1
e - v Ve
logt||| 2 ———X 7 log ¢ U* — Un—l
+ |log 7| oz 7| 1+|0g |H'|logt|( s f ) Oo)
(@ — o) .
+ ologrl||F————| +om]lvr vl @62
log 7| - 0

Finally, we combine (3.53), (3.54), (3.55) and (3.62) to conclude that, for sufficiently

small § and t;, the following estimate holds for the difference of velocities between
two consecutive steps:

Jt
Tog U™ x, 1) — UM(x, 1)
é004ﬁ+%OW“4”WH+MW—V“W -v |
o0
N [ttt Y G
|log 7| . [log 7| o |logt|

As for the iteration difference of the BV function V", we also need to estimate
the evolution at discontinuities of V".

Lemma 3.7. (V™1 — V™) There exists a positive constant Cy, such that, for suffi-
ciently small § and ty and for 0 <t < ty,

[V (e, 1) = Vi(x, 1)

en — @nfl
<65+ va) (v - v+ | St

[log 7|

)

oo

V"0 = Vi Dl

<6 3+ ) (JIv: = vl +ller = e, ).
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-+

‘(V’H_l(', t) _ Vn(', t)) :7

Z+
<0 (54 Vi) Vi sup |(VCor) = V) |

O<t<t

en — @nfl
[log 7|

JT
(Ut - uy)

rea(llv vl + | o

)

‘ o0 o0

IV ) = Vi Dllay
< (VE+8) (v = vl + v = v+ 1177 = vy
'H en — @nfl H‘ en — @nfl
1

[log 7| [log 7|
Proof. We will only show the BV estimate, since the L' and L> can be similarly
obtained via previous estimates of U. Recall again our adoption (2.5) and discus-
sions in previous sections, we will only treat the case when V¥ has no singular part.
Then, the BV estimate will be split into two parts. The iteration difference of V"
is expressed as below,

+[e" = oI, +

[e.]

Vi (x, 1) — Vi(x, 1)

t t
:/ / / Hyy (x, 559,75 1)
0 Jr\2J:

(K(@n _ @Yl*l) K(Vn71 _ Vn)(l 4 @nfl)

) (y, r)dsdydr

L+ve A+ Vveha+vn
t t p(vr—vrhur
+ Hyy (x, 55y, 75 1" , T)dsdydz.
/O/M/ w sy m ) | e | 00 Ddsdy

(3.63)

e (Case:x ¢ 2)Forall x ¢ 2, the derivative of V! — V" can be defined almost
everywhere according to the representation (3.63). We have

/ Vi 0]
R\Z2

1
/H;\Q [/ Hxxy(XUyT V)d}

X [P v, 7)—p" 'y, t)] dydt‘ dx

IR E———

|:(1( — vy :|dydr

+ V(1 4+ yr-lh
=71+ 1. (3.64)

dx
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KR, combine (3.5), (3.64) and the

estimate (2.16) of frt Hyyydo in Lemma 2.2 to obtain

For the estimate of Zi, let p"(y, ) =

'c\z

em
71 £ 0(1 V"
! M R\j//| ol = =3

+0<1>/ f|v;(x,r>!
r\7 Jo
)

ox VI Gr 1) T
+ ()/R\j///| Jo (@ 1)

) — p" iy, r)’ dodydrdx

P, = P (3, )| dydrdx

p(x,T) — p" x, 'L’)‘ drdx

X

a=n?

e G0
o[ ][5
R\Z
+ 0(1)/ /
R\Z J0O
2

a=y?
S(o—1)e aen

o(l
()/HR\@f// Jo (o—1)?

0 —p" (. r)‘ dodydrdx

" n e C*(U T)
+ 0(1)/1.{\9/ // |Vix,0) = V!(x, T)| Y

P (. T) — Py, r)‘ dodydrdx

+

) —p" 'y, ‘L’)‘ dydzdx

Pl ) — pi(x, r)( drdx

+

X

< 0a([|vm = v=tf] o fJvr vt v - v

e" — @n—l @2 _ @Z—l
|log 7| [log |

v

+fler— e, +

). (3.65)

1

For the estimate of Z;, we again apply the heat kernel estimate (2.16) in Lemma 2.2
to split Z, into seven parts:

xf )2

Cx(t—1)
<o / / vn
2 S 0(1) o |V (x, f)‘ ra—
x ‘Uy(y, r)‘dydrdx

Vi = Vil o)l

t
+ 0(1)/ / VI (x, 7)] ’V"(x,r)— V"*l(x,z)‘ U7 (x, 7)| drdx
R\Z J0

2

=y
n -c) e T Cxlo—D)
ow [ [ L L el 222
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X

‘V"(y, ) — V' l(y, ‘L’)‘ ‘U"(y, 1:)‘ dodydrdx

wf 155
R\Z r—T

la [ (V" — v H(x, 1)U (x, T) }d
A+ Vvrx, )+ Vvr-lx, 1))

+

Vi, T = V' 0] [UR G | dydrd

T|dx

+

o)

R\Z
2

a=?
(0 —1)e T

O(1

()/R\@/// Jo (0—r1)?

‘V”(y, ) — Vvil(y, r)‘ ‘U,(y, r)‘ dodydrdx

vouf [ [ -t 2
R\Q X, 0 X, T )3/2

x ‘V”(y, ) — Vvil(y, r)‘ ‘U;?(y, r)‘ dodydrdx

7
=>"1
j=1

Except for 7,5, the other terms can be estimated by applying the ansatz (3.5), and
by the similar computations as for (3.65):

+

X

Io1, I = 0(1)«/;52‘”V" - V"*lm ,
o0
Tp3 < 0(1):53‘”v" - V"—“H
o0
S
o0
Tre < 0(1)r52mv" . V"‘lm
o0
Ty < 0(1)32z|1og¢|mv" - v"—lm . (3.66)
o0
For 1,5, we splititinto three parts. When d, acts on denominator, it can be estimated

similarly as before, and it is bounded by O (1)4/182 ||| yn —yn-l |HOO It remains to
consider the following two terms

t Un(x 'L')
251 =/ / - —
r\2|Jo (1+V*(x,7)(A+ V" l(x, T))

x <V”(x, ) — V'l r)) dt’ dx,

t \véz yn- 1
Is52 =/ / (x,7) — x, 7) " (x,7)dt|d
rR\Z |J0

I+ Vi, o)+ Vel ) U

By the ansatz (3.5),

Trsy < 0(1)¢?3H)V” - v"—lva. (3.67)
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While it needs more efforts to estimate Z»5 2. One first has the representation
1
Uy (x, 1) =/ Hyx(x, 73y, 0 =) Uo(y)dy
R
T 1 1
- / f Hyx(x, 75y, 57 —)9yp" " (y, s)dyds
0 JR\Z v

—/OTZ

€9

y=z"

", S)] ds.

y=z-

[Hxx(x, TV 85

Substitute it into the expression for Z»s > to yield

. </ /f Vix,7)— V" (x, 1)
222 Jag o A VIG o)A+ Vil 1)
i 1

X f Hyx(x, 759, 0; ﬁ)UO(y)din dr
LJR v

N / /f Vi(x, 1) — V" (x, 1)
rz lJo 1+ Vix, )1+ Vi-l(x, 1))

dx

- |
X / / Hyx(x,7;y,s; —_I)Byp”_l(y, s)dyds:| dr|dx
LJo JrR\2 v
+/ /f Vi(x, 1) — V" (x, 1)
Rz |Jo T+ Vix, )1+ Vil(x, 1))
T 1 I y:z+
X /O > [Hxx(x,r;y,s; v,,_l)p”_ (y,s)] ds | dr|dx
€9 y=z
=T+ 1T+ Ts.

To estimate 77, one rewrites the inner integral involving Uy via integration by parts

1
/ H(x,75y,0; —)Up(y)dy
R

pn—1

y 1
= —/ |:/ Hyx(x, 75 2,0; ﬁ)dz:| dyUo(y)dy
R\2 LJ—o0 v

y 1 y=a®
- Z |:/ Hyx(x,7;2,0; ﬁ)dz UO(y)i|
o v

acP =" y=o
Thus, one applies the heat kernel estimates in Lemma 2.1 to have

(X—y)2
t T T Cxt
T, < 0(1)H‘v" — V"—lmoo /EW/O /ﬂw ¢ —— |3,Uo(y)] dydrax

_@=y?
CxT

' e o+
+f womr s
Rr\2 Jo 0; T y=

drdx
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< OVE IUsllgy |||V = v (3.68)

o]

Next for 73, to handle the singularity in time integral, we write
T 1

/ / Hyx(x, T3y, 5 —)dy p" ' (v, s)dyds

0 JR\? v

T l _ _
= [ [ty oo (o 0o -0 00 |ayds
0 JR\? V"

v 1
+/ / Hee(x, 75y, 55 —)ds | 9, p" (v, D)dy.
RrR\Z LJo vl

Observe that for x ¢ &,

T 1 T
/ Hy(x,T5y,5; —)ds =/ v (x, 1)
0 0

pn—1

1
X [Hr(x, T, S, ) Hy(x,t;y,s; —)} ds
Un—l

1
b -1 - a T <1, <
v”—l) * (1+V"—1(x,1:)
_ 1
= vi’l l(x, ‘L') (H(x, T, Y, m) — 5()( — y))
_a—p?
)e Cxt s

where the last equality is due to the estimate (2.17) in Lemma 2.1. We then substitute
the above estimate into 7>, and apply the Holder continuity in time of py, given by
V, and ®, in Lemma 3.2 to yield

t T
T, < 0(1) f / f )v"(x, ) — Vi, r)‘
r2Jo Jo JrR\Z

_ a=n? _x=0?
( e Cx(t—s) n anl(x ‘L’)) e C*(r—x))
X |——= , _—
(r—s)2 17 (T =)
T—9 _ —
T (o] for- o))

+ oo =0 o) [V )|

+o() (5 vl o

+

t
+0(1)/ /f ’V"(x,r)—V"_l(x,t)‘
rR\2 Jo JrR\Z

_a=p?
e CxtT

X + (8 +
( VT

< (|0

t

Vi oo = Vi )| + |0 o) - 057 (0, 9)| )dvdsdeds

el _a-y?
Vi (x,r)’)e Cxt )

+ ‘@Z_l(y, ‘L')D dydrdx

Vi, 1) — Vi (x, r))
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“(

<o)

Vilx, 1)

+ ‘@ﬁfl(x, ‘L')D drdx

v v"—lm 5/7llog1]. (3.69)
(0.¢]
By similar analysis for the estimate of 7>, we have
Ty < 0(1)8;H(V” _ V"’lm . (3.70)
0

Combine (3.67), (3.68), (3.69) and (3.70) to yield
Tas < 0 (Hoge[v" = v |+ [y = v ).
00 BV
This together with the estimates of Z5;, j = 1...7 in (3.66) gives
122 0 (| v+ v, )
00 BV

Therefore we conclude from (3.64) and (3.65) that

oo

= o0 (43)(Jr v |

e — @nfl
|

Vit (e, 1) — V;’(x,t)‘dx

v =)
1 BV

! —or!

ot ) (3.71)

tller—erll +]
00 1

1

e (Case: x € Z) From the representation of the jump in (3.27),

+

i( nL( gy — Vn(_’t))

dr
\d Vn—l 7t Un+1
(= R a4+ vi 14+0M
7 " = \1+V"

Vn—l s m (U;Cl+l _ U)lc’l) MU;! (anl _ V”)
n 14 vn (L+ Vet +vm

K(1+e" ) kqa +®"))

Z
-

_I_

Z

(1+vr=1) (14 vm)

., . K (2 + Vn(Z+) + Vn_l(Z+))
+(V -V )r w(l+ 6Om)
+ K (Vn(Z_) _ Vn_l(Z_))

+ (2 +V 4 v"—l)

z= u(l+0m)
Z+

K(z+v"—‘<z+)+v"-1<z—))( SR )

Vn—l
" n1+60m  pu(l+6n-t)

Z
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Since the initial difference V" t1(-, 0) = V"(-, 0) = 0, and we have the BV estimate
in Remark 3.1, the integration of the above equality yields

Z+
‘(Vn-i-l(.’ 1) — Vn(', Z)) N
S (54 v1) Vi sup (Vi = Vi)
O<t<t z
v )]
i wimvn _ yn- H‘m + st[log 1] ’ﬁﬂ_l (3.72)
o
Taking the summation over z, one obtains
Z <Vn+1(,, 1=V, l)) ‘i‘
€9 ’
o (749 Jor v, v 25 (v )
v
e |y = vt + settoge % N ey -ve|,
+arfvr - vt
s (lv=vl v - vl + s - o)
an _ @n—1
® |1og(z\ w). (3.73)

The proof of the lemma is completed by combining the estimates (3.71), (3.72) and
(3.73). O

Remark 3.2. For the estimate of total variation for V! — V" with singular part,
one can also apply the argument as in item (3) of Remark 3.1.

Now, we are able to prove the main result of this section, i.e., the local-in-time
existence of a weak solution to the nonlinear Navier—Stokes equation (3.1).

Theorem 3.1. Suppose the initial data (vy, ug, 0) satisfies the condition (3.2) for
small §. Then there exists a positive constant t; such that, equation (3.1) admits a
weak solution

(,u,0) =" +1,u*,0"+1), t<t,
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satisfying the estimates

>0, O0<r<p<Kl,
max {luC, 0y G Dl N G0l s VG0l | < 2658,

max {10, 1) = Uy I8¢, = Tz 16Dl s VE 0G0l | < 2658,

max {HU(', Dligy > G o) =gy, G ) = g, NAFAe f)HLgO} £2C48(3.74)

v =l ), vix, ) = Z v*
7<X,2€2

_—

P
h(x —z), v} is continuous,

x=zt
ven| =200

z€9

x
x=z"

for some positive constant Cy, where h(x) is the Heaviside step function. Moreover,
the fluxes of u and 0

flux of u = Hix —p, fluxofd = d Oy —/ (ﬁuz _ K (uz)z) dz,

v CyV —oo \Cyp CyV

(3.75)
are both continuous with respect to x.

Proof. The proof consists of the following four steps:

e (Step 1: Strong convergence) One introduces the following functional of the
iteration difference,

T [Vn+1 —_ynr Un+1 L ®n+1 _ ®n]

= H‘Vn+l —yn + H‘Vn+l _yn + H‘Vn-i-l —yn
0 1 BV
4 Un+l —_y" + ‘HUVH*I —_y" + \/? <U;l+1 _ U)}:)
0 1 |log 7| o
Ut - Uy
T oger Il
n+l _
+ u + ‘H@"'H —o"|| + H i <@l;+1 — @ﬁ) ‘
[log 7| o 1 |log 7| 0
®n+1 — "
+ x x| (3.76)
[log 7| ]

As before, here
H VT (v~ ur)

[log 7|
and it is similar for other |||-||| norms. Then, we combine Lemmas 3.5, 3.6 and 3.7
to obtain the following contraction property for sufficiently small 6 and #;,

7 |:Vn+1 _yn Un+1 _y" ®n+1 _ @Vl]

T

’

Hoo O<t<ty LE°
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<G <5+\/E\1ogzn| + \1017“
From the previous analysis in Remark 3.1, C}, is uniformly bounded when
§ is sufficiently small. When 8 and #; are sufficiently small, {(V", U", ©")}
forms a Cauchy sequence. Therefore, the iteration scheme admits a strong limit

(v*, u*, 0*) in the function space

)ﬂ [Vil _ anly Ut — Unfl’ " — (;)nfl] .

v, 1) € L® (0, 1 L‘(R)),
Wi, ) € L% (0, 1 L'(R) N LOC(JR)) L Vit (x, 1) € L (0,155 LO(R)),

0%(x, 1) € L® (o, t L'(R) N L°°(]R)> . N2, 1) € L (0, 155 L®(R)) .
(3.77)

Now, letting (v, u, 8) = (v + 1, u*, 6* 4+ 1), the strong convergence imme-
diately implies that (v, u, 0) is a weak solution to the original Navier—Stokes
equation (3.1) in the distribution sense.

(Step 2: Regularity) From Lemma 3.2, Lemma 3.3 and Lemma 3.4, ||V"| pv,
U1 and [|@% ;1 are uniformly bounded for n. Moreover, from the above
analysis, V", U" and ®" are convergent in L'. Therefore, we apply Helly’s
selection Theorem and the estimates in Lemma 3.2, Lemma 3.3 and Lemma 3.4
to conclude that, the limit (v*, u™, 6*) has the following properties:

"¢ Ollsy = 2C48,  Nuy (Dl =2Cs8, 105Dl = 2C48.
(3.78)

(Step 3: v is BV) According to Remark 3.1, V" is a BV function and it can be
decomposed as follows:

VI=VERVE Vi = ) d'@Dh(x —2),
7<x,2€Y
.

Z
d"(z, t)’ = V"(,t)| , V! is continuous.
Z Z

From the proof of Lemma 3.7 (see (3.72)), one actually obtained that

+
(V”“ (1) = V(, t)) is also a Cauchy sequence, and thus the jump at

Z
Z
time ¢ admits a limit d(z, t) for z € 2. Now we construct the step function

vix, ) =Y dzDh(x —2), 1@z 0] £2

<X

. x=z+
o _ | ze2.
X=Z

(3.79)

where the estimate of |d(z, t)| is due to the strong convergence and uniform
boundedness of the jump at each iteration step. From the above analysis, V
converges to v} pointwisely. By the uniform convergence, the continuous part
V' also has a continuous limit v}'. We thus conclude that

v = lim V" = lim V! + lim V] =v} 4+ v}.
n—oo n—oo n—oo

v* is a BV function possessing the same discontinuities as the initial data.
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o (Step 4: Flux continuity) Putting the obtained solution v and u into the equation
for 6, one has an inhomogeneous linear heat equation of 6, with BV coefficient
% and a BV source term as below,

X
g, = <L9‘x _ f <£uz - (uZ)2> dz> , (3.80)
Cyv oo \ Cy Cyv N

which is of the same form as in Remark 2.1. Since the anti-derivative form
of the source term is obviously Lipschitz continuous with respect to x, one
can apply Remark 2.1 to conclude the existence of the solution 6, and the
continuity of the flux for the linear equation. The equation is linear for 6 and
thus has a unique weak solution. On the other hand, the 6 constructed from the
approximate solution sequence is also a weak solution to this linear equation.
Therefore, 6 coincides with 6 and thus has a continuous flux.

For the flux of u, one substitutes v and 0 into the equation of u, and obtains an
inhomogeneous linear equation of i as below

iy = (“:‘ = p(v,e)) ,

X

which is of the same form as in Remark 2.1. Since 6 is already the weak solution
to the linear equation (3.80), and we have the regularity and corresponding
estimates of v and u, we can follow the proof of Lemma 3.2 to show that,

«/t—s+(t—s)411)‘

Vs s

This implies that 6 is Holder continuous with respect to ¢. Since vy = uy is
uniformly bounded, v is Lipschitz continuous with respect to ¢. Therefore, by
Remark 2.1 and the same reasoning as for 6, we conclude the unique existence
of weak solution u, which coincides with u, and the continuity of its flux.
This completes the proof of the theorem. O

0@, 1) =0y, ) = O(1) (

Remark 3.3. This section is closed with three remarks.

(1) Similar as in Remark 3.1, from the proof of convergence of the iteration scheme,
the postive constants Cy and #; are chosen to satisfy the following properties,

C: 20, Jr0()<1.

Here the O (1) terms are independent of the choice of §, since they are uni-
formly bounded when § becomes sufficiently small according to Remark 3.1.
Therefore, there exists a positive constant §*, the smallness properties (3.74)
hold for all § < §* with the same C; and t;.

(2) From Theorem 3.1, the solution has the following regularity with respect to x.

V(x, 1) € L® (0, t: L'(R) N L®(R) N Bv) ,
W (x,1) € L® (0, t WHIR) N LOO(R)) . ke, 1) € L (0, 1 LO(R))

0% (r,0) € L (0,15 WH RN LE®)), Vi (xr,1) € L (0,15 LV(R)).
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However, it is not shown that the solution has regularity with respect to time
variable 7.

(3) v* can be represented as a sum of a step function and a continuous function,
whose total variations are both controlled by |lvjllgy. Moreover, v* has the
same discontinuities as initial data vg.

4. Regularity

From Theorem 3.1 and Remark 3.3, we have obtained the first order regularity
with respect to x and the continuity of the fluxes for the weak solution (v, u, 6) to
system (3.1). However, a weak solution to (3.1) is not necessarily a weak solution to
the original system in conservative form (1.1) due to nonlinearity, unless some more
regularity estimates can be established. This section is devoted to further study the
regularity of the weak solution constructed via the iteration scheme.

4.1. Improvement of regularity in time

By Theorem 3.1, ||v|| gy is small in a short time ¢ € (0, #;), which allows us to
construct a corresponding heat kernel H (x, ¢; y, t; %) and employ it to represent
the weak solution. Our strategy is as follows: we first follow Lemma 3.2 to show the
Holder continuity in time of 6, then use it to get the estimate for time derivative of
velocity u. Interestingly, this in turn can be used to improve the Holder continuity
in time of 0 to differentiability in time.

We assume that the initial data satisfies (3.2), and (v, u, 6) is the weak solution
constructed in Theorem 3.1 in the following Lemmas 4.1, 4.2 and 4.3.

Lemma 4.1. 0 satisfies the following Holder continuity estimates with respect to t,

0, 1) —0(x, )| = [0*(x, 1) —0*(x,9)| < 0(1)5%, 0<t<t,

0Cx, 1) — 0(x, )] = |0*(x, 1) — 0% (x, 5)| £ O(1)s <7”_Y + ¢ _‘Y)) , 0<t<t,
Js K

/ [0(x,t) —O(x,s)|dx =/ ‘9*(x,t) —9*(x,s)|dx < O(l)éw, O0<t<ty

R R Vs

/ 16(x, 1) —O(x,s)|dx :[ 0% (x, 1) — 0% (x, 5)|dx £ O(1)8 («/z — s+ (tfs)), 0<t<ts

R R NG

Proof. We consider the L and L' estimates seperately.

e (L*° estimate) As we have the heat kernel H (x, ¢; y, to; %) when 1 < #;, we
can follow the proof of Lemma 3.2 to obtain

0% (x, 1) — 0*(x, s)

=/ (H (x, t;y,0; l) - H (x,S; v, 0; l)) 65 (v)dy
R v v
! 1 $ 1
+/ / H (x, Y, T, —) Na(y, T)dydr +/ / (H (x, 1y, T, —)
s JR v 0 JR v



426 HA1TAO WANG, SHIH-HSIEN YU & XIONGTAO ZHANG

1
—H (x, 55, T; —))Nz(y, 7)dydr
v
=11 +1I)+1;. 4.1

Here N is defined as Nzk in (3.6) with replacing (VX, U¥, ©F) by (v*, u*, 6%).
For 7| and 75 in (4.1), one can follow the arguments as in Lemma 3.2 to have,

o)é(t —s) < <t;s 2t—s>
—\/E«/; , s 0)[68 NG +34 \/E\/; .

For the third term Z3 in (4.1), the previous estimates in the proof of Lemma 3.2
(see (3.14)) can be improved to

aisow ([ )L 7 oons G
(e} —T 2

8(t — s)|log(t — 5)|
-5

VAT

som

where the last inequality holds since function ¢|log¢| is decreasing when ¢ <
e~ !. Combine the estimates of 7|, Z», Z3 and the representation (4.1) to finish
the L™ estimate. On the other hand, we can also have another estimate of Z3
as follows:

T 0(1)( +0(1)3/ /( —dodt

0(1)5(; 4 om® Vf/;s.

This together with 7| and Z,, gives the second L Holder estimate of 6.
o (L! estimate) One writes

[IA

4.2)

/ 0% (x, 1) — 0% (x,5)|dx
R

S/ (H (x t;y,0; ) H(x,s;y,O; %)) 05 (y)dy|dx

(x, 15y, T; —)’ IN2(y, T)| dydTdx
v

1 1
H (x, 1y, T —) —H (x,S; V., T; —)‘ IN2(y, T)| dydrdx
v v

=T +L +1s 4.3)
For 73, using estimate of H; in (2.11) and L! estimate of uy in (3.74), it follows
that

|I3| = (x 0¥, T; —> do ‘Nk(y T)‘dydtdx
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coo([ )L

U, (.
x <|Uy<y, r>|+%

- 5t 1 52
S 0(1 —— |6+ —=)dod
= ()/o/s(ff—%)<+ﬁ>ar
s t 1 32
+ 0(])‘/; / -1 (54‘7) dodr

< 0(1)8/ / ——dadr+0(1)8f / — fdodr

a(i;s) + 0(1)—/ (log(t — 1) — log(s — 7)) dt

8(t — 5)| log(t — s)|
NG .

The estimate for fz is similar, and we have that

) dodydxdr

= o)

= o)

7 <

By Lemma 2.6, fR H;(x,t;y,t)dy = 0, hence one can introduce the anti-
derivative W (x, t; y, t9) of H;(x,t;y, ty) with respect to y. The term fl is
estimated as follows:

z:/
R

1 1
/ (H(x,t;y,O; —)—H(x,s;y,0; —)) 6y (y)dy|dx
R v v

dx:/
R

! 1
—/ / W(x,o;y,0; —)doj(y)do|dx
s JR v

t
1
/ Hy (x, 05 , 0; 263 (y)dody
s v

X

t _
g/ f|W<x,o—;y,o; l>|/|de>a‘<y>|dxdo— <oms’ =L, @a
s R v R \/;

Here we used integration by parts for Stieltjes integral and the estimate for H;
in (2.11). From the above estimates, 73 in (4.3) is dominant, and we conclude

8(t —s)|log(r — 5|
7 .

Similar to the L estimates for Z3 in (4.2), one has another estimate for fg
without log(r — s) term,

23] < 0(1ys <F+ = )>

/ 0% (x, 1) — 0% (x,5)|dx £ O(1)
R
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Then combining this with the estimates of T 1 and fg in (4.3), we obtain the L!
Holder estimate, and have completed the proof of this lemma. O

With Holder continuity of 6 in time ¢, we can apply the representation of u to
study its regularity with respect to z.

Lemma 4.2. u;(x, t) is well-defined almost everywhere for x € R when t > 0.
Moreover, it has the following property:
8
-

8
s G, Dl ooy < o=, MG Dl = 0(1)f

Proof. We split the proof into two parts.

e (L estimate) Use the heat kernel to construct the following representation of
u; forx ¢ 9:

1
u(x,t) = / H; (x, £y, 05 —) up(y)dy
R v

1
+/ Hy(x,t;y,t' )p(v(y,t),é)(y,t))dy
R\2

)
5 1
+/ / Hyy (x, t;y,s; —) p(w(y,s),0(y,s))dyds
0 JR\Z v

! 1
+// Hiy (xsf;yaS: —)(p(v(y,s)ﬁ(y,s))
5 JR\Z v
—p((y,1),0(y,1)))dyds

d |
+/ (/ Hyy (x,t; v, s; —) ds) p(y, 1), 0(y,1)dy
R\Z \J% v

=L+ +1I3+1s +1s. “4.5)

By the estimate of H;(x, t; y, tp) inLemma2.2and Hy(x, t; y, 1) = -8 (x—y),
one directly obtains the estimates of Z; and 7> in (4.5),
_ =p?
e C*t
3

1] < 0(1)/ T oy < 0(1)
R 12

8
.

1
e =/ Hy (x, 5y, 7> p(y,1),0(y, ))dy = —dx (p(v(x,1),0(x, 1)) .
R\2 v

For 73 in (4.5), one applies the estimate of H;y in (2.12) of Lemma 2.2, the
zeroth order estimates of 6 and v in Theorem 3.1, and the fact that fR H;ydy =0

to obtain
/0

3

2 LI\ (KO(y,s)
|Z3| = Hiy(x, 159,58, — || ——— — K ) dyds
R\2 v v(y,s)
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X VZ
< C('*(t )a < )
0(1)8/ / ——dyds £ 0(1)—.
R\ (1 —5)? Y NG

For 7 in (4.5), by estimate of H,y, time derivative estimate of v in Theorem 3.1
and the Holder continuity of 6 in Lemma 4.1, one has

e C*(’ Y) 8(t —s) |log(t —S)|
|I4|<0<1>// g
R\2 s

(t —s5)?
1 |log(t —s)|
<
20(1)5[m ——ds
[log 7|
< o()s—=2
S 0() N

Next, for Zs in (4.5), we need to apply integration by parts in Stieltjes sense.
Recall similar estimates of (3.17), (3.18), and discussions in Lemma 3.3, we
will only handle the case when the continuous part of v(x, ) is absolutely
continuous. Then, as x ¢ &, apply integration by parts to yield the following
representation:

t
1'52—/ (f H,(xtysl>ds+8(x—y)>
R\?Z \J

K (v(y, D)6y (y. 1) = 6(y, Dvy(y, 1))
((y, 1))?
-y (/ (x £ s 1)ds Fo(x — -)) P, 1), 00, 1) ;
€9 i
+ 0, p(v(x,1),0(x,1))
=Ts1 + Is2 + Is3.

dy

We apply the estimate for time integral of H, with respect to s in (2.17), the L'
estimates of 6., and the BV estimate of v in Theorem 3.1 to obtain that

_ (x—y)2
E3

e

TIs1 < 0(1) —_—
R\@ Vi

8
(|Uy(y»t)| +16y(y, D)) dy < 0(1)\—/;,

Isp

A

0(1) < 0(1)—

NG

Note that 7, and Zs3 cancel with each other. Therefore, we combine the above
estimates to conclude that Z; is dominant in (4.5), and

zej

)
lu (-, Ol < 0(1);, 0<t<ty

Finally, as & is of measure zero, we can simply use upper limit from left or
right to define the value of u; at . As the value on zero measure set will not
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affect the L norm and L' norm, the above estimates still hold and we finish
the proof of the first part of the lemma.

° (L1 estimate) By the cancellation of 7, and Zs3 in L* estimate, we have the
estimate

1
/ lug (x, t)|dx < / ‘/ H, <x, t;y,0; 7> uo(y)dy|dx
R R IJR v

3 1
+/ / H;y (x,t;y,s; 7> p((y,s),0(y,s))dyds|dx
R|JO JR\Z v

! 1
+/ / Hyy (x,t;y,S; 7>
R |5 JR\Z v

X (p((y,),0(y,$)) — pv(y, 1),0(y, 1)) dyds|dx

! 1
+/ / (/ H,; <x 1y, s; )ds+8(x—y)> dyp(v(y,1),0(y, 1))dy|dx
R |JR\2 £
t 1 zt
+/ 3 (/ H, (x,z;~,s; ;) ds+6(x—y)> P 0,660
R | 5 z

€9

dx

=01+ +73 +1Zs + Is. 4.6)

For the estimates of the last four terms, we only need to add the integration with
respect to x on the L* estimate in Step 1. For the estimate of 7, in (4.6), we

have
: s
dx £ 0(1)—.

2 1 Ko(y,s) )
T = H, — K ) dyd
: /l;i,/o R\2 ty(XIy )(U(YS) yE NG

For the estimate of 73 in (4.6), we recall the estimates in Theorem 3.1 that
v = uy and ||uy || Ll is of order §. Therefore, we combine the Holder estimate

of @ in the L! sense in Lemma 4.1 to obtain that

! 1
= / / / Hyy, (x,t; v, S; —)
R /5 JR\Z v

x (p(u(y,s),0(y,s)) — pv(y,1),0(y, 1)) dyds|dx
< 0(1)8|log1].

For the estimate of 74 and Z5 in (4.6), the integration of heat kernel with respect
to x yields a /7 factor. Thus, we have

Iy 20 /
R\Z

Ts < 0(1)2/

€9

dx (Jvy (v, D1+ 16y (v, D) dy = O(1)8,

}

.
| <oms.
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Lastly, for the estimate of Il in (4.6), similar to (4.4), one introduces the anti-
derivative of H;(x,t; y,0 Ly with respect to y and applies integration by parts
to yield

; v

7, £ 0(1)%.

The L' estimate follows from the estimates of Z;, i = 1...5 in (4.6) above.
This completes the proof of the lemma. O

In Lemma 4.1, the Holder continuity in time estimate of 6 contains a term
log(t — ), thus it is insufficient to conclude the time derivative of 6 is well-defined.
Examining the proof of Lemma 4.1, one finds that the log(z — s) term is resulted
from the inhomogeneous term involving u% Now, with the estimates of u,, we are
able to improve the estimates of # and yield the differentiability of 6 with respect
tor.

Lemma 4.3. 6, (x, t) is well-defined for x € R whent > 0. Moreover, it has the
following property:

10 Dl < O 10 Dl < O
AN L>®([R) = Py s LI(R) = \/;

Proof. Using heat kernel, we have the integral representation of 6;:

1
Or(x, 1) = f H, (x, t;y,0; —) 05 (y)dy
R v

t
b 1
+/ th <x,t;y,r;—)/\/z(y, T)dydt
0 JR v
t 1
+/ /Ht <x,t; y,r;—)/\fz(y,t)dydr
5 JR v

t 1
+ﬁ fRHt (x,r; y,r;;) N2 (3 1) = Ny, 1)) dyde
2
=N+ +13+14. 4.7

For the first two terms Z; and 75, noticing the time integral region is away from 7,
one does not need to worry about the singularity of H;(x, t; y, ) when t is close
to . We have the following estimates:

Iz gc*/ ¢
R t2
z 1 v, 1) W
| 7| = f / H; (x, ty, T; 7> uy(y, 1) <7p Y + uy(y, ) |dydr
o Jr Cy cpu(y, T)

<0(1/ /e o ”| ( )|<1+ ‘S>dd <0(1><‘3 52)
uy(y, T — T — ).
—ni Y N Vi

=)

)
05 (dy = 0(1);,
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For 73, N> (y, t) is independent of 7, thus the integral with respect to 7 acts only
on H;. We apply the estimate (2.17) of heat kernel in Lemma 2.2 to obtain that

t 1
|Z3] é/R ﬁ (Ht (x,t; Y, T; ;>>d1+5(x—y) luy (y, )]
2
p(y, 1) 2z
) ‘_ PR T R
g, |- 2D )
Cy cyv(x, 1)
xX— )2
e F) § 82
< 0(1)/ luy(y, )] (1+7> dydr+0(1)(ﬁ 7)

) 52
S0 <$+7>.

Finally, for Z4, we need to exploit the regularity of u, obtained in Lemma 4.2. To
this end, we rewrite Z4 as follows:

/ /H, (x ty,T; 7> (u(y,7) —u(y,t)) r(y )dydr
1
_/ /.th (x,t;y,t; 7>
3 Jr v

x(u(m)—u(y,t))(—@ — t)uy<y,r>)dydr

t
+/ [Ht (x,t; Y, T3 1) uy(y, 1) <M7M>dydf
! v Cy Cy
® W
//H (x bnn )”y(y )<(cvv(y,r)_c.m(y,n)“~"(y’r))dydt

1
—/ /th (x,t;y,r; 7>u_v(y,t)(_ K (u(y,f)—u(y,t)))dydf
1 Jr v cu(y, 1)

! 1 1
- ﬁ /I; H, (x, 1y, T ;) (ur(y. o) + py(y. 1) (c— (u(y, t) — u(y, t))) dydz
2 v

6
= 214]'. 4.8)
j=1
Next, we estimate Z4; term by term. For Z41, apply the estimate of u, in Lemma 4.2
to obtain
( . 7) 5
1Za1] = / /Hz (x,t,y T —> w(y, v) —uly.0) = dyde| < 0(1)7-

For 745, by the estimate of u, again,

! 1
|Zao| = Hyy (x, 1y, T; ;) w(y, ) —u(y,t))
£ JR
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" (_p(y, DK

Cy cvv(y, T)

e C*(I f)
0(1)// fus(y,s)ds

o) ( i 82)

Vi)
For 743, we take advantage of the L°° Holder continuity of 6 without logarithm
terms in Lemma 4.1, and note v; = u, to yield the estimates:

uy(y, r)) dydr

A

|1 +uy(y,t)|dydt

A

t
|I43| = Ht <x, l" y’ T l) uy(y, t) (P(y, t) _ p(yy T)) dydf
5 JR v Cy Cy
<x(—[32
< 0(1>f f — luy (v, ] 10y, 1) — O (y, )|
R (t—1)2

+ |U(y’ ) - U(y’ T)l) dyd‘[

8(t—1) 8(«/1‘—1) 8(t —1) 82
<0(1)/ < . 7 + NG )dr§0(l)7

for small time. The estimates for Z44, Z45 and Z4¢ are very similar as the first three
terms. Thus, we omit the details and provide the following estimates:

83 52 82
Tasl SO0 —, |Zas| S O(D)—, |Zuel < O(1)—.
|Z44] = ()«/? |Z45] = ()t |Za6| = ()t

The estimates of Z4;, j = 1...6 together yield that
)
I4 < 0(1);.
Combine all the estimates of Z;, j = 1...4 to obtain the L estimate of 9, as
)
6: (-, )]l Lo = 0(1);.

Lastly, we can follow the computations in Lemma 4.2, and apply the L' esti-
mates of u;, uy, and 6y in Lemma 4.2 and Theorem 3.1 to yield the L' estimate of
9; N

160l < 02
) L — \/;

The details are omitted. 0O
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4.2. Regularity of the weak solution

Now, we are in the position to state our second theorem concerning the regularity
of the local-in-time weak solution.

Theorem 4.1. Suppose the initial data (vy, ug, 6;) satisfy the condition (3.2) for
small §. Let (v, u, ) be the corresponding local-in-time weak solution constructed
in Theorem 3.1. The following assertions hold:

(1) In addition to the estimates in (3.74), there exists a positive constant Cy such
that when t € (0, tz), the solution satisfies

max [\/;”ut(vt)”]‘lr , ”uI(vt)”L;’O ) \/;Het(»t)”L)l{ ) t”9[(7 t)“L%O}
< 2C8. (4.9)

(2) The fluxes of u and 6 (defined in (3.75)) are both globally Lipschitz continuous
with respect to x fort > Q.

(3) The specific volume v(x,t) satisfies the following Hélder continuity in time
properties for 0 < s < 1,

(t —s)|log(t — s)|
Jt
t—s (4.10)
7
[v(, 1) —v(, )l = O — ).

v, 1) —vC, 9)llpy = O(1)8

G, 1) = v 9)lliLe = O1)8

Proof. The first assertion follows from Theorem 3.1, Lemmas 4.2 and 4.3. The
second assertion is a consequence of the first assertion by the equations

u K *
U = <_P + E x) , O = < O _/ (ﬂuz - £ (MZ)Z) dZ) :
v X CyV —0o \Cv CyV X

According to Lemmas 4.2 and 4.3, u, and 6, have finite L° norm when ¢ > 0.
We thus conclude that the fluxes of both u and 6 are Lipschitz continuous with
respect to x for ¢ > 0. Finally, from ansatz (3.5), Lemma 3.4 and (3.25), we know
that (4.10) holds for V”". Then, we apply the strong convergence in Theorem 3.1 to
obtain the desired results. O

Since the solution to the equation (1.3) fulfills the regularity estimates, we are
able to use (v, u, 0) to construct the weak solution of the original Navier—Stokes
equations (1.1) in conservative form.

Corollary 4.1. Suppose the initial data (vj, ug, 65) satisfy the condition (3.2) for
small §, and (v, u, 0) is the corresponding weak solution to (1.3) constructed in
Theorems 3.1 and 4.1 for t < ty, where ty is a sufficiently small positive constant.
Let
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2 u?

u

E(x,t) = ?-FCUG = 7+e.
Then the tuple (v, u, E) is a weak solution to the nonlinear equation (1.1) with
initial data

o x o, W)
(vo, uo, Eo) = | 1 +vg, ugy, cp(1+6y) + )

Proof. Suppose (v, u, 0) is the weak solution constructed in Theorems 3.1 and 4.1,
which satisfies weak formulation in Definition 2.1. Since u, is defined in strong
sense, we can set gu as a test function in (2.1);. Together with ¢, x (2.1)3 and
some elementary manipulations, one shows that E satisfies the weak formulation
of (1.1). O

Remark 4.1. Note that the regularity obtained in Theorem 4.1 is the same as (2.2)
in Proposition 2.1. In particular, it should be emphasized that v is continuous in
L' N L*® N BV around ¢ = 0, which holds due to (4.10).

5. Local Stability and Uniqueness

In this section, we continue to study the stability of the weak solution constructed
in Theorem 3.1 and Theorem 4.1, which implies the continuous dependence of the
solution on initial data and the uniqueness of weak solution. We first prove that
any weak solution belonging to the function space (2.2) are small in short time,
provided the initial data is small.

Lemma 5.1. Suppose the initial data satisfy

lvollsv + llwollsv + 160llsv + lvo — it + llwollpr + 160 — Ll < 8 K 1,

and (v, u, 0) is any weak solution of (1.3) belonging to (2.2) subjected to the above
initial data. Let Cy and § be the parameters given in Theorems 3.1 and 4.1. Then,
if 8 is sufficiently small, there exists a small positive constant t, such that

max {lluC Dllgy s TG Olgge s o0l o Vol €0l |
S2Ce8, 0<t <ty
max {”0(’ l)”L,lv ) ”0(’ Z)HLQ‘; ) ||9x(’ t)“le ) \/; ”9)((’ I)HLQC}
S2Ci8, 0<t <ty
Proof. From Theorems 3.1 and 4.1, there exists at least one weak solution in the
space (2.2) provided the initial data is small. If the given solution is exactly the

one as we constructed, then the smallness of the solution immediately follows from
(3.74) and (4.9).
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In general, suppose a weak solution satisfies condition (2.2) with sufficiently
small initial data. By Remark 4.1, there exist a small ¢, such that

[v(, 1) = Ll = Coy, lv(, 1) — Lizge = Céy,
lv(, ) = llpy =Cés, 0=t <t K1

As &, and t, are sufficiently small, one can follow the arguments in Section 2 to
construct the heat kernel H (x, ; y, T; &) and H (x, 1; y, ; 2). Then, multiplying

’ Ccyv
Hx,t;y,1; %) to the second equation in (1.3), using integration by parts, and in
light of weak formulation, one has an integral representation of u,

u(x, 1) —/ Hx.1; y,0: >u(y,0)dy+/ /H (153, 2)p (0, D
(5.1)

Similarly, one also obtains the representation of 6:

6(x.1) = / Hx, £, 0; ~)0(y, 0)dy
R CyV

! K u
+/ /H(x,t; Y, T3 ——) (—p - +i(uy)2> dydr.
0 JR CyU Cy Cyv

In what follows, we will first show the smallness of u(x, t), which then follows that
6 (x, t) is small as well in the short time.

e (Smallness of u(x, t)) The estimates of u(x, ) are very similar to Lemma 3.3.
First, for the zeroth order, one directly applies the representation (5.1), the
estimates of H in Lemma 2.1 and the regularity of the solution in (2.2) to
obtain that, fort < t, < 1,

01 = [ [HGx155.0:5) 1ty 0lay

+/ / ‘Hy(x,t;y,f;ﬂ)‘lp(y, 7) — K|dydr
0 JR v
<08, + O,

A@/R
! w

+/f/‘Hy(x,t;y,r; —))Ip(y,r)—Kldydfdx
RJO JR v

< 018, + O/

N

A

7
e (x, )| 11 H(x,t;y,0; ;)‘ lu(y, 0)|dydx

Then, for the first order estimates of u(x, t), we deal with the L°° estimate first.
One differentiates the representation (5.1) with respect to x to obtain
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uy(x,1) —f Hy(x,t;9,0; )u(y,O)dy

m
+ / / Heytrotiyot: DpGodydr. (52)
0 JR v

For the homogeneous term, the initial data will provide the small factor §.., and
one follows the proof in Lemma 3.3 to have

. LK < 5_*
/RHX (x,t,y,O, U)u(y,O)dy' < 0(1)ﬁ' (5.3)

For the inhomogeneous term, we follow the estimates for (3.17) to obtain

t
"
V foy(x,t;y,t; —)p(y, t)dydr
0 JR v
! I
= ‘/ foy(x,t;y,r; —)p(y, t)dydr
0 JR

t
n V foy(x,t; T ’M)K(G(y, T) - 9(y,t))dydr‘
0o Jr

v(y,t)
+‘/I/H(t r“)Ke( r)( ! 1)ddr
xy(X, 13y, T — s - —
0o Jr Y Y vy v )
e c(i(z\)j) t
< 0<1>+0(1)/ /—(/ |9ﬂ<y,o>|do) dydr
R (t—1)2 T

(x—y)?

e G- ?

+ 0(1)/ / _ (f |60(y,a)|d0) dydr
R (1‘—‘[)2 T
e cw r) 4

" o<1>f | (/ [0 3, a>|do)dydr
R (t—‘[)z T

< o1+ V). (5.4)

Now, since ¢ < t, < 1, we combine (5.2), (5.3) and (5.4) to obtain that

8 + /1

lux (x, )] = 0(1)% +0() = 0(1)7, 0<1<t.

The L! estimates are similar as the estimates for (3.20), (3.21), (3.22) and (3.23),

and we have

lux Ol £ OB + V1), 0<t <ty
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Now, combine the above zeroth and first order estimates to conclude that, for
sufficiently small 8, and t,, the following estimates hold:

max {1 Dllgy s G Olige s TG0l o Vo0l |
$2C8, 0<t <t

there C; and § are given in Theorem 3.1 and Theorem 4.1.
o (Smallness of 6(x,t)) As we have shown the smallness of u(x, t), one can
follow the proof of Lemma 3.2 to obtain
max {10C, Dl s 10C, Dl 16 G0y VE16:C 0 |
<2C8, 0<t <ty

O

Lemma 5.1 states that, if the initial data is sufficiently small, then for any weak
solution in the function space (2.2), we can find a small time ¢, such that, the
solution will be as small as the solution constructed in Theorem 3.1 in the short
time ¢t € [0, t,]. In next lemma, we will show that the difference between two
different small solutions are stable locally in time.

Lemma 5.2. Suppose there are two weak solutions (v*, u®, 6%) and (v’, u®, 8%)
to the NS equation (3.1) satisfying the smallness properties (3.74) in Theorem 3.1
for common Cy, § and t, with initial data fulfilling (3.2) respectively. Then, there
exists a positive constant Cy, such that

F [v“ — b ut —ub, ® —Bb]
b b
< (6§ — 68 uze + 165 — 6§l
b b
o+l — wlleze + g — ull .y

+ 19§ — vy + 10§ — ofllze + Iv§ = vfllav ).
where . is the functional defined in (3.76). In particular, it follows that

| oy #]
Ly

b b b b
= Cb(ll%‘ — 0l + 165 — 65l Ly + llug — ugllLge + llug — ugli 21

u® —ub

+
Ly

vy —v

|

pe —9””

Ll

b b b
+ 110§ = vy + oG = vl + 0§ = vfllav ).

Therefore, the solution satisfying the properties in Theorem 3.1 is unique up to a
measure zero set.
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Proof. From Theorem 3.1, the existence of weak solutions (v%, u?, 69) and (v?, u?,
6%) are guaranteed. Let

a M a K b ﬂ b K
va’ cpv?’ vt

As the two solutions satisfy the requirements in Theorem 3.1, they both have con-
tinuous fluxes. We can apply Duhamel’s principle to get the integral representations
for both.

Then we can follow the proof of convergence of the approximate solutions
sequence to construct the difference estimates. For instance, for the first order
difference estimates of 6, we have the representation

09 (x, 1) — 0 (x, 1)
:/R<HX (x.15y,0; %) — Hy (x,t;y,O; K”))Gé‘(y)dy
[ (xr06) (6500 = 600) a5
! b a b
+ /0 LHX (x,t; y, 8, K )(N2 (y,s) =N, (y,S)) dyds

t
+ / f (Hx (x,1;y,5:6%) — Hy (x, £ y,s; Kb)> N3 (y, s)dyds.
0 JR

Compared to the calculations in Lemma 3.5, there are three differences. Firstly, the
discontinuous sets 7, and 7, for the two solutions might be different. In such a
case, we just need to introduce the new discontinuity set 7 = Z, U %, then all the
calculations before still hold for the new discontinuity set &. Secondly, the initial
data 98 does not belong to L itself. By Lemma 2.6, fR Hydy = 0, thus,

/R (Hx (x,1:9,0; k%) — H, (x, t;,0; Kb)> 65 (y)dy

= [ (e o 3,050 = B (55 3,05) ) 650 = 1,

which is of exactly the same form as in Lemma 3.5. The third difference is from
the additional term induced by the initial difference. A direct calculation gives the
estimate

1
/RHX (v 13, 0:6") (8500 = 65 ) dy' < 0108 = 65l

Therefore, we combine the above analysis with the estimates in Lemma 3.5 to yield
that for sufficiently small § and #; that
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|1;{;l| 04, 1) —02(, 1) o = %HQS —9(1)7||L;>C + Gy (/15 + 9)
o =l = ol + e =]
0 BV
[ - Il I L)
logz| \* "/l [logz| |||, log 7| |||no

We then follow the similar procedures as we have done in Lemmas 3.5, 3.6 and 3.7
and include the difference resulted from the initial data, to obtain

F [v” — b ut —ub, e — Gh]

<116, (5 + /1) 1ogrﬁ|)9[u“ b ut — b ee —9”]

o)
H()g—(t)lﬂeg — 0l + 065 — 6511
oM b NG b
lluf — ubll o + 165 — 681l .o
llog()| " © 0" T Jlog(ny T Y 0T

b b
+ OM)llug — uglie + OM)llug — ugll,:
b b b
+ llvg — ol + lvg — vollzee + llvg — v llBv-

In particular, as § and #; are both sufficiently small, the first term on the right hand
side can be absorbed by the left hand side, then the desired difference estimate
follows.

The L! difference is a direct corollary from this. Therefore, two solutions co-
incide in L! sense if they have common initial data, i.e., the solution with initial
condition (3.2) and the properties in Theorem 3.1 is unique up to a measure zero
set. 0O

With Lemmas 5.1 and 5.2 in hand, we are ready to show the local-in-time stability
and prove the uniqueness of the weak solution in the function space (2.2).

Theorem 5.1. Suppose there are two weak solutions (v*, u®, 0%) and (w2, ub, 6%)
to the Navier—Stokes equation (1.3) both belonging to (2.2), and their initial data
both satisfy the following condition for small §,

lvollsv + lluollav + 100llBv + llvo — Lllz1 + lluollzr + 1160 — 11 < 8+ < 1,

Then, there exist a sufficiently small positive constant t,. and a properly large positive
constant Cy, such that, the following stability holds:

F [va _ Ub, u® — I/tb, 0% — Qb]

< Gy (1166 — 88 lzze + 16§ — 631l
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b b b
+ Nl — ubllze + N — ubll 1 + v — vgllLy
b b
+ 110§ = ol + 1§ = oflsv ),
where .F is the functional defined in (3.76). Moreover, this immediately implies the
uniqueness of the weak solution. Namely, for sufficiently small initial data, there

exists a sufficiently small positive constant t, such that, the equation (1.3) admits
a unique weak solution in the sense (2.2) fort € [0, t,).

Proof. First of all, Theorems 3.1 and 4.1 establish the existence of weak solution
if 8, < 6 and ¢t < t;, where § and #; are given in Theorems 3.1 and 4.1. Next,
Lemma 5.1 guarantees the smallness of the weak solution for ¢ € [0, #,), where ¢,
is constructed in Lemma 5.1. Therefore, for ¢ € [0, t,), we can apply Lemma 5.2
to obtain the difference estimate as

F [v” — P ut —ub, 6% — Qb]
< G166 — 68 lzze + 16§ — 631l
+ 11§ — uflliee + N — bl + 10§ — v§ il
+ v = vl + v — ugngv), 0<t <t

In particular, if the two solutions have the same initial data, the above difference
estimate implies that

ﬁ[v“ — P ut — b, g —9”] -0,

which follows that the two solutions coincide with each other almost everywhere.
Then, as the two solutions both belong to (2.2), they have the following continuity
properties:

e v(x,t) has both left and right limits at x € R when 0 < ¢ < ¢,,
e u(x,t)and 6 (x,t) are continuous for x € R when 0 < ¢ < t,.

Then, we apply the above continuity of the two solutions to conclude that,
W0, 1), u (0,0, 0%(x, 1) = (e, 1), u’ (e, 1), 6 (e, 1), x €R, 0<t <t

O

6. Global Existence

In previous sections, we have constructed the local-wellposedness of weak
solution to (1.3), and obtained its regularity and stability, which are sufficient to
guarantee it is also a weak solution to the original system (1.1). In this section, we
continue to investigate the global stability and the time asymptotic behavior of the
solution.
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We first introduce the pointwise structures of Green’s function for system (1.1)
linearized around a constant state, then construct the “effective Green’s function”
by interpolation of heat kernel in short time and Green’s function in large time.
Using this “effective Green’s function” and in view of the weak formulation, we
derive an “effective” integral representation of the solution, which is convenient
to study the global behavior of the solution. Refined analysis then provides us a
global a priori estimate, which finally concludes the global existence and the time
asymptotic behavior of the solution.

As the construction of Green’s function (Lemmas 6.1, 6.2 and 6.3) and the proof
of a priori estimate (Lemma 6.6) are technical and lengthy, the details of them are
spelled out in another separated paper [12], interested readers are referred to there.

6.1. Green’s function

In order to preserve the conservative form of equation (1.1), we define the state
variables

15 U
E=ce+ Su U= ,u,E), p,elE,u)=—="—, (6.1)
v
and thus,
e, =—u, ep=1.

Then, the system (1.1) is rewritten as following conservation form with variables
defined in (6.1),

U[*MXZO

Uy + pyvx + peeylix + peegE —(Mux)
t PvVx Pe€ylUx Pe€ELy = v . (62)
KOeey + pu KBpe
Et+”pvvx+(p+upeeu)ux+upeeEEx:( £ uv = ux + ZEEX> .
x

We can also write the system into a vector form as
Ui+ F(U)y = (BU)Uy)x < U; + F'(U)Uy = (B(U)Uy)x.
where U, F, F'(U) and B are defined as

v —u 0 -1 0
U=\ul, FO)=|p |, FU)=\|po —peu pe |.
E pu polt p — pett* peut
0 0 0
BU)y=|0 & 0
0 (4 —e)u e

Now we consider the linearization of equations (6.2) around a constant state U.Let
U =U+ V. We have

V, + F' (U)Vy — B(U)Vyyx = [N1(V; U) + No(V; Uy, (6.3)
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where N; and N; are nonlinear terms from the hyperbolic and parabolic parts,
respectively,

N{(V;U)=—[F(U +V)—FU) - F'(U)V], N»(V;U)= BU) — B().
(6.4)

The Green'’s function G (x, ¢; U) for the linearized equation (6.3) is the solution
to the system

{ G(x,1;U) = (—F'(U)dy + B(U)dxy) G(x, 1; U), ©5)

G(x,0:U) =8(x)I,

where [ is the 3 x 3 identity matrix and § (x) is the Dirac-delta function. It is shown
in [12], the Green’s function G(x, 7) can be decomposed into singular and regular
parts, G*(x, t) and Gt (x, 1) respectively. Moreover, the singular part G*(x, r) can
be further decomposed to three parts G*J, j=1,2,3ie.,

3
Gx, 1) =G*(x, 1) + G (x, 1) = ZG*’j(x, N+ G (x, ). (6.6)
j=1

The next two lemmas characterize the singular part G*J, where A i.Jj =123,

a;‘f and ﬂ;‘,j = 2, 3 are constants, M”f’k, j, k =1, 2, 3 are constant matrices, whose
explicit expressions are listed in “Appendix B”.

Lemma 6.1. ([12]) The singular part of the Green’s function consists of three parts.
There exist positive constants oy and o such that the following pointwise estimates
hold. For the first part G*'(x, 1),

G (1) = e S MF 4 O (1)e o0k,

vy d « )
3,\-G*'l(x,t) —e L t (TS(X)M;"O _(S(X)M;«Al) + O(I)e*”o’f”(""‘,
X

w, [ d* d .
026" (r, 1) = e (Ezs(xw?"“ - soM 480 (—m} Al,ltM,*‘“)) + OBl

v 4

PErers _ d—SS M+0 fia el L M2 — A a0
N (x,1)=e s ()M - (x) M, +dx ) (=M;" — AitM,

+e B 50 (MP + 141 M7 ) + O (e o0b,
6.7)

For the other two parts G**(x, t) and G*3(x, t), when't > 1,
G (x, 1) = 0(1)e 0 Wk =0,1,2, j=2.3, t=>1. (68)

When 0 < t < 1, the following estimates for G*%(x, t) and G*3(x, t) hold:
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ﬂ”-‘t _ x2
G = O(e ol ST,
\/m !
J
. eﬂff _4
axG*,,l(x’t) — O(I)E—UOI—UQIX\ +ax T, 40th M;-(’O
[4m ot
J
Bt _a2
e 3
- ¢ 4(1th;<,1’
*
/47tajt
i * e ;Ft - Xi
PG (x.1) = O(e ol 42| ———e " | MY
[4m ot '
J
*t xz
—0 eﬁj e_m M*,l
X .
PR (69)
j _ X

4ot *.2 .0
- J i . T
e (M] +1Aj M )

*
/47701].1‘

~ ; O
BSG*J(X, )y = O(I)e—%’—ﬂolﬂ +a§ ¢ e MT,O
_ o ,\‘2 o
_ 82 - t M%;’]
W /
St 2]
— Oy e (M’."2 +1A j,le’(’)
W J j

Pt

/m

Lemma 6.2. ([12]) Let j = 2, 3, the time derivatives and the mixed derivatives of
the singular parts have the following estimates:

(M Ay

3G (x, 1) = e e 5(x)MT0 + O(1)e % o0kl
u

84 GH (x, 1) = 2T s — v % 'SOMP + 0(1)e o0k,
2z dx %

3G*J (x, 1) = O(1)e 0"~k
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Bt

J
a;faf L
4rat
v j
+ eﬁ}*t _
+
4ot

0,

Bt _
3 e’
ooy e
4ot
v J
St -
+ 0y | ———e
+ /4ﬂa;ft
eﬁjt ,{2
+ *
4n01jt
0,

M0 —

*
eﬂf[

Bit
et
»sfaZ

a -
j Jjo%x
/4710[}‘1

e

2 .0 0
(—a;fM;‘ — 0 A M +/5;fM;‘)

).

—e
*
/4mxjt

401 kg2 *q7%,0
e < oM™+ BiM; )

*,1
- BjMj

X
da

The following lemma describes the regular part G

<o

2

%
J

o

M

Lemma 6.3. ([12]) There exist positive constants oy and oy such that

3
D 10tGT 0] £ 0(yre 0,

k=0

;0%

3 da it

. e J
¥ G 1) — |l ——
G 1) Z | 2/majt

j=1

(+8 ],,z

3
O(l)e —ac
<y oW

= tz

u
'\

;0%

£y Qe S O(I)e e

j=1

_GHBD

2

dojt

J

Zak+l ¢

+ O(l)e—aot ao\xl

where o j and B; are given below,

—K 0, py

(kpOepe + UpPe — UPv)
0 =—, 0 =03 =
v (ppe — pPv) 2v (ppe — pv)
B1 =0, Br=—+/ppe— pvs B3=+/PPe— Pv-

4/JTOtjl‘

445
0<t<l,
t>1,
O0<t<l1
t21.

0<t<l,

, 05k<3,

The constant matrices M;), M }, j =1,2,3 are given in “Appendix B”.

6.2. Integral representation of solution

Without loss of generality, we assume that the initial data is a small perturbation
around the constant state (v, u, ) = (1, 0, 1). Using total energy E as a variable,



446 HA1TAO WANG, SHIH-HSIEN YU & XIONGTAO ZHANG

we have
U= @i, E)=(1,0,c),

where ¢, is the heat capacity defined in (1.2), and U is the equilibrium state in (6.3).
The Green’s matrix G can be represented as follows:

. Gt Gt Gh gl

. G1i Gip G5 G Gy Gys
G=G"+G", 6'=|G}G5G5 ). 6'=]|G) G,G
G5 G5, G5 Gy G, Gy

(6.10)

Since G(x, 1; U) satisfies the forward equation (6.5), it follows that G(x — y, t —
t; U) also satisfies the backward equation,

3:G(x —y,t —1;U) +3,G(x — y,t — ; U)F'(U)
+39;G(x — y, 1 — 1 U)B(U) = 0. (6.11)
In the following, we will simply denote the Green’s function by G(x — y, 7 — 7).

As we already chose U = (v, u, E") = (1, 0, ¢y), the matrices F’(U) and B(U)
have the following form:

0 —-10 00 0
F{U)=|-Kk 0 K ., BO)=|0uoO
0 K 0 00 &

Substitute the above F/(U) and B(U) into the backward equation (6.11) to obtain
the equations for each component:

3G — KdyGr2 9:Gr2 — 0,G11 + K0,G13 + 10?Gra 9:G3 + LI.(TByGlZ + ('.(733(@13

3Gy — K0,Gay 3:Goa — 8,Gar + KyGo3 + 107G 9:Gos + £9,Gn + £92Go3 | =0.

v

0:G31 — KdyG3y  3:G3p — 0yG31 + KdyGas + M?))z,Gsz 9:G33 + fTByG32 + fTBf,Gss
(6.12)

In order to construct a new effective integral representation of v, u and 6, we
introduce an effective Green’s function G similar as in [8]. Define a smooth non-
increasing cutoff function as

X1 eC®®Ry), X'@) 0, X <2, X = L forre .11
e =" LR == “lo, forr>2.
(6.13)

Then, we choose a small positive constant vy (which will be determined later) such
that, the heat kernel H (x, t; y, 7; %) and the local weak solution (v(x, 7), u(x, 7),
E(x, 7)) for (1.1) both exist when T € (¢ — 2vp, ¢]. We interpolate the heat kernel
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for short time and Green’s function for large time via cutoff function (6.13), thus
introduce the effective Green’s functions as

Gunkx,t;y, 1) =X (?) H (x, 5y, T, %) + (1 - X (?)) Go(x —y;t — 1),
0 0 (6.14)

r— r— ’
Gsa(x,t;y,7) = X( r) H()c,t;y,r; £ >+ (1 7X<7T))G33(x7y;t7r).
Vo CyV Vo

Now we can represent the solution (v, u, E) in terms of the effective Green’s func-
tion, which captures both the local-in-time regularity and global-in-time space-time
structure of the solution.

Lemma 6.4. Suppose the weak solution (v(x, t), u(x, t), E(x, 1)) for (1.1) exists
for © € [0,1t], and the heat kernel H(x,t;y, T; %) exists for T € (t — 2vg,t)
for a sufficiently small positive constant vy such that 2vg < t. Then we have the
representation of u(x, t),

u(x,t) =/RG21(x -y, D)Wy, 0) — l)dy+/RGzz(x,t; v, 0u(y, 0)dy

3
+/R<Gza<x—y,r> (E(y,0) - c)dy + Y R, (6.15)

i=1

where the inhomogeneous remainders R; are listed as

t—2vp
RY = / /ang(x—y,t—r)

—1)2 _ _ 2 _
(K(v 1) K(0 (1 v) Ku n puy (v 1))dydr
v 2¢y v

t—2vp
/ /3G23(x—yf—f)
0

(<K(9—1)+K(1—U)> Kby —1) <f, ﬁ>uu )d»dr
v v Cy v ! e

t—vo
'R,g = / / B}VGzz(x -y, t— 7)
1—2vy JR

o (K(vfl)z+K(0—1)(1—v)+uuy(v—1) Ku?
v v v 2¢y

T

t—2v9 JR VO Vi
t—=vg t —

L L)
t—2vy JR

x (K3yGo3(x — y, 1 — 1) — 0,Gar(x — y, 1 — 7)) u(y, t)dydt

[ _ _
+/ O/X<t T) (x ty,T; M)fay((}zz(xfy;tfr)) k@ 1))dydr
t R v

A

)(Gzz(x—y;t—f)— ()C 1y, T; M))u(y,r)dvdr

t—vg
+/ 0yGo3(x =yt — 1)
1—2vy JR

Oy(v—1 Ku(® —
X (K y @ ) + u( v) + (i - ﬁ) uuv> dydr,
v v ¢y v ’

'
RS = / / K3,Gyp(x —y,t —1)(w(y, 1) — Ddydt
t—vg JR
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'
— / f 0yGa1(x — y, t — Du(y, )dydt
1—vp

/ / xtw&)(w)dw

1—vp v v(y, 1)
/ /3@22(x—yt—r)(K( >d}dr
1—vp

+ / / 0yGos(x =y, t — 1) ((pu) + & + <£ — E) uuy> dydrt.
1—vo JR v ¢ v

Proof. We multiply the vector (Gai(x — y, 7 — 1), Gn(x, 15y, 7), Go3(x — y,
t — r)) to the system (1.1), apply integration by parts, and split the time integral
into three parts [0, t — 2vg], [t — 2vp, t — vp] and [f — vp, ¢] to have the desired
results. Interested readers are referred to [12] for the computational details. O

Lemma 6.5. Suppose the weak solution (v(x, 7), u(x, t), E(x, 7)) for (1.1) exists
for t € [0, t], and the heat kernel H(x,t; y, T; o v) exists for t € (t — 2vq, t)
for a sufficiently small positive constant vy such that 2vg < t. Then we have the
representation of v(x, t) and E(x, t) as

vix, 1) —1

=AGM%WMWWW—UW+AGMLMWMWWW

+AGMWﬂMNM%®—%My

t _ ) - -
+/ /ayGlz(x,t;y,-,;)(K(v D’ (K6 - K)1-v)
0 JR v

v

-1 Ku?
= Ku )dydr
2¢y

t
+ [ [aGue-yi-0
0 JR
K6
x ((— — Kt (1= =) 0y + (ﬁ - ﬁ) uuy> dydr,  (6.16)
v v cy U

E(x,t) —cy

= [ a1t =5 000.0) = Dy + [ Gt .0ty 00
3
+ / G33(x — . 1) (E(,0) —c)dy + Y RV, 6.17)
R i=1

where the remainders R? are listed as

1—2vg
RY = / /3 G3a(x, 15y, 7)

(K(v—1)2 (K6 — K)(1 —v) uuy(v—l) Ku?
v v v - 2¢y

)dydr
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t—2v9
+ / / 9y,G33(x —y,t — 1)
"
((— — K)u + (K — 7) Oy + <a — ;) uuy> dydr,

- K@ —1 —Duy, K@—1)>2
Rg :/ / 8yG32(x,t;y,r)< ( ) M(U Juy + @ ) )dydr
t—2v9 JR v

v
t—vo _
_ / / <1 —X(t ! ) (—3))(@32)
t—2v9 JR Vo Cy

X (E(y, 1) —cy)dydrt

=vo 1, (t—1
+/ /—X — | —-H|(x,t;y,7; + Gaz(x —y;t—1)
1—2v9 JR VO Vo v

x (E(y,7) —cy)dydt

=Y t—t K
+ / / < <X7 Ly, T )
1—2vp CyU
((PM) + <7 - E) uuy> dydt
QU v
t—vo f—1
+/ /<I—X< )3},G33(x—y;t—r)
t—2vg JR Vo
-1
X ((pu) + k@ )Gy + (£ — E) uuy> dydt
v ¢y v

=V
+/ /(—K8yG33)u(y, T)dydr,
t—2v9 JR

t
v
Ri= [ [aGue-yi-0 (K(v(y, )~ 1)+ iy
t—vy JR

+ dydrt

-1 K6 —Kv
v

'
+/ /(—Kay(G33)u(y,7:)dydt
t—vy JR

t
+ / / dyH (x, t;y,1; L) ((pu) + (L — ﬁ) uuv> dydr.
t—vp JR CyVU CyV v ’

Proof. The calculations are similar to those in Lemma 6.4. Multiplying the vector
(G =y, t—1) G —y,t—1) Gi3(x — y, 1 — 1))

on the system (1.1), integrating with respect to y and 7, using integration by parts
and the backward equation, one can get the representation for v(x, t). For the
representation of E(x, t), we just need to multiply

(Ga1(x =y, 1 — 1) Gaa(x — y, 1 = 7) G33(x, 1, y, 7))

on the system (1.1) and follow the similar procedure. As the computations are
routine though tedious, they are omitted; see [12] for details. O

Remark 6.1. Although the detailed computations in Lemmas 6.4 and 6.5 are lengthy,
the goal is clear, i.e., we want to write the solution into the sum of linear terms and

nonlinear terms. Since we are dealing with perturbation problem, one expects the

linear terms are dominant. Notice that when t € (r — 2vq, t), there are also some

linear terms. It turns out they can be controlled either by comparison estimates of

Green’s function or by the appropriate small parameter vy.
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Note that in the representation of zeroth order solutions, we need the informa-
tion of first order derivative of u and 6. If we formally differentiate the expressions
(6.15) and (6.17) with respect to x, the derivatives will induce additional singular-
ity in time, so that the time integral is not integrable anymore. Therefore, in order
to gain the derivative estimates, we provide another representation for the deriva-
tives, which is a consequence of the previous representations; see [12] for detailed
calculations.

Corollary 6.1. For the first order derivative of Rs and Rg, we have the following
identities:

amu_ [T 1. I
0. RY = — (0:Goa(x = z,v0) = Hy (v, 152,10 = w3 £))
—o00 J—c0 K v

dz(Kv(y,t —vo) — KO(y, 1 — vp))dy

B /’ivo /j;o »/joo _i <BXG22(X -t =1) = H; (x, 12,75 %))

dz(Kv:(y,t) — K6 (y, 7))dydt

too ptoo m
- / / — (Bx(Gzz(x —2,v) — Hy (x, 1zt —vo; 7)>
X y " v

dz(Kv(y,t —vp) — KO(y, t — vp))dy
t —+o00 —+00 1 m
—— (0,G —z,t—1)—Hy (x,1;2,T; —
R A e (e e RN ()
dz(Kv:(y, 1) — K6:(y, 1))dydt
t
1
+/ I R )
t—yy JR M

X (Kv(y, 1) — K6(y, 1))dydt

t
+/ faXGZI(x—y,t—r>uy<y,r>dydr
t—vg JR
iy
~dydt

'
+ / / 0y Go(x —y,t —1)
t—vg JR v

! k(v —1)8, K
+ / f 3y Go3(x — y, 1 — 1) ((pu) + = Doy + (— - ﬁ) uuy> dydx,
—vy JR v Cy v

Ku
c

and

-1 KO0-K
v 7v)dydr

t
3RY = / Ay Gaa(x — y, t — 1) (K(v(y, ) = D+ puy—— +

=V

R
! K
+ / / K <8XG33(X =y, t—1)— Hy (x, 1y, T; 7)) uy(y, r)dydt
t—vg JR CyV
t
+/ /HX(X,t:y,T; L) (17 u )uurdydr
t—vy JR Cyv Cylb
t
+/ /H_,( (x,t;y,r; L) <1— « )uV<K—p+ﬁuv)dydt
t—vy JR CyV o) v
X y K
+/ / Hy(x,t;z,t —vo;
—00 J —00 CyV

ds (U() (0,1 —vo) —v(y.1 —vo))
Cy b v(yvtf VU)

u(y,t —vo)dy
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<KK ) @(x,t —vg) —v(x,t—1p))
v u(x,t—wp)
Colb v(x,t — vp)
! rooy K kK
+/ / / Hx<x,t;z,t; )dz( )
t—vg J—00 J—00 CyV CylL
x (Mu(» 0+, r)> dydt
v v
! —
n / (ﬂ) ((Br(x,r)v(x,rz) 9(x,r)vr(x,r))u(xyr)
t—vo \ Cult v (x, T)
(B(x, 1) —v(x, 7)) 4o (s r)) Jr
v(x, 7)

+o00 +o0
—/ / Hy <x,t;z,z—v0;
X y

)dz <KK>
Cy b
« (Q(y, t—vy) —v(y, t— VO)) u(y,t — l)())dy
v(y,t —vg)

t +o0 +o0 K K
_/ / / H, <x,t;z,r; —)dz( )
t—vp Jx y Cyv Cyb

o ((Grv —ZGUT)M(% o © —v)
v v

K
(2]

ue(y, r>) dydr.

Remark 6.2. It should be emphasized that in the integral representations of 9, R5
and 0, Rg, one needs the time differentiability estimates of v;, 6; and u, respec-
tively, which are already established in Theorem 4.1.

6.3. Time asymptotic behavior

In this part, we will study the global existence of the solution to the nonlinear
Navier—Stokes equation (1.1). According to Theorems 4.1 and 5.1, if the initial data
is controlled by a sufficiently small constant § as in (3.2), there exists a unique weak
solution (v, u, 0) to (1.3), or equivalently, (v, u, E) to (1.1), for t < t;. Moreover,
the solutions are kept small in the sense of (3.74) and (4.9).

We define a stopping time as

T:sup{t‘g(t)<8, forO <t <z},
t20
G(1) = VT + 10, 1) = Dlloo + VT + 11, Dlloo + V7T + 16, 7) = Dlloo
0G0 = g+ uC D)l +16¢, 1) = 1
+ v D) = gy + luC Dllay +16¢. 1) = 1y
VT (Dl + IVT0: Dl (6.18)

By Theorem 4.1, there exists a positive constant §, (smaller than §) such that, if the
initial data satisfy

llvo — Lligy + lluollay + 160 — 1By + llvo — 111
+luoll 1 + 160 — 1l < 8%, (6.19)

then the stopping time 7" > f. Here #; is the existence time associated with ¢ in
Theorem 4.1.
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Based on the integral representations of the solution in (6.16), (6.15) and (6.17),
and of their derivatives in Corollary 6.1, we can prove the following a priori estimate,
which then yields a sharper estimates of the solution. This is the key lemma for the
proof of global existence. We refer the interested reader to [12] for the details of
proof.

Lemma 6.6. (A priori estimate, [12]) Let (v, u, E), t; and § be the local solution
and corresponding parameters constructed in Theorem 4.1. We further suppose
that the following properties hold for the solution:

llvo — sy + lluollav + 160 — 1llsy + lvo — 1.1 + lluoll L1 + 160 — 11 < 8%,
G(r) <8, forVt <t, (6.20)
ty Z 4vy.

where G(t) is defined in (6.18), 8* is as in (6.19) and vy is given in (6.14). Then,
u(x, t) has the following estimates fort = ty:
a0l < C0)s™ + 0 (82 + /o8> + /78 + w8 + 62,

IV1+tuC, D)l = Cvo)8* + O(1) («/1705 +62> ,

|log(vo)| ¢
———68 4+ 0(1)/vod,
\/_

Vs (. Dll e < Co)s* + 0(1) 15 0g<vo>l

lux (Dl < C(w)§* + O(1) ———

82+ 0(1)yng8.

0(x, t) has the following estimates for t 2 ty:

2
10¢,0) = 1z £ 0) (COnS* + Vigd +62) + 0(1) (Cu)s™ + s +387)
2
IVTF10C. 0 = Dll= < 0() (COs* + igb + %) + 0(1) (C)s* + s +382)
[log(vo)| o
8%+ O(1)/voé,
N

VT, il < Cop)s* + 0(1) 12800l ?0)‘

16xC. Ol = C)8™ + O(1) ———

82+ 0(1)/vos.

v(x, t) has the following estimates fort 2 ts:

(-, 1) — L1 £ C)8* + O(1)8?,
IVT+ 1@, 1) = D £ C(wp)8* + 0(1)82,

2
. Dllpy = C(v9)8* + O(I)j—v_o-

We are now ready to prove the global existence of the solution constructed in
Theorem 4.1 for sufficiently small initial data.
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Theorem 6.1. (Global existence) Suppose initial data (vo, uo, 6y) of Navier—Stokes
equation (1.3) satisfy

llvo = izt + llvoll gy + lluollzr + luoligy + 1160 — i1 + 6ol gy = 87,
6.21)

for §* sufficiently small. Then the solution constructed in Theorems 4.1 and 5.1
exists globally in time, and there exists positive constant € such that, the solution
satisfies

+H\/T

ot [viFiecn- ”HL;O

+ ‘ ‘ _S%5" fort € (0,+00). (6.22)
Proof. We let Cy, #; and § be the parameters in Theorem 4.1, then Theorems 4.1
and 5.1 guarantee the existence of weak solution (v, u, 0) in [0, #;). Now we let the
initial data satisfy the smallness condition

lvo — Uiy + lluollgy + 100 — Uiy + llvo — L1 + lluollzr + 160 — L1 < 8%

For sufficiently small §*, we can define a stopping time 7 as in (6.18), which has
the properties

T > ty, G(Ty=z6, G(t) <4 forallt <T,

where G(7) is defined in (6.18). In order to prove the global existence of the so-
lution, it suffices to show T = oo for sufficiently small §*. We will prove this by
contradiction. If we suppose not, then

T < 400, for arbitrary postive §*. (6.23)
On the other hand, by Lemma 6.6, the solution at 7 has the estimates

|log(vo)|

G(T) £ C()8* + 0 (1) ——— N ———8>+ 0(1)/w8
2
+ <C(vo)8* + o1y el j(_‘))'az n 0(1)¢_5) ,

where vg is a small positive constant such that vy < %ﬁ.

Itis observed that when we choose §* and § to be smaller, all the other parameters
such as Cy and t; are uniform. Moreover, all the O(1) coefficients in the above
formula are independent of vy, and thus the O(1) coefficients will be uniform
when 8, §* and vy are changed to be smaller. Therefore, we can first choose vy to
be sufficiently small such that

0() i < ¢
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Then, we fix v, and let § to be sufficiently small so that
|log()| > _ 8
Jo 76

Finally, for fixed vg and §, we let §* to be sufficiently small such that

o)

C(v)s* < % (6.24)

Now, for these well chosen vy, 8§ and §*, we combine all the above estimates to
obtain that
s 8% 38
TS -+ —<— <6,
g(T) = 5 + TS <

which obviously contradicts to the assumption (6.23). Thus, for sufficiently small
positive constant §* such that (6.21) holds, we can find a small positive constant 8
such that

G@) <4, forallt > 0. (6.25)

From previous discussion and the definition of G(¢) in (6.18), (6.25) immediately
implies the global existence and uniqueness of the weak solution. Moreover, the
large time behavior (6.22) directly follows from (6.25). O

Remark 6.3. It is even possible to establish the space-time pointwise estimate of
the global solution for BV data, provided the initial data satisfy certain space decay
assumption. This will be pursued in the future work. See [11] for the pointwise
results for isentropic gas.
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Appendix A. Heat Kernel Estimates

The goal of this section is to provide the proofs for the estimates in Section 2.
We consider the following heat equation with the coefficient p(x, t) being a BV
function of x,

(0r — 0xp(x,1)0x) H(x, 13 y,10; p) =0, 1> 19,

H(x, 10:y,t0: p) = 6(x — y).
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Here the BV coefficient p(x, t) satisfies the following properties,

_ 1
o) = ol =8« oG OllBY 8k, o Dlloo = 8 max <$1> 0 < 34 <fA1f1)
2 = {z | p(z, 1) is not continuous at z} is invariant in 7.

To construct H(x, t; y, to; p), the strategy is as follows: we first treat the case
that p is a step function in space variable and independent of time; then we use
step function to approximate a general BV function (still time-independent); lastly,
we use time-independent solution and time-frozen technique to construct the heat
kernel for time-dependent BV coefficient.

A.l. Step function conductivity coefficient
Consider

{ (0 — e pu(x)dx) H(x, 15y, 10; 1) =0, 1 > 1o, A2

H(x, to:y, to; ) = 8(x — y),
where 1 (x) is a step function.
Proposition A.1. ([8], Basic estimates) When step function u satisfies that
() — po| < 1, and |1 5, < 1,

the heat kernel for equation (A.2) satisfies the following estimates: forall x, y € R

(5 o%5)

4t

H(x.t:y: ) = 1+ 0|l sv) EW

2
(r45)
e t
0 H (x, 15 y; W, |9y H(x, 15 y; )| = 0(1)) —————,
! (A.3)
x _dz 2
_(y JDW
e t
190 H (x5 35 il [y H e 15 33 )| = 0D ——55—,
(5 55)

e Dt
0 H (x, 13 y: )l |y H (x, 13y )| = O)——3——

Here for x, y ¢ 9 (the discontinuity set of u(x)), the partial derivatives are stan-
dard ones. While fory = a € 9, Hy(x,t; a+; ) and Hy(x, t; a—; ) both exist
and satisfy the estimates.
Moreover, for all £ € N, when t > 0,
afH(x, oy ) continuousinx € R forally e R, iny € R forall x € R,
;L(x)BfHX(x, t;y; ) o continuousinx € Rforally e R, iny € R forall x € R,
pL(y)Z)ny(x, t;y; ) o continuousinx € Rforally e R, iny € Rforall x € R.
(A4)
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Proposition A.2. ([8], Comparison estimates) Suppose that the steps function u*
and p” satisfy |1 v + lnllgy < 1, inf p(2), inf u”(z) > p > 0. Then for
zZe Z€ -

t € (0, eil), x,y €R,

('{yx «/M“(’)dvzx/ub(') )2
e Y e by < 1 a__ b e >
[H(x,t; y; u) — H(x, 15y, w2 S O " — 17 lloo ,
Jt
(A.5)

|Hy(x, 13 y; 1) = He(x, 1533 a2+ Hy (e, 15 35 19 = Hy(x, 15 3 1)
< 0(1) (ogrl 11 = ulloe + 11 = P llpy + Velu® = 1)

(5 ==rm)
_ Y JrovwWibe)
e 5t

X ; , (A.6)

| Hyy (x, 15 33 1) = Hay(x, 15 35 1))
< 0(1) (log 11 = wlloe + Ia” = P llpy + Vellu® = w1l

( X dz )2
Y i ovYieb o
e 5t

x 5 . (A7)

The first one comes from writing H (x, ¢; y; ub ) into an integral equation in terms
of H(x,t;y; nu%) and direct computations. The derivative comparison are much
more subtle. Straightforward differentiating the integral equation will induce non-
integrable time singularity. One has to do delicate estimate on the Laplace wave
train level, then invert it to physical variable. See [8] for details.

A.2. Time-independent conductivity coefficient

Now consider conductivity coefficient p(x) is a general BV function. The strategy
is to construct a sequence of step functions { wF(x)} to approximate ((x) in the
following sense

k
el = 2llnllisy,

1
HM—Mw<§HQ%kem.

For each step function uk (x), one can construct the heat kernel H (x, ¢; y; /Lk) .
Then it is shown that

Proposition A.3. ([8], Theorem 3.6) Suppose ||un|py < 1 and in&u(z) > pn > 0.
ze -

Let ¥ be the step functions constructed as above. Then

H(x,t;y, u) = lim H(x,t;y; uk) exists.
k—o00
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H(x,t;y; u) is a weak solution of
0 — Oy (x)0y) H(x,1; y; =0, r>0,
(0, 14 (xX) 0y ) H( ) (A8)
H(x,0;y; u) =8(x — ),
and satisfies
¢ - 2
(B 5)
e
Hx,t;y; 1) =+ 0Mpllpy) ——F——,
Y VAt
2
)
e
|0 H (x, 15 y; W, |0y H (x, 15 y; w)| = O(1) :
) (A.9)
X _dz
_<f«v JSW)
e 1
190 H (x5 35 il [y H e 13 33 )| = 0D ——55—,
2
(5 45)
e i
0 H (x, 13 y: )| |0y H (x, 13 y3 )| = O(1)

12
Up to a sub-sequence,

lim BﬂH(x, ty; /,Lk) = 8ﬁH(x, t;y; L) exits,
k—o00

where 38 € {0x, 0y, Oxy, Or, Orx, Osy}. Moreover, for all £ € N, when t > 0,
O H(x,t1y; ) :

continuous in x € Rforally e R, iny € R forall x € R,
()3 Hy(x, 15 y; o) -

continuous inx € R forally e R, iny € R forall x € R,
1(y)d; Hy(x, 15 y; o) -

continuousinx € R forally e R, iny € Rforall x € R.

(A.10)
Proposition A.4. ([8], Comparison estimates) Suppose that two BV functions u*

and p? satisfy |l + ln gy < 1, inf p(2), inf u”(2) > p > 0. Then for
zZe zZ€ -
x,y €R,

(fx dz )2
13
NG ’

(A.11)
|Hy(x, 5 5 1) — Hy(x, 15 93 w24 1 Hy (x, y5 95 1) — Hy(x, 15 y; 1)

e
|H (x, y; y; 1Y) — Hx, t3y; 1) £ 0D — 1Pl

A

O (14 Mog 1)1 = 1P lloo + 14 = 1 v + Vel = w11 )

(fx dz )2
Y STVl @)
e 5t

t , (A.12)
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| Hyy (v, y3 33 1) = Hay(x, 15 33 1)
< o) ((1+ fog )l = k¥lloe + I16® — w1y + Vil — 1)

(5 ==tigms)’
e (15)\/ ub )
e i
x e . (A.13)

Propositions A.3 and A.4 are followed from comparison estimates of steps function
in Proposition A.2 and a limiting procedure.

Proposition A.S. (Estimates involving time integral) Suppose |u|lpy <K 1 and
inﬂfR u(z) > w > 0. Let H(x,t;y; u) be the associated heat kernel. Then there
z€ -

exists positive constant D such that

[ )2
[ H(x, 73 y; wdt| < 0(he™ "o forx €R,y €R,
0

' S —y) T
/ Hyy(x, 75 y; wdt — 4 'EO(I) forx eR,y eR,
0o n(x) NG

¢ H(x — 1 sy
/Hn<x,r;y:mdr+ax( @ ”)‘§0<1><—+|am<x>|>e“u’r' forx¢ 7,y eR,
0 n(x) NG

‘ S(r—y) 1 o

Hegy(x, T3 y; )d178x< )’SOI — 4 e pu (X)) ——— orx ¢ 2,y € R.
fo Ty )| 2 00 b S forrg 2.y

Proof. By Proposition A.3, H(x, t; y; t) is a solution to the heat equation (A.8)
satisfying (A.9). Integrating the equation (A.8) with respect to time, and switching
the differentiation, one has

t
HGr 350 = 3= ) = 00 (00 [ H G ).
Integrate against x to yield
t X
fo ()3 H (x, 71 y: p)de = / H(zt: y: iydz — Hx — )
—0o0

+o00 L
_ {—fx H(z,t;y; pydz, forx >y,
X . .
f—oo H(z, t; y; ndz, forx < y.

This then implies the following identities,

t 1 X
/ Hy(x,7;y; wydr = (/ H(z, t;y; M)dz—H(x—y)>
0 m(x) -0

_p.(lx) fx+oo H(z,t;y)dz, forx >y,
ﬁffoo H(z,t;y)dz,  forx <y,

t 1 X
/ Hyy(x, T; y; wydt = —— (/ Hy(z, t; y; wydz + 8(x — y)) ,
0 M(x) —00

1 * Hx —y)
H 9 ; ; d _ax - < b
(o) /m SRR Z) ( ) >

t
/0 Hyy(x,7;y; m)dt = 0y (
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; N ~ 1 x o S(x —y)
/O Hyyy(x, 75 y; wydt = oy (m /;oo By, 1 y; M)dZ) o < p(x) )
(A.14)

By Proposition A.3 and straightforward computations, one completes the proof. O

A.3. Time-dependent conductivity coefficient

Let p(x, t) be a function satisfying (A.1). We are now in the position to consider
the Green’s function H (x, t; y, to; p) to the following equation,

0H =0 (p(x,1)d,H), t > 1o,

(A.15)
H(x,t0;y,t0; p) =8(x — y).

To establish the estimate for H(x,t; y, fo; p), we shall represent it by an in-
tegral equation using heat kernel with time-independent coefficient. We denote
H(x,t;y,t; p) by H(x,1; v, t) for the brevity of notation. In the sequential, we
gather all the estimates of H (x, t; y, to; p) which are needed in this paper.

Theorem A.1. Let p(x,t) be a function satisfying (A.1). Then for 8 sufficiently
small and ty < t K 1, the following estimates for heat kernel H(x, y; y, to; p)
hold

(—y?

e Cxli—1g)
|H(x,t;y,10; p)l §C*ﬁ, (A.16)
_ —»?
e Cxli—1g)
|Hy(x, 15y, t0; o), [Hy(x, 15y, 103 p)| < C*ﬁ, (A.17)
_ ()c—y)2
e Cx (1—10)
|Hy(x, 13y, 10; p)| . [Hey(x, 13y, 105 p)| < C*W, (A.18)
_a-p?
e Cxli1p)
|sz(X,f; Y, to; /0)| §C*m (A.19)

Proof. e (Estimate of (A.16) and (A.17): H, H,, Hy)
For fixed T > 0, set u(x) = p(x, T) and consider

t
/ H(x, ;2,05 ) (0o H(z, 05 y,10) — 8; (p(2,0)3:H(z, 03 y, 10))) dzdo = 0.
o

By the fact that H (x, t; z,0; ) and u(z)9, H(x,t; z,0; () are gontinuous in
z, one performs integration by parts to get the representation of H (x, t; y, tp),

H(x,t;y,t0) = H(x, 13y, fo; jt)
12
+/ /Hz(x,t;z,a)(p(z, T) — p(z,0))H.(z, 03 y, 10)dzdo.
1o JR

(A.20)
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Differentiate with respect to x to yield the integral equation of H,,

Hye(x, 13y, 10) = He(x, 13y, fo; 1)
t
+/ /Hu(x,t;z,d)(p(z, T) — p(z,0))H,(z, 03 y, 10)dzdo.
1n JR
(A21)

Suppose §, < 1in (A.1), from Proposition A.3, there exists positive C, such
that

(x—y)?
e Ckli—1)

He(x, 153, 7 ] = Comr—s |Hey(x, 15y, 75 )|

_a-y)?
PR em =)

< [
O

fort > 7, x,y € R.

One thus makes the following weaker ansatz,

(x—y)?
e G-
|He(x, 15y, 7)] <2C*#.

Setting T = ¢, one then has

! 13 dl’
lo(z, 1) — p(z,0)] = / drp(z, )| < sup V700 Dlloo [ —=
o T€lo,t] o \/?
t_
< 28,2
t

Substitute it and the ansatz into the integral in (A.21) to find

(X, 1:2,0)(p(z. T) — p(z.0))H: (2, 01 y, fp)dzdo

2—y)2

< o()s C2// ED 1o T ? dzd
o
¥ (t—0)2 Jt o—1 <

<X—))2
2 e T Cx—1) 1)
< 0(1)8,C?
’ ) \/_\/t_ lov/0 —
X—V2
2 765*0‘;)1‘0)
< 0(1)3*c*T

Then one gets

_ a-p?
t—to) e Cx=)

Jt t—1

|Byr. sy 10)] < (c* + 0(1)8,C2
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When ¢ — 1y < 1, and 8, is sufficiently small, the ansatz is justified. This also
follows that

_ (—»?

_ e Cxli—ig)
A1y, 10)] £ 20—
— 10

If setting 7' = 1o in (A.20) instead of T = 7, taking derivative with respect to y,
and following the similar argument, one can get the estimate for Hy(x, t; y, to)
as well,

_ (—y?
e Cy(t—10)

|I:Iy(xvt; y,l0)| < 2C, f— 1o

(Estimate of the first term in (A.18): H;)
Next we estimate H;(x, t; y, fo) by difference estimate. By (A.20), we consider

H(x,t+h;y, ) — H(x, 15y, 1)
=Hx,t+h;y,t0) — H(x,t;,to)

t
+ / / [Hz(x,t—l-h;z,o)—Hz(x,t;z,a)]
to JR
x (p(z. T) = p(z,0))H.(z, 03 y, tp)dzdo
t+h _
+ / /Hz(x,tJrh;z,G)(p(z, T) — p(z,0))H,(z, 03 y, t)dzdo.
t R

Taking T = t and using Proposition A.3, one can estimate each term on the
right-hand-side and get

X*Vz
_ _ e_é(f;f)o)
|H(x.t+h:y.10) — H(x.1:y.10)| < 0(1)|h|m-

Therefore one concludes that there exists positive Cy such that

)2
_ e_é*(fi)t())
|H(x, 15y, 105 p)| < C*m for0<t—1<1,x,y€eR.

(Estimate of the second term in (A.18): Hyy) .
The representation (A.20) is insufficient to get the higher order estimate H,,
due to high singularity in time integral. We take advantage of the estimates for
time-independent coefficient problem and interpolate the heat kernels of time-
independent coefficients frozen at ¢ and #y to approximate the heat kernel for
time-dependent coefficient, and prove it is indeed a good approximation when
t—1) < 1.

Introduce a smooth non-increasing cutoff function x (s) with the property

1, for0<s <

0, fors > %

1
x(s) = 3
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For fixed 7y and ¢, set
[ W) = px, 1), ux) = plx, 1),

. c—1 (A.22)
H(x,t;y, (r)fx( 0)H()c ty, o; ;/_0)+< X(ﬁ))H(x t;y,o; ut) foro € [to, t].

Consider
t
//H(x,t;z,a)(aaH(z,cr;y,to;p)
o JR

—0:(p(z,0)0.H(z, 03 y, 10; p))) dzdo = 0.
Using integration by parts, and in view of the facts that H(x,t; z, o; u'),
wW(@QHx, t;z,0; 1), H(x,t; z,0; 1) and u(z) H,(x, t; z, o; n'0) are all
continuous in z, one obtains the representation of H (x, t; y, ty; p) fort > 1o,
(=)
Hx, 13 y,10; p) = H(x, 13 y,to)+/ / t_t;’

x (H(x,1;z,0; M’O)—H(x,t z,05u))H(z, 03y, to; p)dzdo

/ / 206, 132,05 1) (A.23)

x (p(z,0) = p® (z))Hz(Z, o; v, 1o; p)dzdo

[ [ (-xGED)

X H (x,t:z,05 1) (p(z, 0) — 1/ (2))H (2, 03 y, to: p)dzdo.

Differentiate (A.23) with respect to x and y to yield

Oto

Hyy(x, 15y, 103 p) = Hey(x, 15 y,to)+f / t:[g (Hy(x, 152,05 u)

- Hx(-xa ta 2,0, H“ ))Hy(z» o, y’ th ,O)dZdU

! o —t
+//x(_O)H (12,05 p (A2

(X, 12,0, 1w'0)
X P(Z o) — O(Z)) H.y(z, 05, to; p)dzdo

/ f <1— )) Hy(x, 152,05 1)

( (z,0) — (Z)) H.y(z, 05y, to; p)dzdo.

This gives rise to an integral equation for Hyy (-, -; y, fo; p). In the o integral,
there are two possible singularities, that is, when ¢ = 7y and o = t. The
advantage of this representation is that in each integral on the right-hand side
of (A.24), only one singularity shows up thanks to cutoff function, and it can be
controlled by either p(-, o) — u or p(-, o) — u'. By Propositions A.3 and A .4,
following the similar arguments as in the estimate of H,(x,t; y, ty; p), i.e.,
making weaker ansatz and proving a stronger one, we can conclude the estimate

_ a—y?
e G-

\ny(X, 1y, to; P)} < ZC*W'
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o (Estimate of (A.19): H;,) In a similar way, one differentiates (A.23) in y to find
the integral representation of Hy(x, t; y, fo; p). Taking the difference between
Hy(x,t+h;y, to; p) and Hy(x,1; y, to; p), and by lengthy computations, we
obtain that

|Hy(x,t + hs y, t0; p) — Hy(x, 15 y, to; p)|
@-y?
C(t—1)

(t —19)?

Therefore we arrive at the conclusion that there exists positive C, such that

< o)A when || < (t — £9)/10.

(—y)?
e Cix (1—10)

(t —10)?"

|Hiy(x. 13y, 10: p)| < C
O

Theorem A.2. (Holder continuity in time) Whenty < s <t < 1, one has Holder
continuity in time estimates

(r —s) [log(z — 5|

H. (-, t;y,t0; 0) — He (-, 85y, to; <cC , A.25
| Hyx (-, 25y, to; p) (859,005 P oo S Cx G100 — 10 ( )
(t —s) [log(t — s)|
Hy(-,t;y,t0; p) — Hy (-, 85y, to; <cC , A.26
|Hx (-, 25y, to; o) cCosiyato oIl S Cy TEPAW rrs ( )
(t —s) [log(t — 5)|
| Hey G153, 10 p) — Hyy (53 v, 103 p)|| o S Co = (A.27)

(s —10)%2(t —10)
(t — ) [log(t — s)|
Ho (-, t;y,t0; p) — Hey (-, 83 v, to; <cC . A.28
| Hey (.25 . 10 p) — Hey (.53 v, 10: p)|| < C PRy ——. (A.28)
Proof. e (Holder continuity in time of H,(x,t; y, fy; p))
Assumet > s > fgpandt —s < 1, by (A.21),

Hyo(x,1; y,t0; p) = Hy(x, 15y, to; 1)

t
+/ /sz(x,t;z,a;uT)(p(z, T) — p(z,0))H.(z, 03 y, 1o; p)dzdo,
o JR

where uT = p(-, T). Set T = s and denote
Hx,t;y,t0) = H(x,t;y,t0; p), H(x,t5y,10) = H(x, 13y, f0; 1)

for simplicity of notations.
Replacing ¢ by s in the above representation and taking the difference, one gets

H(x,t;y,10) — Hy(x, 85y, 1)
= Hy(x,t;y,10) — Hy(x, 85y, 1)

N
+f f(Hzx(x,t;z,o)—Hzx(x,S;z,o))
o JR

x (p(z,9) = p(z,0))H,(z, 0; y, t1o)dzdo
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t
+/ /Hzx(x,t;z,a)(p(z,S)—p(z,a))Hz(z,a;y,to)dzda
s JR
=11 +1I)+ 1. (A.29)

Furthermore, one rewrites 73 as
I3 =/tAsz(x,t; 2.0)(p(z.5) = p(z,0))H.(z, 03 y, 1o)dzdo
s
—/t/RHzx(x,t;z,a)(p(z,a)—p(z,t))ﬁz(zya;y,to)dzda
s
- /l /ﬂ;{ H(x,t;2,0)(p(z, 1) — p(z,8))Ho (2. 1 v, to)dzdo
s

t
—/ [RHzx(x,tQ z,0)(p(z, 1) — p(z,5))

x (H.(z, 03 y,10) — H.(z, t; y, 19))dzdo
=131 + 13 + I33. (A.30)

We first consider L™ estimate. By Proposition A.3,

IZ1] =

ko (X, 03y, fo)do

a2 (—y?

~ o) T —
< 0(1)/ _do 20 u

t—1 S—to‘

For 7, one has

1T, = ez (X, T3 2,0)py (2, X)H: (2, 05 y, fo)d xdtdzdo

2

e Cx(t—0) S—O'e_m
<oc? drdzd
M ///(r—o)Sﬂ*ﬁ o —1 e

< 0(1)5*02/ / ST % drdo.
V5Tt (T —0)2Jo —1

Carrying out the o integral,

‘/‘S s —0 d
- de
0w (T—0)Jo—1

(to+s)/2  qg

< o) s — 1o
= (t —t())2 Jo — 1
+Oo(l)—— — 27 4o
VS =10 Jagrsy2 (T—s+s—0)
<o [0 o (1457%5)  imw

(t —19)? s — 1o T—s+T—1



Global Well-Posedness of Compressible Navier—Stokes Equation 465

Now one needs to calculate

§—1

/’ (s =102 108 (1+3) 51 ;

— T.
s\ —=10)2  Ss—tpJST—1y (T—s5+T—10)JT -1
Straightforward computations show
(s — )32 ' —
G gy 0 dr < 0(1)+
s (":_l‘())s/2 s (T—s+1—1)J/T 1 tO

To calculate

’

1
/t log (1 + Zfr (l))d
N

S —1oA/T — Iy

one consider two cases: (i). t — s < 31

tlog(l+%)d <o) fll —0) 4
——=dt = _— 0, T
s A/S — /T — 1o - s — 1 Js g T—3S

sou; =g m(128) st

552 For case (i),

For case (ii), one splits the integral to two parts,

¢ log (1 + —zf;_t‘;))d
—_— ‘L'
s — to/T —
1=s log 1+ = to)
o

< /(é tO)/lo log {1 —%)da + /tx 1 15— toda
~Jo s —1Io (s—10)/10 /S —To /o O

s — 1y
<1 l]——).
~ +< 10<r—s)>

Combining the above estimates then follows that

2

(x—y)
Tol < 0(1ys,c2e 2 (= 9) loglt = )]
= ¥ s t—1

Now we estimate the first two terms in Z3.
2
e C*(t rr) t—oe C*(U 10)
Tl £ 015, cz/ | dzdo
t—0)2 Ji o-—1

(x—y?
e e t —

t—t \/;’

[IA

0(1)8,C?
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and

|Z32| =

t
/ (/ H..(x,t; 2, a)da) (p(z, 1) — p(z,5))Ho (2, t; y, to)dz
R\Z s

g ‘/1; M(p(z,[)—p(z,z))gz(z,t; yafO)dZ

\7  H1(x)
((‘X(tk)z) / - ([V)f)
e Gl=9) f—ge U700
+0(1)s 02/ dz
. R\Z ~I—S \/; r—1
(—p? _ a—p?
<oms, TS L pysc2t s
T r—ty St TR =1 NG
28?)’)2)
e “CxU-l) f — g
< 0(1)6, .
— f \/;

Combine the estimates of 71, Z», 731 and 73 to yield an integral equation
Hy(x, 5y, 10) — Hy(x, 53y, fo)
=<I>(x,t;y,to)—/IAsz(x,t;z,o)(p(z,t)—p(z,s)) (A.31)
s
x (H,(z,0:y,10) — H.(z. t; v, 1) )dzdo.

Here

(t — 5) |log(t — )|
(t —10)(s — to)

_ —»?
|®(x, 15y, t0)| = O(l)e -0

Thus there exists positive C; such that

(t — ) [log(t — )
(t —10)(s —19)

We make the following ansatz:

(t — ) |log(t — )|
(t —19)(s — 19)

|He (o 15y, 10) — He- 55, 10) ||, < 2C)
Substituting the ansatz into Z33, one gets
e CW 0> t—s (t —o)llog(t —o)|
0(1)/ /R AN B T M

t—s |log(t —o)|
< 1)84 d
=00 / Jit—tg) o —1p 7

1 t+9/2 |log(t — ! log(t —
o, (=5 L ([Tl st o,
—10 1 \Js ) (452 t—To

— s |log(t —s)| t—s t—s
015 — 1 1
W —fy 1 [Og( +S—to>+l—lo]

| Z33]

IIA

A

A
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(t —s)|log(t —s)|s—1ty [(t—s t—s
< 0(1)8,
s oM t—10)—1) Vi (s—t() z—zo)
< 0(])5*w_ (A.32)

(t —10)(s — 10)

Therefore the ansatz is justified provided 4, is sufficiently small.
The estimates for L )1( norm is even simpler. Actually, integrating the magnitude
of (A.29) with respect to x and using (A.30), we obtain the representation of

/ \I-_Ix(x, 1y, 1) — He(x, 83y, t0)| dx.
R

By calculating known terms, making suitable ansatz and justifying it provided
3, sufficiently, we conclude

(t — ) |log(t — )|
(t—to)/s—1o

|He (o 15y, 10) — He(-, 55, 00) ||} £ O(1)

o (Holder continuity in time of H,,(x,t;y, to; p))
In this case, due to the high singularity, (A.21) is not appropriate to use, one
has to resort to expression (A.24). By applying similar arguments as for Holder
estimates of H,, we can conclude the proof. O

Theorem A.3. (Estimates involving time integral for time-dependent coefficient)
Let p(x, t) be a function satisfying (A.1). Then for &, sufficiently small and ty <
t K 1. The following estimates for heat kernel H(x, y; v, ty; p) hold

t _ =2
/ Hy(x, 1y, 10; p)dt| < Cye G000, (4.33)
0]
t _@=p?
f Hy(x,t;y,s; p)ds| = Cye 070, (A.34)
1o
t S(x —y)
Hyy(x, T3y, t0; p)dT — ———
/,0 A Y p(x, 1)
“p(x, 1) — plx, ) il
_ / ’ "~ Hy(x,T; v, to; p)dt| < Cy ) (A.35)
o p(x, to) | r—To
t 8 X —
/ Hyy(x,t;y,; p)ds + dr=y)
o Py, 1)
,t - ’ o
_ / PO ZPOS) o by, s: p)ds| < €L (A36)
[0 lo(ya t) t - t()

S(x —y) B 1 5
p(x,10)  plx,to)

t
/ Hy(x,7;y,10; p)dt = —
]

t
X [/ (p(x, 1) = p(x, 10)) Hy(x, T35y, to)dr}
0]
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2
x=p? e*c(;(ri)ro)
+ 0() | |3xp(x,10)|e &0 4 N , forx ¢ 9, (A.37)
— 10
- 1
Hyy(x, 15y, t0)dt =
/m - p(x, 10)

1
X |:5/(x —y) — / Ox [(,o(x, 7) — p(x, to))I:Ixy(x, Ty, to)]dt]
I

0

dxp(x, 10) [ !
_ BP0 sy - / P, ) — p (6, 1)) ey (x, 75, t0)dT
p2(x, 1o) o ( iy
(x—y)? _ a—p?
o) | 18:p(x, 10)] 1 S Y frag 2 (A38)
X, or x , .
+ xP 0 % f— 1t
t _a—p?
/ Hi(x,t;y,s; p)ds = H(x, 1t —1o; y; ') —8(x — y) + O(1)dxe &0,
(A.39)
Proof. e (Estimates of (A.33)-(A.38))
We begin with
O H(x, T3y, 10) = 3y [p(x, 1) H (x, T5 y, 10)] -
Integrate with respect to T from #( to ¢ to yield
- t -
H(x,t;y,t0) —§(x —y) = 0y |:/ px,7)oxH(x, 5y, to)dr] .
10
Integrate against x to get
X _ t _
f AG 1y, 10)dz — Hx — ) =/ p(x. DA (r, 72 y. o).
—0Q fo
Using of this, one can write
t —_
/ H,(x, 1;y,t9)dt
0]
! 3 3 - ) 1 el
=/ (p((x :)) S T)( fgx 0)) Hy(x,t;y,10)dt
X X,
P 0 1Y 0 (A.40)

p(x o) [/ H(z, t; y,t0)dz — H(x — )

- / (p(x.7) = p(x,10)) Hy(x, T3 y, to)dt} .
fo
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This immediately follows that
t -
/ Hyx(x, 13y, 10)dt
0]

=8< >|:/ H(z, t;y,to)dz — H(x — y)
p(x, 1)

—/ (p(x,r)—p(x,ro))ﬁx(x,r;y,ro)dr}
fo

t
[ﬁ(x,t; Y, t0) — 8(x —y) —/ dy
1

_l’_
p(x, to) 0

% (0.0 = p 1) Aot v, 10)]de ]

which in turn gives

1
/ Hxxy(x9 75y, tp)dt
0]

=9, ( >|:/ H(ztyto)dz+5(x—y)
p(x, 1o)

- / (p(x, T) = p(x, 10)) Hey (¥, 75y, lo)df]
0]

1
+
p(x, to)

t
- [ a0 = s o) iy Ja ]
1o

[Hy(x, 15, 10) +8'(x — y)

From above expressions, and the following identities (which hold for x ¢ 2),

- 1 - dxp(x,T)

Hyex(x, 759, 10) = ——Ho (x, T3 y, to) — ————— Hy(x, T3y, 1),
o(x,T) p(x,f)

_ 1 _ p(x, 1)

Hyyy(x, T3y, t0) = ——— Hyy(x, T3y, o) — hplx.T) g Hyy(x, T3 3, 10),
p(x, 1) p(x, )

We conclude the proof.

469

The estimate for (A.39) is of more technical difficulties. We first write down the
integral equation for H(x, t; y, s) in terms of H (x, t; y, s; u'), then represent the
time derivative in ¢, perform the time integral in s, and use comparison estimates

in Theorem (A.4) to conclude the proof. O

Theorem A.4. (Comparison Estimates for time-dependent coefficient) Let p“ (x, t)
and pP(x, 1) be two functions satisfying (A.1). Suppose to < t < 1. Then the

following comparison estimates hold:
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‘H(x, v, 10, p°) — H(x, 15 y, to; p”)‘

—p?

e Cxl—1p)
‘Hx(x,t;y,to;p ) — He(x, 15y, to; pb)‘,

p m (A41)

= * T

‘Hy(x, t;y,to; p°) — Hy(x, t; y, to; pb)(

(—p?
e TGk 10)
< c*t— [|log(t -
\/_
+Vi= ( P’ —p ‘H +|10gt|‘ [p“—pb] ) . (A42)
Ilogtl 00
‘ny(x,t;y,to; ,Oa)_ny(xJ;)ﬂ
‘Hz(x,t;y,to;p“)—Hz(x,t;y,to; pb)’
&
e % (1—10
gc—[l r— a_ bm
+vi=1o(| o - o ‘H +|10gt|’ VT, o [0 = '] )] (A.43)
[log | 00

Proof. e (Comparison estimates of H) Consider

t
0=/ /H(x,t;z,o;p“)
to JR

X [agH(Z, gy, 10, ,Ob) - 3Z(pb(Z, 0)i;H(z,0;y,t; pb))] dzdo.

Use integration by parts to find

t
H(x,t;y,10; p°) — H(x, 15 y, 10; p*) = —/ /Hz(x,t; z,0;p%)
o JR
x [0’ (z,0) = p%(z,0)|H.(z, 03 y, to; p")dzdo.
It follows from this that

)H(x, £y, to; p0) — H(x, 15 y, to; p“)‘

(—2) z=y)?

e T Cr(i— a) e ~ Cx(o—1)
—p ‘H / / dzdo
o —1

_ = »?
e Cxl-1p)

00 /T — 1y '
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o (Comparison estimates of H,) By (A.21) and setting T = ¢,
Hy(x,t;y,10; p) = He(x, 15y, to; 1)

t
+/ /sz(x,t;z,o*;u’)[p(z,t)—p(zacf)] H;(z,0;y, to; p)dzdo,
o /R

where 1! (z) = p(z, t). Substituting p = p®, p” and taking difference, one has

Hy(x, 159,103 p*) — He(x, 15 y, 105 p°)
= H,(x,1;y, to; uhy) — He(x, 15y, to; i}y)

t
+/ /[sz(x,t;z,o;uﬁ,)—sz(x,t;z,a;u’b)]
1 JR

x [p%(z, 1) = p*(z,0)] He (2, 05 y, to; p*)dzdo

t
+/ /sz(x,t;z,o;uﬁ,)
I0) R

x [(p"0) = 0@ o)) = (0 (2.1) = ¥ (2. 0)) | Hez 03 v, 105 p%)dzdo

t
+/ /sz(x,t;z,a;ui,)
1 JR

x [pb(z, N —p’(z, a)} [Hz(z, o3y, 10: p°) — Ho(z2, 05 y, to; pb)] dzdo
=N +T+T:+ T4

Calculating out the terms 77, 7> and T3, one has

|T1| + || + | T3]
e * (=10
< o [og — o = ||+ o =]
s G [log( P Py
= = o)+ ot || e [ - ]| )]
Ilogrl 00

Note that to estimate T4, one needs to bound

H.(z,0; v, t0; p*) — H,(z, 03 y, to; p),

which is exactly the estimates we are seeking for. In other words, we have an
integral equation for function

Hy(x,t; y, 10; p%) — Hy(x, 13 y, to; pP).

Making ansatz and substituting into 74, one can justify the ansatz provided

O(1)d4+/t — 19 < Cy/2.
o (Comparison estimates of H,)
Next, we shall estimate

Hy(x, 15y, 103 p*) — Hy(x, 13y, to; pP).
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From
t
O:/ /[BUH(x,t;z,a;p)Jraz [p(z,o)azH(x,t;z,a;p)]]
) R

x H(z,0;y, to; 1"°)dzdo,

one can find another representation of H (x, t; y, fp; p) in terms of the time-
independent heat kernel,

t
H(x,t;y,10; p) = H(x, 1, y, to; M’O)—/ sz(x,t;z,a;p)
o JR
x [p(z.0) = p(z,10)|H(z, 05 y, to: 1"0)dzdo.
Differentiate it with respect to y to obtain
1
Hy(x,t;y,10; p) = Hy(x, 1; y,to;u“’)—/ /Hz(x,t; 7,05 p)

x [p(z,0) = p(z.10)|Hzy(z, 05y, 10; 1) dzdo.

Then by substituting p = p“, p?, taking difference and following the similar
arguments as above, one can conclude

‘Hy(x, t;y,t: p°) — Hy(x, 15y, to; p”)‘

(—p?
e T Cx(— 1)
< e et =t [l = 7|+ [l = o7,
+ 1t ( —p H‘ + [log | ‘ \/— [p“—,ob] H ):|
llog | S

o (Comparison estimates of )
As for

Hyy(x, 13y, 103 p*) — Hyy(x, 13 3, 105 p°),

thanks to (A.24), one can do much more tedious but similar in spirit estimates
as above to complete the estimate.

e (Comparison estimates of H;)
For comparison of H,, we shall use

Hy(x,1;y,10; p%) — Hy(x, 15 y, 10 p°)
1
= Am}) Z [(H(x, t+h;y, t0; 0% — H(x, t; y, to; ,0"))
—(H .t +h; y,to: p) — H(x, 15y, 10; pb))]

and prove the uniform estimate of difference quotient in 4. We may assume
0 < h < (t — 19)/10. As the estimates are of the same spirit, but lengthy, we
omit the details. O
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Taking advantage of the equation itself or representing the time-dependent coeffi-
cient heat kernel in terms of time-independent heat kernel as in Theorem A.3, we
have the following comparison estimates involving time integral.

Theorem A.5. (Comparison estimates involving time integral) Let p“(x, t) and
pP(x, 1) be two functions satisfying (A.1). Suppose ty < t < 1. Then the following
comparison estimates hold:

3

t
/ [Hx(x,r;y,to;p“)—Hx(x,r;y,to;,o”)]dr
0]

t
f [Hy(x, t;y, 809 — Hy(x, t;y,s; pb)] ds
1o

_ ()c—y)2
< c.e i |

a __ b
o=,

J

t
f [Hx(x, t;y, 80 — Ho(x, 15y, s; ,Ob)] ds
1o

o=+
o

VT ¥ (p* = p")
[log 7|

-1+

9

t
/ [Hy(x, 75y, to; p) — Hy(x,t;y,1; ,ob)] dt
0]

< e [|lo - ||+ o -
= 0 BV
T
+ H 04 — pbm + i 3 (p* — p”) ,
1 [log 7| o

t
/ [ny(x, T3y, 10: p*) — Hyy(x, T3y, to; pb)] drz
I

0

1 1
= — k) —
[P“(x,to) pb(x,m} (=

t a a
ph(x, ) — p%x, 1)
_/|: ny(x,f;y,tozl)a)
I

o p%(x, 1)

A =) Ty 1o pb)} i

pb(x, 10) S

_a—y)?
+ 0z ozt —w [Jo =[] _+[Jo* - o7

N og ol |7 =\ (1" =2,

T
+H p“—pbm By (e (= oD |
1 llog 7| 00

t
/[ny(x,t;y,s;p“)—ny(x,t;y,S;pb)]ds
I

0

1 1
= — S —
[ﬂ“(y, n o pb(y, t)] =
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Al

Py, 1) — p(y,s)

ny(xv tv yv S5 pa)

p4(y, 1)
_POD =P y s,ph)] i
pb(y. 1) e
(x— v)z
oo sl
+ O( og P P\ gy
a
=), + H logz] J'

Appendix B. Explicit Expressions of Constants in Green’s Function

B.1. Constants in Lemmas 6.1 and 6.2

The following give the explicit expressions of the constants appeared in Lemmas 6.1
and 6.2.

e K0, B = v (uppe + k0o py — Lpy) gt = PVPe
NRTy BT i (1 — K6,) T ke —
v? (k0 p? + )
Al =— ePy T UWPPePv
K36, ’
o v¥ (13 p?p? — ppepy (K202 — 3k b + 212) + p2 (n — k6,) %)
2,] - 3 _ 9 3 )
w> (u —«k86,)
Az = Pv3pe (kpbepe + pv (K0 — 1))
> K (k6 — )3 '
v2p, vZp. vZpe
100 0 20 " _uguai e
MiP =000 |, Mpl=| =% 00|, MZP=f o ko o |,
000 uvpu 00 _pvipy uvipy 0
K 1B, 2
v} (pupe+2kpyfe)
M3 = | Cupupe2epibe) o pepy _Vpepy
I K36, K 126, K 1126,
o’ py(prpe+2kpufe)  V(PPv=U’pepy)  uvpepy
K36, K0, K20,
000 0 -z 0
Vpy UVPe UPe
M;’O =1010], M;’l = uw " u—«b, pn—-xb, |,
040 wp W(p-12pe) uvpe
" n—k0,  —KO,
vzpv _ ”Uzl’e Uzpe
u? o sz/c(u@e o) W —k pbe
*,2 v PILPe Pv(L—KUe
M, = 0 1 (u—k6e)? 0
_ pvPpy (21w Pe—po(=K6)?)  pv2p,
12—k 1B w2 (u—k6,)? (1—x6,)?
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(2,, +lmm (ke .m)

0 p}}l 60)” 0
M3? = _ l'1""(2/”Jr%‘ﬁlﬂzﬁ) _upe (2pi? pe—po (202 =30 p+202)) 03 pe(2pp® pe—pu (217 30 p202))
s T (=10, T (—r0,)3
—uvdpy (2p fkﬂn)”rpupe (kOe—2p)) V3 (I’*“ZP(')(ZIULZ‘;« fl’v (24> =3k0,u+12602))  uv? p (2pp® p:i;:i(ZLél»?KG(rwxzﬁf))
13 (—k)% 12 (—k0)3 12 (n—k0,)3
000 o9 0
1 —re — (4
M;’O =1000], M;’ = 0 ;.L—K@i n—kb. |,
0—ul 0 _vp=u’pe) _ _uvp,
n—r0, n—r0,
0 uv?p, _ v2p,
Kee(l/v_z’(ge) K Oc (L —KOe)
M*’2 — 0 ___DPV7pe 0
3 (n—K0e)? ’
pipy  _ 2pw’pe _pvPpe
kO (—K0e)  (U—kOe)2  (U—kB,)?
3
0 PV Pe 0
X , K0e (1—K0e)? ,
ME3 = | — PV Pepy uv” pe(po(—k0e)=2pipebe) V7 Pe(2pkpebet py (ke —11))
3 KQE(M—KGC-)Z 3 5 Kee(Kee_M)S Kee(’(ee_ﬂ)3
__puvipepy ¥ (p—1? pe) RpKpebetpu(KBe—11)) 1uv3 po(2picpebetpo(kbe—i1))
KO (11—K6,)? K6¢ (kO — 1) KBe (kO —

B.2. Constants in Lemma 6.3

The constant matrices M ’/‘ in Lemma 6.3 are given as follows.

PPe __ Upe Pe
0 PPe—Dv PPe—Pv  PPe—Pv
My = 0 0 0 s
__ PPy Upy __ Dy
PPe—Pv  PPe—Pv PPe—Pv
_ Pv UPe—~/PPe—Dv _ Pe
2ppe—2py 2ppe—2pu 2ppe—2py
MY = Pi L upe p
2 = 2/ ppe— 2 2«/I’Pe Pv 2Jp ’
(p+uy/ppe— 1’1')171) —Pex/PPe—Polt> = polt+p/pPe—pu P((I’Jru\/]’l)e Pv)
2ppe—2py 2ppe—2py 2ppe—2py
P upet/PPe=Pu P
2ppe—2py 2ppe—2py 2ppe—2py
MO — _ Pv 1 Upe 41 _ Pe
3 2/Ppe—pv 2 \V/ppe—pv 2/ppe—pv
(P—u/PPe=P0) Py —pen/PPe= P>+ Poi+p/PPe—Dy  Pe(P—tt/PPe—Pv)
2ppe—2py 2ppe—2py 2ppe—2py
0 PKPebe 0
U(Pu_ppe)z
1| — _pxpepvbe UK Pe Pve ___KkPepuvbe
My = v(pu—ppe)®>  v(pu—ppe)? v(pv—ppe)® |
__ _Pukpepvbe 7K(p7” pe)[)yﬂ» ___Ukpepybe
v(py—ppe)? v(py—ppe)? v(py—ppe)?
My = (&1, 6, &),
Pv(py—ppe (+3i0e.))
4v(ppe—py)°?
_ PKkPePvbe
&1 = 20(py—ppe)* ’
PPy (Pe (PrAx (p+2uy/ppe—pv)0e) —po (11—26,))
4v(ppe—pv)*?
Pe(_ZPK\/m e—”Pv(M_2K96)+I]”P6(M+K92))
4U(l7pe—17u)5/2
£ = _ (pe(p/PPe— puu+(2w€Pv pfc PPe=Dv)0e) =1/ PPe—DPuPv)
—ppe)? ’
_(2pPuu— K0e>pg+upL(K(5p+Zttm)9e 3pit) petpu (uppy—2pi/ppe—pube))

4v(ppe—pv)*



476

Ju—

10.

11.

12.

1

&
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_ Pe(ppe(utKBe)—py(L—2k6,))
4v(ppe *pv)s/z
KDePvbe

& = 2v(py—ppe)?

Pe(Pe(—k00) p*+py (26 (2p+u/ppe—pv)fe—pit))
4v(ppe _171:)5/2

M} = (41,8, 83),

Po(PPe(t43k6e) —py)
4v(ppe—pu)*?
PKPePuBe
2v(py _Ppe)2 ’
Po(pPo(n=2k0p)—ppe (putk (p=2u~/ppe=pv)be))
4U(PPe*Pv)5/2
_ Pe (ZPKmee*upv (1L—2K0,)+pupe (H+K0p))
4v(pp5*[7u)5/2
(Pe(P1in/PPe=Po—K (V/PPe=Pv PF+2upy)0e) =1/ PPe— Do Pv)
4”(1’1)_I7Pé')2
(2p%u(—r0) p2+upy (k (Sp—2u/Ppe—po)be =3 pi) pet+pu (upps+2pic / PPe—pobe))
4”([’[’()*[’1})5/2

Pe(PPe(UAK0Oe) =Py (L—2k0c))
4v(ppe _I7v)5/2
KPe Pve
2v(py—ppe)?
Pe(pe (kO =) P> +py (put(2uk /PPe=pu—4pK)0e))
4v(ppe *Pv)s/z
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