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Abstract A global weak solution to the isentropic Navier-Stokes equation with initial data

around a constant state in the L
1
∩ BV class was constructed in [1]. In the current paper,

we will continue to study the uniqueness and regularity of the constructed solution. The key

ingredients are the Hölder continuity estimates of the heat kernel in both spatial and time

variables. With these finer estimates, we obtain higher order regularity of the constructed

solution to Navier-Stokes equation, so that all of the derivatives in the equation of conservative

form are in the strong sense. Moreover, this regularity also allows us to identify a function

space such that the stability of the solutions can be established there, which eventually implies

the uniqueness.
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1 Introduction

The compressible Navier-Stokes (NS for short) equation is one of the most classical and

important fluid models, and it has been widely studied in various communities, including math-

ematics, physics, chemistry and engineering, etc.. In this paper, we will focus on the isentropic

case in the Lagrangian coordinates, which reads as






vt − ux = 0,

ut +
(

p − µux

v

)

x
= 0.

(1.1)
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Here v is the specific volume, u is the velocity, µ is the viscosity of u, and p denotes the pressure.

Throughout the paper, we assume the pressure p(·) to be analytic around a constant state v = v̄.

In particular, the usual polytropic law p(v) = v−γ satisfies this assumption, and we will assume

that v̄ = 1, for simplicity. It is also worth mentioning that the Lagrangian formulation can be

formally derived from the original compressible NS equation in Euler coordinates; see [2] for

details.

The study of the local well-posedness of the compressible NS equation was initiated by

Nash [3, 4], and further developed by Itaya in [5], where the initial data was assumed to be

Hölder continuous. In these works, the equation for the velocity field was written as a nonlinear

parabolic equation with variable diffusion coefficients. Then the solution was sought by an

iteration scheme, where the fundamental solution for the variable coefficient parabolic equation

played a key role. Based on these pioneer results, a priori energy-type estimates were derived to

construct the global solutions, see [6, 7] for both Eulerian and Lagrangian coordinates. Later

on, for initial data as a regular small perturbation of a constant state, the global existence

for the 3-D NS equations using an energy method was obtained by Matsumura-Nishida [8],

and then extended to more general hyperbolic-parabolic systems by Kawashima and Shizuta

[9, 10]. After these seminal works, the energy methods were extensively developed and applied

to various fluid and related models, and the well-posedenss of the compressilbe NS equation

with large initial data or vacuum was also studied [11–15].

On the other hand, when the initial data is not regular, the classical local theory is not

generally applicable. This is due to the quasi-linear and hyperbolic-parabolic structure of the

NS equations. In fact, the initial singularity in a density field will propagate along time, for

which one has to deal with the parabolic equation for a velocity filed with a rough diffusion

coefficient. Thus, the criteria for the Hölder continuous case in Nash’s works cannot be directly

applied. It is then natural to focus on the study the weak solution. The approach of Hoff

[16, 17] was based on piecewise energy estimates, and a total variation estimate was obtained.

The approaches of Lions [18] and Feireisl [19] were applied to more general data. However, in

all of these cases, there is neither the well-posedness nor the quantitative structure for a weak

solution analogous to that of the classical solution. We refer readers to [20–23] for more theories

on the NS equations.

Recently, Liu and Yu [1] considered (1.1) with initial data of small total variation, and

established the local-in-time well-posedness and time asymptotic behavior of weak solutions.

The key ingredient here was the construction of a fundamental solution for the heat equation

with BV conductivity coefficient which completely respects the effects of the singularities of the

density field. Therefore, the idea in [3, 5] can be extended to the BV framework, and a weak

solution was successfully constructed with a continuous dependence on the initial data. The

local well-posedenss result in [1] can be summarized as follows:

Proposition 1.1 ([1]) For polytropic gases with p(v) = Av−γ and 1 ≤ γ < e, suppose

that the initial data (v0, u0) satisfies

‖v0 − 1‖L1 + ‖v0‖BV + ‖u0‖L1 + ‖u0‖BV ≤ δ (1.2)

for δ ≪ 1. Then the Navier-Stokes equation (1.1) admit a global weak solution such that the
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following estimates hold for some constant C:

‖(v − 1)(·, t)‖L1 + ‖
√

t + 1(v − 1)(·, t)‖L∞ + ‖(v − 1)(·, t)‖BV

+ ‖u(·, t)‖L1 + ‖
√

t + 1u(·, t)‖L∞ + ‖
√

t + 1ux(·, t)‖L∞ + ‖u(·, t)‖BV ≤ Cδ, t > 0.

Moreover, suppose that two initial data, (va
0 , ua

0) and (vb
0, u

b
0), satisfy (1.2). Let (va, ua)

and (vb, ub) be the two weak solutions of the Navier-Stokes equation (1.1) constructed as above.

Then, for any positive constant T , there exists a positive constant C(T ) such that

sup
0<t<T

(

‖va(·, t)−vb(·, t)‖L1 +‖ua(·, t)−ub(·, t)‖L1

)

≤ C(T )
(

‖va
0 −vb

0‖L1 +‖ua
0−ub

0‖L1

)

. (1.3)

As there is a lack of the time derivative estimate or equivalent second order estimates on

u, the derivatives in (1.1) are still in the weak sense for the weak solution in Proposition 1.1.

Moreover, the uniqueness of the solution with initial condition (1.2) has not been resolved. One

may think that (1.3) can imply uniqueness, since it looks like a stability estimate. However,

according to the statement in Proposition 1.1, the estimate (1.3) holds only for solutions con-

structed exactly as in Proposition 1.1, which means that (1.3) depends on the iteration scheme

in the proof of the proposition. In other words, if (va, ua) or (vb, ub) is constructed in a manner

different from the iteration scheme in Proposition 1.1, then it is unknown wether or not (1.3)

holds.

As a continuation of [1], in the present paper, we will refine the results in Proposition 1.1

in three respects. As indicated by the above discussions, the motivation for this arises from the

following three questions:

• Can we relax the initial requirements of (1.2) and obtain the same results in Proposition

1.1?

• Based on the same initial conditions of (1.2), can we gain a higher regularity than

Proposition 1.1 when t > 0, so that the derivatives in (1.1) are in the strong sense?

• Based on the same initial conditions of (1.2), can we prove the uniqueness of the con-

structed solution in Proposition 1.1?

In later sections, we will provide affirmative answers to above three questions. In the

introduction, we will first give a brief description of our strategies and main results.

First, starting from the small perturbation v0 − 1 ∈ L1 ∩ BV and u0 ∈ L1 ∩ L∞, we

successfully construct the weak solution to (1.1). Note that the evolution equation for v is

hyperbolic, and the one for u is of a parabolic type. Then, the singularities of v will remain

in the evolution, while u will automatically gain regularity when time t > 0. Therefore, the

initial conditions for u can be relaxed compared to v0. Due to the relaxation, the L1 estimates

of u becomes more singular, and thus we need more careful treatments on the iteration scheme

estimates. In particular, we do not require the pressure to be of any special form, such as the

Gamma law. Instead, we only require the pressure term to be analytic around a background

constant state. Please see Proposition 4.8 in Section 4 for more details.

Second, the detailed regularity of the constructed weak solution is studied for both initial

conditions (1.2) and the relaxed one, and it is shown that all of the derivatives in the conservative

form (1.1) are in the strong sense. The main difficulty is to gain the estimates of the time

derivative of u, which requires the use of higher order estimates on the heat kernel with BV

diffusion coefficients. Therefore, we refine the estimates of the heat kernel based on the Laplace
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Wave Train criteria in [1], and obtain the pointwise estimates of Hty. Moreover, we prove

the spatial Hölder properties of the heat kernels (see the Hölder properties in Lemma 3.1 and

Lemma 3.2 for details), which eventually implies that ut is of Hölder class Cα in x for any

α ∈ (0, 1). Then, all of the derivatives in the conservative form (1.1) are in the classical sense.

We emphasize that, although ux and v are not differentiable individually, the flux formed by

their combination in (1.1) is much more regular.

Third, if u0 ∈ BV, based on the regularity estimates obtained, we are able to give an

affirmative answer to the uniqueness of the weak solution. The key point and difficulty is to

show that the BV norm of v is continuous with respect to t around t = 0, so that a proper

function space with higher order regularity can be identified; see (1.6). So far, this regularity

can be obtained by combining the BV norm of u0 and the Hölder estimates of heat kernels.

Then, all of the solutions with this kind of regularity induce a corresponding heat kernel, which

can be used to represent the solution in an integral representation. Finally, thanks to the

comparison estimates of the heat kernel, we are able to show the stability of the solutions in

this function space, which immediately implies the uniqueness of the solution.

Our main results are stated in the following two theorems:

Theorem 1.2 (Existence and Regularity) Suppose that the pressure p(v) is an analytic

function of v around constant 1, and that the initial data (v0, u0) satisfies the following condition

for a sufficiently small positive number δ:

‖v0 − 1‖L1 + ‖v0‖BV + ‖u0‖L1 + ‖u0‖L∞ ≤ δ. (1.4)

Then there exists a positive constant t♯ such that the Navier-Stokes equation (1.1) admits a

weak solution (v, u) for t < t♯ in the following function space:














v(x, t) − 1 ∈ C
(

[0, t♯); L
1(R) ∩ L∞(R)

)

∩ L∞ (0, t♯; BV (R)) ,

u(x, t) ∈ L∞ (0, t♯; L
1(R) ∩ L∞(R)

)

,
√

tux(x, t) ∈ L∞ (0, t♯; L
1(R) ∩ L∞(R)

)

,

tut(x, t) ∈ L∞ (0, t♯; L
1(R) ∩ L∞(R) ∩ C0,α(R)

)

.

(1.5)

Moreover, if u0 is further assumed to be of small total variation ‖u0‖BV ≤ δ, then the con-

structed solution is more regular, and in a subspace of (1.5), i.e.,














v(x, t) − 1 ∈ C
(

[0, t♯); L
1(R) ∩ L∞(R) ∩ BV(R)

)

,

u(x, t) ∈ L∞ (0, t♯; W
1,1(R) ∩ L∞(R)

)

,
√

tux(x, t) ∈ L∞ (0, t♯; L
∞(R)) ,

√
tut(x, t) ∈ L∞ (0, t♯; L

1(R) ∩ C0,α(R)
)

, tut(x, t) ∈ L∞ (0, t♯; L
∞(R) ∩ C0,α(R)

)

.

(1.6)

Theorem 1.3 (Stability and Uniqueness) Suppose that there are two weak solutions

(va, ua) and (vb, ub) to the Navier-Stokes equation (1.1) in the function space (1.6), subject to

initial data (va
0 , ua

0) and (vb
0, u

b
0), with the condition that

‖v0‖BV + ‖v0 − 1‖L1 + ‖u0‖BV + ‖u0‖L1 ≤ δ∗,

where δ∗ is sufficiently small. Then, there exist positive constants t∗ and C♭ such that the

following stability holds for 0 < t < t∗:

F
[

va − vb, ua − ub
]

≤ C♭

(

‖ua
0 − ub

0‖L∞
x

+ ‖ua
0 − ub

0‖L1
x

+ ‖va
0 − vb

0‖L1
x

+ ‖va
0 − vb

0‖L∞
x

+ ‖va
0 − vb

0‖BV

)

.



No.4 H.T. Wang & X.T. Zhang: GLOBAL WEAK SOLUTION OF NAVIER-STOKES EQUATION 1679

Here F is the functional defined in (4.39). Moreover, this immediately implies the uniqueness

of the weak solution in the function space (1.6) for t ∈ [0, t∗).

Moreover, the constant C in Proposition 1.1 is uniform bounded for arbitrarily small δ.

Therefore, according to Proposition 1.1, we can choose sufficiently small initial data such that

the constructed solution exists globally in time with small L1 and BV norm. Therefore, our

local-in-time results in Theorems 1.2 and 1.3 can be applied to arbitrarily large time, which

immediately implies the regularity and uniqueness of the global solution. Then, we have the

following corollary:

Corollary 1.4 Suppose that the pressure is p(v) = Av−γ , that 1 ≤ γ < e, and that the

initial data (v0, u0) satisfies the following condition for a sufficiently small positive number δ:

‖v0 − 1‖L1 + ‖v0‖BV + ‖u0‖L1 + ‖u0‖BV ≤ δ.

Then, the NS equation (1.1) admits a unique global solution in the function space














v(x, t) − 1 ∈ C
(

[0, +∞); L1(R) ∩ L∞(R) ∩ BV(R)
)

,

u(x, t) ∈ L∞ (0, +∞; W 1,1(R) ∩ L∞(R)
)

,
√

tux(x, t) ∈ L∞ (0, +∞; L∞(R)) ,
√

tut(x, t) ∈ L∞ (0, +∞; L1(R) ∩ C0,α(R)
)

, tut(x, t) ∈ L∞ (0, +∞; L∞(R) ∩ C0,α(R)
)

.

Remark 1.5 1. For a weak solution (v, u) constructed in [1] or function space (1.5), if

one makes an a priori assumption that ‖v(·, t)‖BV is small, then the uniqueness still follows.

However, in order to rigorously verify this a priori assumption, we need to require the smallness

of ‖u0‖BV.

2. In the above corollary, as we directly apply the global existence results in [1], we have

to choose the same setting p(v) = Av−γ as in Proposition 1.1. However, according to the proof

in [1], the large time behavior is mainly governed by the linearized Green’s function of (1.1)

around a constant state, and the second order Taylor expansion of p(v) is enough to gain the

global existence. Therefore, we can also assume that for the pressure p(v) to be analytic around

1 and for p′(z) < 0, we can follow similar arguments as to these in [1] to yield the global unique

solution.

The rest of this paper is organized as follows: in Section 2, we will introduce some prelimi-

nary concepts and the heat kernel H(x, t; y, s; ρ) with a BV coefficient. The pointwise estimates

and comparison principles will be listed in the Appendix, for convenience. In Section 3, we fur-

ther study the Hölder estimates of the heat kernel in both the time and spatial variables; this

plays an important role in the regularity analysis in later sections. Next, in Section 4, we will

construct the local solution for relaxed initial assumptions (1.4), and obtain the Hölder continu-

ity of the solution. In Section 5, we will represent the solution by a nonlinear integral formula,

and further study the regularity of the solution. The Hölder continuity eventually yields the

uniqueness of the solution. The detailed proofs of Theorems 1.2 and 1.3 will also be provided

in this section. Finally, Section 6 provides a summary.

2 Preliminary

In this section, we will provide some preliminary concepts and results that will be used

in later sections. We first give the definitions of the weak solutions, then we introduce the
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fundamental solution for the heat equation with the conductivity of bounded variation, which

is the kernel for constructing the integral representation of the solution to (1.1). In what follows

we denote that

‖f(·, t)‖BV :=

∫

R\D

|∂xf(·, t)|dx +
∑

z∈D

∣

∣

∣

∣

f(·, t)
∣

∣

∣

z=x+

z=x−

∣

∣

∣

∣

,

|||f |||∞ ≡ sup
σ∈(0,t♯)

‖f(·, σ)‖L∞
x

, |||f |||1 ≡ sup
σ∈(0,t♯)

‖f(·, σ)‖L1
x
, |||f |||BV ≡ sup

σ∈(0,t♯)

‖f(·, σ)‖BV.

2.1 Concepts and Definitions

As we study the solution with rough initial data, it is very natural to consider the solution

in a weak sense. We propose the following definition of the weak solution in the distribution

sense:

Definition 2.1 (v, u) is called a weak solution to the equation (1.1) if the following

assertions hold:

1. (v, u) satisfy the equation (1.1) in the distribution sense. More precisely, the following

equations hold for any test function ϕ(x, t) ∈ C1
0 (R × [0, +∞)):



















∫ +∞

0

∫

R

[ϕxu − ϕtv] dxdt =

∫

R

ϕ(x, 0)v(x, 0)dx,

∫ +∞

0

∫

R

[

ϕx

(µux

v
− p
)

− ϕtu
]

dxdt =

∫

R

ϕ(x, 0)u(x, 0)dx.

2. The flux of u given by µux

v − p is continuous with respect to x.

The weak solution of the linearized equation can be similarly defined. Next, we introduce

the equivalent definition of a BV function in [1].

Definition 2.2 A function u(x) is BV if the following assertions hold:

• The function u(x) can be represented as the sum of an absolutely continuous function

and a step function as follows:

u(x) = uc(x) + ud(x), uc is absolutely continuous, ud(x) =
∑

α∈D, α<x

[u](α)H(x − α).

Here α ∈ D , and D is the discontinuity set of u(x), and H(·) is the Heaviside function.

• The total variation of u(x) is finite, i.e.,
∫

R\D

|ux|dx +
∑

α∈D

∣

∣

∣u
∣

∣

α+

α−

∣

∣

∣ < +∞.

Note that when u ∈ L1
x, the total variation is actually a norm, and we will denote it by

‖u‖BV. Hereafter, the following notation is frequently used when integrating the derivative of

a BV function:
∫

R\D

|∂xu(x)|dx ≡
∫

R

|∂xuc(x)|dx. (2.1)

Here uc is the absolutely continuous part of u.

2.2 Heat Kernel with BV Conductivity

We will briefly review the fundamental solution for a heat equation with BV conductivity,

which was first introduced in [1]. Consider the following equation for a heat kernel H with the
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coefficient ρ(x, t) being a BV function with respect to x:

{

(∂t − ∂xρ(x, t)∂x)H(x, t; y, t0; ρ) = 0, t > t0,

H(x, t0; y, t0; ρ) = δ(x − y).
(2.2)

Here the BV coefficient ρ(x, t) satisfies the following properties for some positive constants C

and δ∗:






















‖ρ(·) − C‖L1 ≤ δ∗, ‖ρ(·, t)‖BV ≤ δ∗,

‖ρt(·, t)‖∞ ≤ δ∗ max

(

1√
t
, 1

)

, 0 < δ∗ ≪ 1,

D := {z | ρ(z, t) is not continuous at z} .

(2.3)

We emphasize that there is an implicit requirement in (2.3) that the discontinuity set D of

ρ(x, t) is independent of t. Then, according to [1], the equation (2.2) has a weak solution in the

distribution sense, i.e., there exists a solution H(x, t; y, t0; ρ) such that the following equality

holds for all test functions φ(x, t) ∈ C1
0 (R × [0, +∞)):

∫ +∞

t0

∫

R

(−φtH(x, t; y, t0; ρ) + φxρ∂xH(x, t; y, t0; ρ)) dxdt

= −
∫

R

φ(x, t0)H(x, t0; y, t0; ρ) = −φ(y, t0).

In [1], the pointwise estimates of the heat kernel H(x, t; y, t0; ρ) were established (we list these

estimates in the Appendix). These estimates in [1] are necessary but not sufficient to gain more

regularity on the solution to (1.1). Therefore, in the next section, we will introduce new Hölder

estimates of the heat kernel; this plays an important role in this paper. We finish this section

with a simple remark.

Remark 2.3 According to [1], we make the following remarks:

1. In order to balance the equation (2.2), we actually have that ρ(x, t)Hx(x, t; y, s; ρ) is

continuous with respect to x, and also that ρ(y, s)Hy(x, t; y, s; ρ) is continuous with respect to

y.

2. The weak solution of the heat equation (2.2) can be defined similarly as to Definition

2.1. In fact, if the equation (2.2) has a source term in the form

ut(x, t) = (ρ(x, t)ux(x, t) + g(x, t))x , (2.4)

then the mild solution constructed by Duhamel’s principle is also a weak solution to (2.4) in

the distribution sense, provided that g(x, t) is a BV function with respect to x. Furthermore,

the flux term ρ(x, t)ux(x, t) + g(x, t) is continuous with respect to x if one of the following two

conditions holds:

(a) g(x, t) is Lipschitz continuous with respect to x, or equivalently,

‖gx(·, t)‖∞ < +∞;

(b) g(x, t) is Hölder continuous with respect to t in the sense that

|g(x, t) − g(x, s)| ≤ (t − s)α

sα
, 0 < s < t, 0 < α < 1.
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3 Hölder Estimates of Heat Kernel

The Hölder continuity in space and time of the heat kernel is very important in this paper.

First, the Hölder continuity in time allows us to obtain the smallness of v − 1 in the initial

layer, which is essential for the proof of uniqueness. On the other hand, the Hölder continuity

in space yields more regularity regarding the flux of u, and thus we can expect the regularity

of ut according to the balance in (1.1). The next two lemmas contain the Hölder estimates we

need in later sections, and we will only prove Lemma 3.2 for simplicity, since the essential idea

of the proofs are similar. The interested reader is also referred to [1] for more details about the

techniques.

Lemma 3.1 (Hölder continuity in time) Suppose the conditions in (2.3) hold for ρ. Then

the following estimates hold when t0 < s < t ≪ 1:

‖Hx(·, t; y, t0; ρ) − Hx(·, s; y, t0; ρ)‖∞ ≤ C∗
(t − s) |log(t − s)|
(s − t0)(t − t0)

,

‖Hx(·, t; y, t0; ρ) − Hx(·, s; y, t0; ρ)‖1 ≤ C∗
(t − s) |log(t − s)|
(t − t0)

√
s − t0

,

‖Hxy(·, t; y, t0; ρ) − Hxy(·, s; y, t0; ρ)‖∞ ≤ C∗
(t − s) |log(t − s)|
(s − t0)3/2(t − t0)

,

‖Hxy(·, t; y, t0; ρ) − Hxy(·, s; y, t0; ρ)‖1 ≤ C∗
(t − s) |log(t − s)|
(s − t0)(t − t0)

.

Lemma 3.2 (Hölder continuity in space) Suppose that the conditions of ρ in (2.3) hold,

that the discontinuity set D is the same for all t ≥ 0, and furthermore, that for 0 ≤ t0 < s < t,

ρ satisfies that


















∫

R\D

|ρx(x, t) − ρx(x, s)| dx . δ
(t − s)| log(t − s)|√

t
,

∑

z∈D

∣

∣

∣

∣

ρ(·, t)
∣

∣

∣

z+

z−
− ρ(·, s)

∣

∣

∣

z+

z−

∣

∣

∣

∣

.
δ(t − s)√

t
.

(3.1)

Then there exists a positive constant C∗ such that Hty(x, t; y, t0; ρ) satisfies the Hölder conti-

nuity in x-variable

|Ht(x + h, t; y, t0; ρ) − Ht(x, t; y, t0; ρ)|

.
δ

(t − t0)
√

t
|h|
∣

∣log |h|
∣

∣

2
+ (t − t0)

− 3
2

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw,

|Hty(x + h, t; y, t0; ρ) − Hty(x, t; y, t0; ρ)|

.
δ

(t − t0)
3
2

√
t
|h|
∣

∣log |h|
∣

∣

2
+ (t − t0)

−2

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw,

∫

R

|Ht(x + h, t; y, t0; ρ) − Ht(x, t; y, t0; ρ)| dy .
δ√

t − t0
√

t
|h|
∣

∣log |h|
∣

∣

2
+ (t − t0)

− 3
2 |h|,

∫

R

|Hty(x + h, t; y, t0; ρ) − Hty(x, t; y, t0; ρ)| dy .
δ

(t − t0)
√

t
|h|
∣

∣log |h|
∣

∣

2
+ (t − t0)

−2|h|,

when |h| < 1.
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Proof Here we only give the proof for Hty; the estimate for Ht can be done similarly.

For fixed t0 ≤ T1 < T2 ≤ t, set






µT1(x) ≡ ρ(x, T1), µT2(x) ≡ ρ(x, T2),

H̃(x, t; y, σ) ≡ χ
(σ − t0

t − t0

)

H(x, t; y, σ; µT1) +
(

1 − χ
(σ − t0

t − t0

)

)

H(x, t; y, σ; µT2) for σ ∈ [t0, t].

(3.2)

Consider the following identity:
∫ t

t0

∫

R

H̃(x, t; z, σ)
[

∂σH(z, σ; y, t0; ρ) − ∂z

(

ρ(z, σ)∂zH(z, σ; y, t0; ρ)
)

]

dzdσ = 0. (3.3)

Performing the integration by parts and using the equations satisfied by the heat kernel, we

find the integral representation of H(x, t; y, t0; ρ) in terms of H̃ as follows:

H(x, t; y, t0; ρ)

= H̃(x, t; y, t0) +

∫ t

t0

∫

R

χ′(σ−t0
t−t0

)

t − t0

[

H(x, t; z, σ; µT1) − H(x, t; z, σ; µT2)
]

H(z, σ; y, t0; ρ)dzdσ

+

∫ t

t0

∫

R

χ
(σ − t0

t − t0

)

Hz(x, t; z, σ; µT1)
[

ρ(z, σ) − ρ(z, T1)
]

Hz(z, σ; y, t0; ρ)dzdσ

+

∫ t

t0

∫

R

(

1 − χ
(σ − t0

t − t0

)

)

Hz(x, t; z, σ; µT2)
[

ρ(z, σ) − ρ(z, T2)
]

Hz(z, σ; y, t0; ρ)dzdσ.

Differentiating with respect to t and y, one has the integral representation of Hty. Taking the

difference of this evaluated at x+ h and x, and setting T1 = t0, T2 = t, we obtain the following

equation:

Hty(x + h, t; y, t0; ρ) − Hty(x, t; y, t0; ρ)

= H̃ty(x + h, t; y, t0) − H̃ty(x, t; y, t0)

+

∫ t

t0

∫

R

(

−χ′′ σ−t0
t−t0

− χ′)

(t − t0)2

[

(

H(x + h, t; z, σ; µT1) − H(x + h, t; z, σ; µT2)
)

−
(

H(x, t; z, σ; µT1) − H(x, t; z, σ; µT2)
)

]

Hy(z, σ; y, t0; ρ)dzdσ

+

∫ t

t0

∫

R

χ′

t − t0

[

(

Ht(x + h, t; z, σ; µT1) − Ht(x + h, t; z, σ; µT2)
)

−
(

Ht(x, t; z, σ; µT1) − Ht(x, t; z, σ; µT2)
)

]

Hy(z, σ; y, t0; ρ)dzdσ

+

∫ t

t0

∫

R

−χ′ σ−t0
t−t0

t − t0

[

ρ(z, σ) − ρ(z, T1)
]

Hzy(z, σ; y, t0; ρ)

·
[

Hz(x + h, t; z, σ; µT1) − Hz(x, t; z, σ; µT1)
]

dzdσ

+

∫ t

t0

∫

R

χ
(σ − t0

t − t0

)

[

ρ(z, σ) − ρ(z, T1)
]

Hzy(z, σ; y, t0; ρ)

·
[

Htz(x + h, t; z, σ; µT1) − Htz(x, t; z, σ; µT1)
]

dzdσ

+

∫ t

t0

∫

R

[

1 − χ
(σ − t0

t − t0

)

][

ρ(z, σ) − ρ(z, T2)
]

Hzy(z, σ; y, t0; ρ)

·
[

Htz(x + h, t; z, σ; µT2) − Htz(x, t; z, σ; µT2)
]

dzdσ =:
6
∑

j=1

Ij .
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Here T1 = t0, T2 = t, and we may assume that h > 0, and for simplicity omit the argument
σ−t0
t−t0

of χ. Next, we shall estimate Ij , j = 1 · · · 6 one by one.

For I1, from (3.2), we have that

H̃ty(x, t; y, σ) = Hty(x, t; y, σ; µT2).

It then follows from the estimate of the heat kernel of the time-independent coefficient that

|I1| ≤
∣

∣Hty(x + h, t; y, t0; µ
T2) − Hty(x, t; y, t0; µ

T2)
∣

∣

.

∫ x+h

x

e
− (w−y)2

C∗(t−t0)

(t − t0)5/2
dw =

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗

(t − t0)2
dw. (3.4)

For I2, we have that

|I2| .

∫ t0+ 2
3 (t−t0)

t0+ 1
3 (t−t0)

∫

R\D

∫ x+h

x

1

(t − t0)2
e−

(w−z)2

C∗(t−σ)

(t − σ)

e
− (z−y)2

C∗(σ−t0)

(σ − t0)
dwdzdσ

.

∫ x+h

x

e
− (w−y)2

C∗(t−t0)

(t − t0)5/2
dw . (t − t0)

−2

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw. (3.5)

The estimate of I3 is similar, and we have that

|I3| . (t − t0)
−2

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw. (3.6)

For I4, using |∂σρ(z, σ)| . δ√
σ
, we have that

|I4| .

∫ t0+ 2
3 (t−t0)

t0+ 1
3 (t−t0)

∫

R\D

∫ x+h

x

1

(t − t0)

e−
(w−z)2

C∗(t−σ)

(t − σ)3/2

δ(σ − t0)√
σ

e
− (z−y)2

C∗(σ−t0)

(σ − t0)3/2
dwdzdσ

. δ

∫ x+h

x

e
− (w−y)2

C∗(t−t0)

(t − t0)3/2
√

t
dw .

δ

(t − t0)
√

t

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw. (3.7)

For I5, thanks to the cut-off function, the high time singularity σ = t does not show up, and

we have that

|I5| .

∫ t0+ 2
3 (t−t0)

t0

∫

R

∫ x+h

x

e−
(w−z)2

C∗(t−σ)

(t − σ)5/2

δ(σ − t0)√
σ

e
− (z−y)2

C∗(σ−t0)

(σ − t0)3/2
dwdzdσ

. δ

∫ x+h

x

e
− (w−y)2

C∗(t−t0)

(t − t0)3/2
√

t
dw .

δ

(t − t0)
√

t

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw. (3.8)

From the above estimate, we know that Ij , j = 1, · · · , 5 are actually differentiable in the

x-variable when t > t0.

However, we do not have such differentiability for I6, because of the high singularity at

σ = t. We want to transfer the z-derivative to the other terms to reduce the time singularity.

From the equation of the heat kernel H(z, σ; y, t0; ρ), we can rewrite things as

Hzy(z, σ; y, t0; ρ) =
1

ρ(z, σ)

∫ z

−∞
Hσy(ζ, σ; y, t0; ρ)dζ.
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Using integration by parts and the continuity properties of the derivatives of the heat kernel,

we have that

I6 =

∫ t

t0

∫

R\D

[

1 − χ
]

[

Htz(x + h, t; z, σ; µT2) − Htz(x, t; z, σ; µT2)
]

·
[ρ(z, σ) − ρ(z, T2)

ρ(z, σ)

]

∫ z

−∞
Hσy(ζ, σ; y, t0; ρ)dζdzdσ

= −
∫ t

t0

∫

R\D

[

1 − χ
]

[

Ht(x + h, t; z, σ; µT2) − Ht(x, t; z, σ; µT2)
]

ρz(z, σ)ρ(z, T2) − ρz(z, T2)ρ(z, σ)

ρ2(z, σ)

∫ z

−∞
Hσy(ζ, σ; y, t0; ρ)dζdzdσ

+

∫ t

t0

[

1 − χ
]

∑

α∈D

[

Ht(x + h, t; α, σ; µT2) − Ht(x, t; α, σ; µT2 )
]

·
[

ρ(z, T2)

ρ(z, σ)

]z=α+

z=α−

∫ α

−∞
Hσy(ζ, σ; y, t0; ρ)dζdσ

−
∫ t

t0

∫

R\D

[

1 − χ
]

[

Ht(x + h, t; z, σ; µT2) − Ht(x, t; z, σ; µT2)
]

·
[ρ(z, σ) − ρ(z, T2)

ρ(z, σ)

]

Hσy(z, σ; y, t0; ρ)dzdσ

=: I61 + I62 + I63. (3.9)

For I61, we first write

ρz(z, σ)ρ(z, T2) − ρz(z, T2)ρ(z, σ)

=
[

ρz(z, σ) − ρz(z, T2)
]

ρ(z, T2) + ρz(z, T2)
[

ρ(z, T2) − ρ(z, σ)
]

.

Then we have that

|I61| .

∫ t

t0+
1
3 (t−t0)

∫

R\D

∫ x+h

x

e−
(w−z)2

C∗(t−σ)

(t − σ)2
|ρz(z, T2) − ρz(z, σ)| e

− (z−y)2

C∗(σ−t0)

(σ − t0)3/2
dwdzdσ

+

∫ t

t0+ 1
3 (t−t0)

∫

R\D

∫ x+h

x

e−
(w−z)2

C∗(t−σ)

(t − σ)2
|ρz(z, T2)| |ρ(z, T2) − ρ(z, σ)| e

− (z−y)2

C∗(σ−t0)

(σ − t0)3/2
dwdzdσ

=: I61;1 + I61;2. (3.10)

Noticing that

∫ x+h

x

e−
(w−z)2

C∗(t−σ)

(t − σ)2
dw =

∫
x−z+h√

t−σ

x−z√
t−σ

e−
w2

C∗

(t − σ)3/2
dw .

1

(t − σ)3/2
min

(

1,
h√

t − σ

)

,

and recalling the Hölder-in-time assumption (3.1),

∫

R\D

|ρz(z, T2) − ρz(z, σ)| dz . δ
(t − σ)

∣

∣log(t − σ)
∣

∣

√
t

,

we obtain that

I61;1 .

∫ t

t0+ 1
3 (t−t0)

δ

(t − σ)3/2
min

(

1,
h√

t − σ

) (t − σ)
∣

∣log(t − σ)
∣

∣

√
t

1

(σ − t0)3/2
dσ



1686 ACTA MATHEMATICA SCIENTIA Vol.43 Ser.B

=
δ

(t − t0)
3
2

√
t

∫
t−t0

3

0

| log σ|√
σ

min
(

1,
h√
σ

)

dσ

.
δ

(t − t0)
3
2

√
t

[

∫ h2

0

| log σ|√
σ

dσ +

∫
t−t0

3

h2

h| log σ|
σ

dσ

]

.
δ

(t − t0)
3
2

√
t

[

h| log h| + h| log h|2
]

, for h < 1. (3.11)

Here we assume that h2 < t−t0
3 , and the estimate still holds for other cases, as can easily be

seen.

As for I61;2, we have that

I61;2 .

∫ t

t0+ 1
3 (t−t0)

1

(t − σ)3/2
min

(

1,
h√

t − σ

)

[

∫

R\D

|ρz(z, T2)| dz
]δ(t − σ)√

t

1

(σ − t0)
3
2

dσ

.
δ2

(t − t0)
3
2

√
t

∫

t−t0
3

0

1√
σ

min
(

1,
h√
σ

)

dσ

.
δ2

(t − t0)
3
2

√
t

[

h + h |log h|
]

, for h < 1. (3.12)

Next, we consider I62. In view of the identity

[

ρ(z, T2)

ρ(z, σ)

]z=α+

z=α−
=

(

ρ(α+, T2) − ρ(α−, T2)
)(

ρ(α−, σ) − ρ(α−, T2)
)

ρ(α+, σ)ρ(α−, σ)

+

[

(

ρ(α+, T2) − ρ(α−, T2)
)

−
(

ρ(α+, σ) − ρ(α−, σ)
)

]

ρ(α−, T2)

ρ(α+, σ)ρ(α−, σ)
,

the estimate

|ρ(z, T2) − ρ(z, σ)| =

∣

∣

∣

∣

∣

∫ T2

σ

ρτ (z, τ)dτ

∣

∣

∣

∣

∣

.
δ(t − σ)√

t
,

and the Hölder continuity assumption (3.1), namely that

∑

α∈D

∣

∣

∣

∣

ρ(·, T2)
∣

∣

∣

α+

α−
− ρ(·, σ)

∣

∣

∣

α+

α−

∣

∣

∣

∣

.
δ2(t − σ)√

t
,

we have that

|I62| .

∫ t

t0+
1
3 (t−t0)

∑

α∈D

∫ x+h

x

e−
(w−α)2

C∗(t−σ)

(t − σ)2
dw

·
[

∣

∣

∣ρ(·, T2)
∣

∣

α+

α−

∣

∣

∣

δ(t − σ)√
t

+
∣

∣

∣ρ(·, T2)
∣

∣

α+

α− − ρ(·, σ)
∣

∣

α+

α−

∣

∣

∣

]

e
− (α−y)2

C∗(σ−t0)

(σ − t0)3/2
dσ

.

∫ t

t0+
1
3 (t−t0)

min
(

1, h√
t−σ

)

(t − σ)3/2

δ2(t − σ)√
t

1

(σ − t0)3/2
dσ

.
δ2

(t − t0)
3
2

√
t

∫
t−t0

3

0

1√
σ

min
(

1,
h√
σ

)

dσ

.
δ2

(t − t0)
3
2

√
t

[

h + h |log h|
]

, for h < 1. (3.13)
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For I63, by Lemma A.1 and property of ρ, we directly have that

|I63| .

∫ t

t0+ 1
3 (t−t0)

∫

R\D

∫ x+h

x

e−
(w−z)2

C∗(t−σ)

(t − σ)2
δ(t − σ)√

t

e
− (z−y)2

C∗(σ−t0)

(σ − t0)2
dwdzdσ

.
δ

(t − t0)2
√

t

∫ x+h

x

∫ t

t0+ 1
3 (t−t0)

e
− (w−y)2

C∗(t−t0)

√
t − σ

dσdw

.
δ

(t − t0)
√

t

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw. (3.14)

Eventually, combining the estimates (3.5)–(3.14), we can conclude that, when |h| < 1,

|Hty(x + h, t; y, t0; ρ) − Hty(x, t; y, t0; ρ)|

.
δ

(t − t0)
3
2

√
t
|h|
∣

∣log |h|
∣

∣

2
+ (t − t0)

−2

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw.

Now we address the issue of how to adapt the proof to get the Hölder-in-space estimate

of Ht(x, t; y, t0; ρ). Instead of using the approximate heat kernel H̃ in (3.2), we consider the

following equation:
∫ t

t0

∫

R

H(x, t; z, σ; µT )
[

∂σH(z, σ; y, t0; ρ) − ∂z

(

ρ(z, σ)∂zH(z, σ; y, t0; ρ)
)

]

dzdσ = 0. (3.15)

We use integration by parts to yield that

H(x, t; y, t0; ρ) = H(x, t; y, t0; µ
T )

+

∫ t

t0

∫

R

Hz(x, t; z, σ; µT )
[

ρ(z, T )− ρ(z, σ)
]

Hz(z, σ; y, t0; ρ)dzdσ.

Differentiating with respect to t and setting T = t, one obtains the following expression of

Ht(x, t; y, t0; ρ):

Ht(x, t; y, t0; ρ) = Ht(x, t; y, t0; µ
t)

+

∫ t

t0

∫

R

Htz(x, t; z, σ; µt)
[

ρ(z, t) − ρ(z, σ)
]

Hz(z, σ; y, t0; ρ)dzdσ.

Taking the difference of the result evaluated at x + h and x, we have that

Ht(x + h, t; y, t0; ρ) − Ht(x, t; y, t0; ρ)

= Ht(x + h, t; y, t0; µ
t) − Ht(x, t; y, t0; µ

t)

+

∫ 1
2 (t+t0)

t0

∫

R

[Htz(x + h, t; z, σ; µt)−Htz(x, t; z, σ; µt)][ρ(z, t)−ρ(z, σ)]Hz(z, σ; y, t0; ρ)dzdσ

+

∫ t

1
2 (t+t0)

∫

R

[

Htz(x + h, t; z, σ; µt)−Htz(x, t; z, σ; µt)
][

ρ(z, t)−ρ(z, σ)
]

Hz(z, σ; y, t0; ρ)dzdσ

=: J1 + J2 + J3.

The estimates of J1 and J2 are straightforward, and we have that

|J1| . (t − t0)
− 3

2

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw, |J2| .
δ√

t − t0
√

t

∫
x−y+h√

t−t0

x−y√
t−t0

e−
w2

C∗ dw.
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The estimate of J3 is analogous to the term I6 in (3.9), and following the similar argument

we find that

|J3| .
δ

(t − t0)
√

t
h |log h|2 , for h < 1.

Finally, if we first integrate with respect to the y-variable for I61 in (3.10) and I62 in (3.13),

then, following a similar argument, we get that
∫

R

|Hty(x + h, t; y, t0; ρ) − Hty(x, t; y, t0; ρ)| dy .
δ

(t − t0)
√

t
|h|
∣

∣log |h|
∣

∣

2
+ (t − t0)

−2|h|.

Similarly,
∫

R

|Ht(x + h, t; y, t0; ρ) − Ht(x, t; y, t0; ρ)| dy .
δ√

t − t0
√

t
|h|
∣

∣log |h|
∣

∣

2
+ (t − t0)

− 3
2 |h|.

We have therefore completed the proof of this lemma. �

Remark 3.3 We remark that in obtaining the integral representation of Hty(x, t; y, t0; ρ),

we first take the derivative with respect to t and y, and next set T1 = t0 and T2 = t, so every

term is well-defined. If reversing the order, namely, if we first set T1 = t0 and T2 = t, and next

take the derivative, then one needs to calculate the variation of the heat kernel with respect

to the conductivity coefficient, which makes the estimate more complicated. The rationale of

our computation can be justified as follows: when we represent H(x, t; y, t0; ρ) in terms of H̃

in (3.3), we can replace the time integral interval to [t1, t2] with t0 < t1 < t2 < t, and get the

time boundary terms
∫

R

H(z, t2; y, t0; ρ)H̃(x, t; z, t2)dz and

∫

R

H(z, t1; y, t0; ρ)H̃(x, t; z, t1)dz,

rather than

H(x, t; y, t0; ρ) and H̃(x, t; y, t0)

respectively. When the integral does not touch the time singularity t0 and t, the differentiation

with respect to t and y works well. After that, we set T1 = t0 and T2 = t, and let t1 tend to

t0 and t2 tend to t. Now, because of the choice of T1 and T2, the space-time double integrals

are all well-defined, while the boundary integral tends to Hty and H̃ty in the distribution sense.

We thus get the integral representation of Hty in terms of H̃ty.

4 Local Solution with Hölder Continuity

In this section, relying on the heat kernel for BV conductivity, we will design an appropriate

Picard iteration scheme, and show that it is convergent, which in turn constructs a weak

solution that is local in time of system (1.1). Moreover, the Hölder continuity of the iterative

approximated solutions will directly imply the Hölder continuity of the limit solution.

For simplicity, we set the constant state of perturbation to be (v, u) = (1, 0), and assume

that the initial data (v0, u0) = (1 + v∗0 , u∗
0) satisfies that

‖v∗0‖BV + ‖v∗0‖L1 + ‖u∗
0‖L∞ + ‖u∗

0‖L1 < δ ≪ 1. (4.1)

Note that the infinity norm of L1-integrable functions can be bounded by their BV norm, so we

actually know, from (4.1), that the L∞ norm of v∗0 is bounded by δ. Denote the discontinuity

set of v∗0 by D .
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4.1 Iteration Scheme

In this part, we will construct the iteration scheme and the corresponding approximate

solutions. As the lower order estimates can be constructed similarly as to [1], we will omit

the detailed proof. Instead, we mainly focus on the higher order estimates and, in particular,

the Hölder estimates; that is new contribution, and plays an important role in the uniqueness

criteria. We consider the following standard iteration scheme for n ≥ 0:


























V n+1
t − Un+1

x = 0,

Un+1
t −

(

µUn+1
x

1 + V n

)

x

= −p(1 + V n)x,

(V n+1, Un+1)
∣

∣

∣

t=0
= (v∗0 , u∗

0).

(4.2)

Here the initial step is set to be

(V 0, U0) = (0, 0).

Next, we estimate (V 1, U1), which is governed by a homogeneous equation, since the right-

handside of (4.2) vanishes due to the choice of the zeroth step. As the estimates are classical,

we omit the details and directly provide the following estimates:

Lemma 4.1 Suppose that the initial data (v∗0 , u∗
0) satisfies the condition (4.1). Then,

there exists a positive constant C♯ such that the following estimates hold for V 1 and U1:

max
{

∥

∥U1(·, t)
∥

∥

L1
x

,
∥

∥U1(·, t)
∥

∥

L∞
x

,
√

t
∥

∥U1
x(·, t)

∥

∥

L1
x

,
√

t
∥

∥U1
x(·, t)

∥

∥

L∞
x

, t
∥

∥U1
t (·, t)

∥

∥

L∞
x

}

≤ C♯δ,

max

{

√
t
∥

∥V 1
t (·, t)

∥

∥

L∞
x

,

∫

R\D

|V 1
x (x, t)|dx,

∥

∥V 1(x, t)
∥

∥

L1
x

,
∥

∥V 1(x, t)
∥

∥

L∞
x

}

≤ C♯δ, 0 < t < 1;

∣

∣

∣

∣

V 1(·, t)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

=

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

, z ∈ D , 0 < t < 1,

∫

R\D

|V 1
x (x, t) − V 1

x (x, s)|dx ≤ C♯
t − s

t
δ, 0 ≤ s ≤ t < 1.

Now, in order to apply mathematical induction to construct the estimates of the sequence of

approximate solutions in (4.2), we need to propose an appropriate ansatz, which is inspired by

Lemma 4.1. Suppose that

0 < δ, t♯ ≪ 1,

and the following induction hypotheses hold for the solution (V n, Un) to (4.2) when n ≤ k:


































































0 < δ, t♯ ≪ 1, 1 ≤ n ≤ k, 0 < t < t♯,

max
{

‖Un(·, t)‖L1
x
, ‖Un(·, t)‖L∞

x
,
√

t ‖Un
x (·, t)‖L1

x
,
√

t ‖Un
x (·, t)‖L∞

x

}

≤ 2C♯δ,

max

{

∫

R\D

|V n
x (x, t)|dx, ‖V n(·, t)‖L1

x
, ‖V n(·, t)‖L∞

x
,
√

t ‖V n
t (·, t)‖L∞

x

}

≤ 2C♯δ,

∫

R\D

|V n
x (x, t) − V n

x (x, s)|dx ≤ 2C♯δ
[ t − s

t
+ (t − s)|log(t − s)|

]

, 0 < s < t,

∣

∣

∣

∣

V n(·, t)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

, z ∈ D .

(4.3)

By Lemma 4.1, the initial step (V 1, U1) fulfills the ansatz (4.3). In what follows, we will show

that (V k+1, Uk+1) also satisfies the ansatz (4.3).
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Remark 4.2 Note that in ansatz (4.3), the L1 norm ‖U1
x(·, t)‖L1

x
has singularity 1√

t
near

t = 0; this is because we only assume the smallness of ‖u∗
0‖L1∩L∞ . This singularity causes some

difficulty when we close the ansatz (4.3). Moreover, we lose the continuity in time of V n in BV

norm when t = 0, so that we cannot prove the uniqueness of the solution in this case.

On the other hand, if we further assume that u∗
0 satisfies assumptions stronger than (4.1),

‖u∗
0‖L1∩BV < δ ≪ 1,

then in the initial step, by transferring the spatial derivative to the initial data, we can easily

get that ‖Uk+1
x (·, t)‖L1 ≤ 2C♯δ. Thus, the Hölder estimate of the BV norm of V n becomes

∫

R\D

|V n
x (x, t) − V n

x (x, s)|dx ≤ 2C♯δ
[ t − s√

t

]

, 0 < s < t.

Then we take s = 0 to imply that V n is Hölder continuous in the BV norm at t = 0; this plays

an important role in the proof of the uniqueness of the solution.

Now we are going to close the ansatz (4.3). For simplicity of presentation, we introduce

the notations

µk ≡ µ

1 + V k
, N k

1 (x, t) = −∂xp(1 + V k). (4.4)

From the initial condition (4.1), the iteration scheme (4.2), and the above ansatz (4.3), we know

that Uk+1 is governed by heat equations with BV conductivities and sources. Notice that the

ansatz (4.3) implies that the conductivity µ/(1 + V k) satisfies (2.3). Therefore, according to

Lemma A.1 and Remark 2.3, one can apply Duhamel’s principle to construct the weak solution

(V k+1, Uk+1) to equation (4.2) as follows:

Uk+1(x, t) =

∫

R

H
(

x, t; y, 0; µk
)

u∗
0(y)dy +

∫ t

0

∫

R\D

Hy

(

x, t; y, s; µk
)

p(1 + V k)dyds, (4.5)

V k+1(x, t) = v∗0(x) +

∫ t

0

Uk+1
x (x, s)ds. (4.6)

We shall prove that, for sufficiently small δ and t♯, which are independent of k, the ansatz (4.3)

holds for (V k+1, Uk+1) as well, which implies that the ansatz holds for all k ≥ 1, by induction.

As the proof is lengthy, we will split it into lemmas concerning the estimates of Uk+1 and V k+1,

respectively.

Lemma 4.3 (Uk+1) Suppose that the initial data (v∗0 , u∗
0) satisfies the condition (4.1),

and that the ansatz (4.3) holds for n ≤ k. Then, the equation (4.2) admits a weak solution

(V k+1, Uk+1) with the flux
µUk+1

x

1+V k − p(1 + V k) being continuous with respect to x. Moreover,

for sufficiently small δ and t♯, the ansatz (4.3) holds for Uk+1 when 0 < t < t♯.

Proof The existence of the solution is guaranteed by Lemma A.1 and Remark 2.3. Note

that Uk+1 is a weak solution to the second equation in (4.2), which can be written in conservative

form with the flux
(

µUk+1
x

1+V k − p(1 + V k)
)

. Therefore, the continuity of the flux follows from

Remark (2.3). In what follows, we will only provide the first order estimate in infinity norm,

and the other estimates can be constructed similarly. From the representation (4.5), we can

derive a representation of Uk+1
x as follows:

Uk+1
x =

∫

R

Hx

(

x, t; y, 0; µk
)

u∗
0(y)dy +

∫ t

0

∫

R\D

Hxy

(

x, t; y, s; µk
)

p(1 + V k)dyds.
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One applies Lemma A.1 to get that

∫

R

∣

∣Hx

(

x, t; y, 0; µk
)∣

∣ |u∗
0(y)| dy ≤ C∗

∫

R

e−
(x−y)2

C∗t

t
dy‖u∗

0‖L∞
x

=

√

πC3
∗

t
‖u∗

0‖L∞
x

≤ C♯δ√
t

, (4.7)

where C∗ is constructed in Lemma A.1, and C♯ is adjusted so that
√

πC3
∗ ≤ C♯. One splits the

inhomogeneous term into two parts:
∫ t

0

∫

R\D

Hxy

(

x, t; y, s; µk
)

p(1 + V k(y, s))dyds

=

∫ t

0

∫

R\D

Hxy

(

x, t; y, s; µk
)

p(1 + V k(y, t))dyds

+

∫ t

0

∫

R\D

Hxy

(

x, t; y, s; µk
) (

p(1 + V k(y, s)) − p(1 + V k(y, t))
)

dyds

≡ I1 + I2. (4.8)

For the estimate of I1, one applies integration by parts and takes into account the discon-

tinuities of V k to yield that

I1 =

∫ t

0

∫

R\D

Hxy

(

x, t; y, s; µk
)

p(1 + V k(y, t))dyds

=

∫ t

0

[

−
∫

R\D

Hx

(

x, t; y, s; µk
)

∂y

(

p(1 + V k(y, t))
)

dy

+
∑

z∈D

Hx

(

x, t; y, s; µk
)

p(1 + V k(y, t))
∣

∣

∣

y=z−

y=z+

]

ds = I11 + I12.

For I11, one combines the ansatz (4.3) and the estimates of the heat kernel in Lemmas A.1 and

A.2 to obtain, for 0 < t < t♯, that

|I11| =

∣

∣

∣

∣

∣

∫ t

0

∫

R\D

Hx

(

x, t; y, s; µk
)

p′(1 + V k(y, t))V k
y (y, t)dyds

∣

∣

∣

∣

∣

= O(1)

∫

R\D

C∗e
− |x−y|2

C∗(t−s) |V k
y (y, t)|dy = O(1)

∫

R\D

|V k
y |dy ≤ C♯δ

4
√

t
,

where the last inequality holds for sufficiently small t♯. For I12, noticing that Lemma A.1 shows

that Hx

(

x, t; y, s; µk
)

is continuous with respect to y, and that p′(1 + V k(y, t)) is uniformly

bounded thanks to ansatz (4.3), one combines Lemma A.1, initial condition (4.1), and the

ansatz (4.3) to have, for 0 < t < t♯, that

|I12| =

∣

∣

∣

∣

∣

∑

z∈D

∫ t

0

Hx

(

x, t; y, s; µk
)

p(1 + V k(y, t))
∣

∣

∣

y=z−

y=z+
ds

∣

∣

∣

∣

∣

≤ C∗e
− |x−y|2

C∗(t−s)

∑

z∈D

∣

∣

∣

∣

V k(y, t)
∣

∣

∣

y=z−

y=z+

∣

∣

∣

∣

≤ C∗e
− |x−y|2

C∗(t−s)

∑

z∈D

2

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

≤ O(1)‖v∗0‖BV ≤ C♯δ

4
√

t

for sufficiently small t♯. This finishes the estimates of I1 in (4.8). Next, for I2, one applies

Lemma A.1 and the ansatz (4.3) to get that

|I2| =

∣

∣

∣

∣

∣

∫ t

0

∫

R\D

Hxy

(

x, t; y, s; µk
) (

p(1 + V k(y, s)) − p(1 + V k(y, t))
)

dyds

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∫ t

0

∫

R\D

Hxy

(

x, t; y, s; µk
)

∫ t

s

∂τ

(

p(1 + V k(y, τ))
)

dτdyds

∣

∣

∣

∣

∣

= O(1)

∫ t

0

∫

R\D

∫ t

s

∣

∣Hxy

(

x, t; y, s; µk
)∣

∣

∣

∣V k
τ (y, τ)

∣

∣ dτdyds = O(1)δ
√

t ≤ C♯δ

4
√

t
,

where the last inequality holds due to the smallness of t♯. Now we combine (4.7), (4.8), the

estimates of I11, I12, I2 and the representation of Uk+1
x together to yield that

‖Uk+1
x ‖L∞

x
≤ C♯δ√

t
+ |I1| + |I2| + |I3| <

2C♯δ√
t

. (4.9)

The other estimates can be obtained in similar manner. �

Lemma 4.4 (V k+1) Suppose that the initial data (v∗0 , u∗
0) satisfies the condition (4.1),

and that the ansatz (4.3) holds for n ≤ k. Then, the equation (4.2) admits a weak solution

(V k+1, Uk+1), and the ansatz (4.3) holds for V k+1 when 0 < t < t♯ for sufficiently small δ and

t♯. In addition, the following Hölder continuity holds for 0 ≤ s ≤ t < t♯:

∑

z∈D

∣

∣

∣

∣

V n
x (·, t)

∣

∣

∣

z+

z−
− V n

x (·, s)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ O(1)δ
t − s√

t
.

Proof We will only show the jump estimates and the Hölder estimates; the other esti-

mates are constructed similarly.

• (Estimate of
∣

∣

∣V k+1(·, t)
∣

∣

x=z+

x=z−

∣

∣

∣) We estimate the jump of the specific volume. According

to Remark 2.3 and Lemma 4.3, we know that
(

µUk
x

1+V k−1 − p
(

1 + V k−1
)

)

is continuous with

respect to x for k ≥ 1, which implies that

V k+1
t (·, t)

∣

∣

∣

z+

z−
= Uk+1

x (·, t)
∣

∣

∣

z+

z−
=

1 + V k

µ

(

µUk+1
x

1 + V k
− p(1 + V k) + p(1 + V k)

)

∣

∣

∣

z+

z−

=
1 + V k

µ

∣

∣

∣

z+

z−

(

µUk+1
x

1 + V k
− p(1 + V k)

)

+

(

1 + V k
) (

p(1 + V k)
)

µ

∣

∣

∣

z+

z−

=
V k

µ

∣

∣

∣

z+

z−

(

µUk+1
x

1 + V k
− p(1 + V k)

)

+

(

1 + V k
) (

p(1 + V k)
)

µ

∣

∣

∣

z+

z−
.

We integrate the above equality with respect to time from 0 to t, and apply the ansatz (4.3)

and the estimates in Lemma 4.3 to yield that
∣

∣

∣

∣

V k+1(·, t)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤
∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

+
∣

∣

∣

∫ t

0

(V k(·, s)
µ

∣

∣

∣

z+

z−

(

µUk+1
x

1 + V k
− p(1 + V k)

)

(z, s)

+

(

1 + V k(·, s)
) (

p(1 + V k(·, s))
)

µ

∣

∣

∣

z+

z−

)

ds
∣

∣

∣

≤
∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

+
1

µ

∫ t

0

(

µ
∣

∣Uk+1
x

∣

∣

1 − ‖V k‖L∞
x

+ O(1)

)

ds sup
0≤σ≤t

∣

∣

∣

∣

V k(·, σ)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤
∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

+ O(1)

∫ t

0

(

1 +
1√
s

)

ds

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

=
(

1 + O(1)t + O(1)
√

t
)

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

, 0 < t < t♯, (4.10)

where the last inequality holds for sufficiently small t♯.

• (Hölder continuity of
∫

R\D
|V k+1

x (x, t) − V k+1
x (x, s)|dx) We study the Hölder continuity

of the specific volume V k+1. Actually, the Hölder continuity of V k+1
x relies on the Hölder
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continuity of V k
x , which is assumed to hold in ansatz (4.3). For x /∈ D , we can express V k+1

x (x, t)

as follows:

V k+1
x (x, t) = (v∗0)x +

∫ t

0

Uk+1
xx (x, s)ds

= (v∗0)x +

∫ t

0

∫

R

Hxx

(

x, s; y, 0; µk
)

u∗
0(y)dyds

+

∫ t

0

∫ s

0

∫

R\D

Hxxy

(

x, s; y, τ ; µk
)

p(1 + V k(y, τ))dydτds. (4.11)

Using this, one has the estimate
∫

R\D

∣

∣V k+1
x (x, t) − V k+1

x (x, s)
∣

∣ dx

≤
∫

R\D

∣

∣

∣

∣

∫ t

s

∫

R

Hxx(x, σ; y, 0; µk)u∗
0(y)dydσ

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∫ t

s

∫ σ

0

∫

R

Hxxy(x, σ; y, τ ; µk)p(1 + V k)dydτdσ

∣

∣

∣

∣

dx

≡ I1 + I2. (4.12)

When s ≤ t/2, by the estimate of
∫

R\D
|V k+1

x (x, t)|dx, one directly has that

∫

R\D

∣

∣V k+1
x (x, t) − V k+1

x (x, s)
∣

∣ dx ≤
∫

R\D

∣

∣V k+1
x (x, t)

∣

∣ dx +

∫

R\D

∣

∣V k+1
x (x, s)

∣

∣ dx ≤ O(1)δ.

Therefore, it suffices to consider the case where t/2 < s < t. We shall estimate I1 and I2,

respectively.

⋄ (Estimates of I1) For the first term I1 in (4.12), we recall the definition of µk in (4.4)

and apply Lemma A.1 to obtain, for x /∈ D , the following estimates:
∫ t

s

Hxx(x, σ; y, 0; µk)dσ

= V k
x (x, 0)

∫ x

−∞

(

H(w, t; y, 0; µk) − H(w, s; y, 0; µk)
)

dw

+ V k
x (x, 0)

∫ t

s

(

1

1 + V k(x, σ)
− 1

1 + V k(x, 0)

)

Hx(x, σ; y, 0; µk)dσ

+
(

1 + V k(x, 0)
) (

H(x, t; y, 0; µk) − H(x, s; y, 0; µk)
)

+
(

1 + V k(x, 0)
)

∫ t

s

(

(1 + V k(x, 0)) − (1 + V k(x, σ))

1 + V k(x, 0)

)

∂x

(

Hx(x, σ; y, 0; µk)

1 + V k(x, σ)

)

dσ

+
(

1 + V k(x, 0)
)

∫ t

s

∂x

(

(1 + V k(x, 0)) − (1 + V k(x, σ))

1 + V k(x, 0)

)(

Hx(x, σ; y, 0; µk)

1 + V k(x, σ)

)

dσ.

We integrate the above representation with respect to y and x for t ≤ t♯, apply Lemma A.1

and the ansatz (4.3) to obtain the estimates of I1 in (4.12) as follows:

I1 ≤
∫

R\D

∫

R

∣

∣

∣

∣

∫ t

s

Hxx(x, σ; y, 0; µk)dσ

∣

∣

∣

∣

|u∗
0(y)|dydx

≤ O(1)δ2

∫ t

s

1

σ
dσ + O(1)δ2

∫ t

s

∫ σ

0

‖V k
τ (·, τ)‖L∞

x
dτ

1√
σ

dσ +
√

πC3
∗ (1 + 2C♯δ)δ

∫ t

s

1

σ
dσ
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+ O(1)δ

∫ t

s

∫ σ

0

‖V k
τ (·, τ)‖L∞

x
dτ

1

σ
dσ + O(1)δ2

∫ t

s

1√
σ

dσ

≤
(

√

πC3
∗ + O(1)δ

)

δ log(1 +
t − s

s
) + O(1)δ2 t − s√

t

≤ C♯δ
t − s

t
,

t

2
< s < t ≤ t♯ ≪ 1. (4.13)

Here the last inequality holds for properly large C♯ and sufficiently small δ.

⋄ (Estimates of I2) Next we consider the second part I2 in (4.12). We change the order of the

integration, and apply integration by parts to obtain that

I2 ≤
∫

R\D

∣

∣

∣

∣

∣

∫ s

0

∫

R\D

[∫ t

s

Hxx(x, σ; y, τ ; µk)dσ

]

∂yp
(

1 + V k(y, τ)
)

dydτ

∣

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∣

∫ s

0

∑

α∈D

[∫ t

s

Hxx(x, σ; y, τ ; µk)dσp
(

1 + V k(y, τ)
)

]y=α+

y=α−
dτ

∣

∣

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∫ t

s

∫

R\D

[∫ t

τ

Hxx(x, σ; y, τ ; µk)dσ

]

∂yp
(

1 + V k(y, τ)
)

dydτ

∣

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∣

∫ t

s

∑

α∈D

[
∫ t

τ

Hxx(x, σ; y, τ ; µk)dσp
(

1 + V k(y, τ)
)

]y=α+

y=α−
dτ

∣

∣

∣

∣

∣

∣

dx

≡ T1 + T2 + T3 + T4. (4.14)

In what follows, we will denote the pressure term p
(

1 + V k(y, τ)
)

by p(y, τ), for short. Now,

similarly to before, we will take advantage of the estimates of the time integral of Hxx(x, σ; y, τ ;

µk). Actually, for T1, we can use the heat equation to represent Hxx by Ht and split the integral

into several terms as follows:

T1 ≤
∫

R\D

∣

∣

∣

∣

∣

∫ s

0

∫

R\D

V k
x (x, τ)

[∫ x

−∞

(

H(z, t; y, τ ; µk) − H(z, s; y, τ ; µk)
)

dz

]

∂yp(y, τ)dydτ

∣

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∫ s

0

∫

R\D

V k
x (x, τ)

[

∫ t

s

(

µk(x, σ)−µk(x, τ)
)

µ
Hx(x, σ; y, τ ; µk)dσ

]

∂yp(y, τ)dydτ

∣

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∫ s

0

∫

R\D

(

1 + V k(x, τ)
) [

H(x, t; y, τ ; µk) − H(x, s; y, τ ; µk)
]

∂yp(y, τ)dydτ

∣

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∫ s

0

∫

R\D

(

1 + V k(x, τ)
)

∂yp(y, τ)

·
[

∫ t

s

(

µk(x, σ) − µk(x, τ)
)

µk(x, σ)
∂x

(

µk(x, σ)Hx(x, σ; y, τ ; µk)
)

dσ

]

dydτ

∣

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∫ s

0

∫

R\D

(

1 + V k(x, τ)
)

∂yp(y, τ)

·
[

∫ t

s

∂x

(

(

µk(x, σ) − µk(x, τ)
)

µk(x, σ)

)

µk(x, σ)Hx(x, σ; y, τ ; µk)dσ

]

dydτ

∣

∣

∣

∣

∣

dx

≡
5
∑

j=1

T1j, (4.15)
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where µk = µ/(1 + V k) is as defined before. Now, we apply Lemma A.2 and the ansatz (4.3)

to obtain the estimates of T11 of (4.15) as follows,

T11 ≤ O(1)

∫

R\D

∫ s

0

∫

R\D

∫ t

s

∣

∣V k
x (x, τ)

∣

∣

e−
(x−y)2

C∗(σ−τ)

σ − τ
|∂yp(y, τ)| dσdydτdx

≤ O(1)δ2(t − s) |log(t − s)| .

Here the last inequality holds due to the fact that 0 < s < t ≤ t♯ ≪ 1. With similar arguments,

we obtain estimates of the other parts as follows:

T12 ≤ O(1)

∫

R\D

∫ s

0

∫

R\D

∫ t

s

|V k
x (x, τ)|

· sup
τ≤h≤σ

∣

∣

∣

√
h∂hV k(x, h)

∣

∣

∣

σ − τ√
σ

e−
(x−y)2

C∗(σ−τ)

σ − τ
|∂yp(y, τ)| dσdydτdx

≤ O(1)δ3 (t − s)s√
t

,

T13 ≤ O(1)

∫

R\D

∫ s

0

∫

R\D

∫ t

s

e−
(x−y)2

C∗(σ−τ)

(σ − τ)3/2
|∂yp(y, τ)| dσdydτdx ≤ O(1)δ(t − s) |log(t − s)| ,

T14 ≤ O(1)δ

∫

R\D

∫ s

0

∫

R\D

∫ t

s

σ − τ√
σ

·





e−
(x−y)2

C∗(σ−τ)

(σ − τ)3/2
+
∣

∣V k
x (x, σ)

∣

∣

e−
(x−y)2

C∗(σ−τ)

σ − τ



 |∂yp(y, τ)| dσdydτdx

≤ O(1)δ2 (t − s)s√
t

,

T15 ≤ O(1)

∫

R\D

∫ s

0

∫

R\D

∫ t

s

(∣

∣V k
x (x, σ)

∣

∣+
∣

∣V k
x (x, τ)

∣

∣

) e−
(x−y)2

C∗(σ−τ)

σ − τ
|∂yp(y, τ)| dσdydτdx

≤ O(1)δ2(t − s) |log(t − s)| .

Collecting the above estimates of T1j and combining with the estimate (4.15), we obtain the

estimate of T1 as follows:

T1 ≤ O(1)δ

[

(t − s) |log(t − s)| + (t − s)s√
t

δ

]

. (4.16)

The estimate of the other terms can be obtained in a similar way, therefore we omit the details

and directly provide the following estimates:

T2 ≤ O(1)δ

[

(t − s) |log(t − s)| + (t − s)s√
t

δ

]

, (4.17)

T3 ≤ O(1)δ(t − s), (4.18)

T4 ≤ O(1)δ(t − s). (4.19)

Now we substitute the estimates of Tj in (4.16), (4.17), (4.18) and (4.19) into the estimate

(4.14), and apply the fact that δ ≪ 1 and 0 < s < t ≪ 1 to obtain the estimate of I2 as follows:

I2 ≤ O(1)δ(t − s)|log(t − s)|.
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Now we substitute the estimates of I1 and I2 into (4.12) and choose C♯ properly to obtain that
∫

R\D

∣

∣V k+1
x (x, t) − V k+1

x (x, s)
∣

∣ dx ≤ 2C♯δ
[ t − s

t
+ (t − s)|log(t − s)|

]

.

• (Hölder continuity of
∑

z∈D

∣

∣V k+1
x (·, t)

∣

∣

z+

z− − V k+1
x (·, s)

∣

∣

z+

z−

∣

∣) In the final step, we will pro-

vide the Hölder continuity of the total jump, and thus we know that the BV norm of V n is

Hölder continuous with respect to t. The proof follows directly from the representation in Step

3. Actually, we apply the representation of V k+1 and follow the estimates of (4.10) to obtain

that
∑

z∈D

∣

∣

∣

∣

V k+1
x (·, t)

∣

∣

∣

z+

z−
− V k+1

x (·, s)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ O(1)

∫ t

s

(

1 +
1√
τ

)

dτ
∑

z∈D

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ O(1)δ
t − s√

t
.

This finishes the proof of the lemma. �

Remark 4.5 We provide several remarks on the a priori estimates.

1. The construction of C♯ depends only on C∗ and the coefficients of the initial step, i.e., µ,

κ and cv. When δ < δ∗ for some fixed positive number δ∗, we have that 1
1+V n will be uniformly

bounded according to the ansatz (4.3). Thus we immediately obtain that the coefficient C∗ is

uniformly bounded when we apply Lemmas A.1 and A.2 to the estimates of (4.2), because the

heat equations in (4.2) have uniform bounded heat conductivity 1
1+V n . Therefore, we conclude

that C♯ and C∗ are both uniformly bounded when δ is small. Moreover, as the choice of the

small time t♯ only depends on C♯, we know that t♯ is small but uniform when δ < δ∗.

2. Note that in Lemma 4.4, we obtain that V k+1 is BV in the sense of Definition 2.2.

Actually, we obtain the expression of Uk
x as follows:

Uk+1
x (·, t)

∣

∣

∣

z+

z−
=

1 + V k

µ

(

µUk+1
x

1 + V k
− p(1 + V k) + p(1 + V k)

)

∣

∣

∣

z+

z−
.

Since
( µUk

x

1+V k−1 − p
(

1 + V k−1
) )

are continuous, the above formula immediately implies that

V k+1 is BV if and only if V k is BV in the sense of Definition 2.2. Therefore, we only need

to show that V 1 is BV. As U1 is a solution of a homogeneous heat equation with a constant

coefficient, we know that U1 is smooth. Thus, V 1 is BV as v∗0 is BV, and it has the same

discontinuities as the initial data v∗0 . Therefore, we can combine the estimates in Lemma 4.4

to conclude that V k+1 is BV in the sense of Definition 2.2.

3. From the ansatz (4.3), we have the BV estimate of V n as follows,

‖V n‖BV =

∫

RD

|∂xV n(·, t)|dx +
∑

z∈D

∣

∣

∣

∣

V n(·, t)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ 2C♯δ + 2
∑

z∈D

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ (2C♯ + 2)δ.

4. According to the analysis in Section 2, we know that Hxy(x, t; y, t0) is a well defined

function when x and y are not at the same discontinuity. Moreover, from the expression of

Hxx(x, t; y, t0) in Section 2, the following integrals are also well defined functions for x /∈ D :
∫ t

0

∫

R

Hxx

(

x, s; y, 0; µk
)

u∗
0(y)dyds,

∫ t

0

∫ s

0

∫

R\D

Hxxy

(

x, s; y, τ ; µk
)

p(1 + V k)dydτds.

4.2 Convergence of the Scheme

In this part, we will show the convergence of the sequence of approximate solutions (V n, Un)

constructed from the iteration (4.2). We will mainly focus on the jump error estimates between
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V n+1 and V n, in which we carefully take advantage of the analyticity of pressure p to yield the

control of the error.

By taking the difference at the (n + 1)-th and n-th steps, we get the equation for the

difference between two consecutive steps:






















∂t

(

V n+1 − V n
)

− ∂x

(

Un+1 − Un
)

= 0,

∂t

(

Un+1 − Un
)

− ∂x

(

µ
(

Un+1 − Un
)

x

1 + V n

)

= −∂x

(

µUn
x

(

V n − V n−1
)

(1 + V n)(1 + V n−1)

)

+ Nn
1 −Nn−1

1 ,

V n+1(x, 0) − V n(x, 0) = Un+1(x, 0) − Un(x, 0) = 0.

(4.20)

Here, for simplicity of presentation, we employ the notations

µk :=
µ

1 + V k
, Nn

1 −Nn−1
1 = −∂x

(

p(1 + V n) − p(1 + V n−1)
)

. (4.21)

Lemma 4.6 (Un+1 − Un) There exists a positive constant C♭ such that, for sufficiently

small δ and t♯, the error of velocity between two iteration steps has the following estimates

when 0 < t < t♯:

∥

∥

(

Un+1 − Un
)

(·, t)
∥

∥

∞ ≤ C♭

(√
t + δ

)

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞,

∥

∥

(

Un+1 − Un
)

(·, t)
∥

∥

1
≤ C♭

(√
t + δ

)

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
,

√
t

| log t|
∥

∥

(

Un+1
x − Un

x

)

(·, t)
∥

∥

∞ ≤ C♭

(√
t + δ

)(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

BV

+
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un
x − Un−1

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

,

√
t

| log t|
∥

∥

(

Un+1
x − Un

x

)

(·, t)
∥

∥

1
≤ C♭

(√
t + δ

)(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1

+
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

BV
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un
x − Un−1

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un
x − Un−1

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

.

Proof For simplicity, we will only show the detailed proof of the zeroth order estimate,

as the higher order estimates can be obtained similarly. From the equation of difference (4.20),

one has the representation

(

Un+1 − Un
)

(x, t) =

∫ t

0

∫

R

Hy(x, t; y, τ ; µn)
µUn

y

(

V n − V n−1
)

(1 + V n)(1 + V n−1)
(y, τ)dydτ (4.22)

+

∫ t

0

∫

R

Hy(x, t; y, τ ; µn)
(

p(1 + V n) − p(1 + V n−1)
)

(y, τ)dydτ.

By Lemma A.2 and iteration estimates (4.3), we apply the representation (4.22) to obtain the

following L∞ error estimates:

∣

∣

(

Un+1 − Un
)

(x, t)
∣

∣ ≤ O(1)

∫ t

0

∫

R

e−
(x−y)2

C∗(t−τ)

t − τ

δ√
τ

∣

∣V n − V n−1
∣

∣ (y, τ)dydτ

+ O(1)

∫ t

0

∫

R

e−
(x−y)2

C∗(t−τ)

t − τ

∣

∣V n − V n−1
∣

∣ (y, τ)dydτ
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≤ O(1)δ
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ + O(1)
√

t
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞. (4.23)

With similar calculations, we find the L1
x error estimate as follows:

∫

R

∣

∣

(

Un+1 − Un
)

(x, t)
∣

∣ dx ≤ O(1)

∫

R

∫ t

0

∫

R

e−
(x−y)2

C∗(t−τ)

t − τ

δ√
τ

∣

∣V n − V n−1
∣

∣ (y, τ)dydτdx

+ O(1)

∫

R

∫ t

0

∫

R

e−
(x−y)2

C∗(t−τ)

t − τ

∣

∣V n − V n−1
∣

∣ (y, τ)dydτdx

≤ O(1)δ
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
+ O(1)

√
t
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
. (4.24)

�

Next we study the iteration error estimates of V n. Differently from the previous estimates

for Un, as V n is a BV function, we need to further estimate the evolution of the error for the

discontinuities. The estimates are summarized in the following Lemma:

Lemma 4.7 (V n+1 − V n) There exists a positive constant C♭ such that, for sufficiently

small δ and t♯, the error of velocity between the two iteration steps has the following estimates

when 0 < t < t♯:
∣

∣V n+1(x, t) − V n(x, t)
∣

∣ ≤ C♭

(

δ +
√

t
)

|||V n − V n−1|||∞,

‖V n+1(·, t) − V n(·, t)‖1 ≤ C♭

(

δ +
√

t
)

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
,

∣

∣

∣

∣

(

V n+1(·, t) − V n(·, t)
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ C♭

(

δ +
√

t
)√

t sup
0<τ<t

∣

∣

∣

∣

(

V n(·, τ) − V n−1(·, τ)
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

+ C♭δ
(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

,

‖V n+1(·, t) − V n(·, t)‖BV ≤ C♭

(√
t + δ

)(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1

)

+ C♭

(√
t + δ

)(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

BV
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

.

Proof First, one directly has the equation for V n+1 − V n as follows:














































∂t

(

V n+1 − V n
)

− ∂x

(

Un+1 − Un
)

= 0,

∂t

(

Un+1 − Un
)

− ∂x

(

µ
(

Un+1 − Un
)

x

1 + V n

)

= −∂x

(

p(1 + V n) − p(1 + V n−1)
)

+ ∂x

(

µ
(

V n−1 − V n
)

Un
x

(1 + V n)(1 + V n−1)

)

,

V n+1(x, 0) − V n(x, 0) = Un+1(x, 0) − Un(x, 0) = 0.

(4.25)

Then one applies Duhamel’s principle to solve the error of Un in the second equation of (4.25),

and substitutes it into the first equation in (4.25) to obtain that

V n+1(x, t) − V n(x, t)

=

∫ t

0

∫

R\D

∫ t

τ

Hxy (x, s; y, τ ; µn)
(

p(1 + V n) − p(1 + V n−1)
)

(y, τ)dsdydτ

+

∫ t

0

∫

R\D

∫ t

τ

Hxy (x, s; y, τ ; µn)

(

µ
(

V n − V n−1
)

Un
y

(1 + V n)(1 + V n−1)

)

(y, τ)dsdydτ. (4.26)
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Now, for the L∞ norm and L1 norm estimates, the equation of the iteration error is used to

yield the desired estimates. For the jump estimate, the representation of the jump in (4.10)

and the analyticity of pressure p are employed. Moreover, the Hölder continuity proven before

plays a crucial role in the estimates of the BV estimates. For simplicity, we will only show the

detailed proof of the BV estimates.

• (Step 1: Jump part) First, for the jump estimate, recalling the representation of the

jump in (4.10), one has the following representation of the jump error:

d

dt

(

V n+1(·, t) − V n(·, t)
)

∣

∣

∣

z+

z−

=

(

V n

µ
− V n−1

µ

)

∣

∣

∣

z+

z−

(

µUn+1
x

1 + V n
− p(1 + V n)

)

+
V n−1

µ

∣

∣

∣

z+

z−

(

µ
(

Un+1
x − Un

x

)

1 + V n
+

µUn
x

(

V n−1 − V n
)

(1 + V n−1) (1 + V n)
+ p(1 + V n−1) − p(1 + V n)

)

+
(

V n − V n−1
)

∣

∣

∣

z+

z−

p(1 + V n(z+))

µ
+

1 + V n−1

µ

∣

∣

∣

z+

z−

(

p(1 + V n(z+)) − p(1 + V n−1(z+))
)

+ p(1 + V n)
∣

∣

∣

z+

z−

V n(z−) − V n−1(z−)

µ
+
(

p(1 + V n) − p(1 + V n−1)
)

∣

∣

∣

z+

z−

V n−1(z−)

µ
. (4.27)

Now, all of the above terms in (4.27) have proper estimates except for the last term, in which

we have to take advantage of the good structure of pressure p to yield the desired estimate.

Indeed, as p(s) is analytic around s = 1, without loss of generality, we may assume that p(s)

has the following expansion around 1:

p(s) =
+∞
∑

k=0

ck(s − 1)k, |s − 1| ≤ r0 ≪ 1. (4.28)

Then, the jump of the comparison of pressure can be expressed by the expansion (4.28) as

(

p(1 + V n) − p(1 + V n−1)
)

∣

∣

∣

z+

z−

=

+∞
∑

k=0

ck

[(

V n
+ − V n

−
)

−
(

V n−1
+ − V n−1

−
)]

k
∑

i=1

(V n
+ )k−i(V n

− )i−1

+

+∞
∑

k=0

ck

(

V n−1
+ − V n−1

−
)

( k
∑

i=1

(V n
+ )k−i(V n

− )i−1 −
k
∑

i=1

(V n−1
+ )k−i(V n−1

− )i−1

)

= I1 + I2. (4.29)

Now we assume δ to be sufficiently small such that 2C♯δ < r0. Then, for I1 in (4.29), we simply

apply the ansatzes (4.3) and (4.28) to obtain that

|I1| ≤ O(1)
∣

∣

(

V n
+ − V n

−
)

−
(

V n−1
+ − V n−1

−
)∣

∣

+∞
∑

k=1

|ck|kδk−1 ≤ O(1)

∣

∣

∣

∣

(

V n − V n−1
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

.

Similarly, for I2 in (4.29), we apply ansatzes (4.3) and (4.28) to yield that

|I2| ≤
∣

∣V n−1
+ − V n−1

−
∣

∣

+∞
∑

k=0

k
∑

i=1

|ck|
∣

∣(V n
+ )k−i(V n

− )i−1 − (V n−1
+ )k−i(V n−1

− )i−1
∣

∣

=

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

+∞
∑

k=0

k
∑

i=1

|ck|
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·
∣

∣

(

(V n
+ )k−i − (V n−1

+ )k−i
)

(V n
− )i−1 + (V n−1

+ )k−i
(

(V n
− )i−1 − (V n−1

− )i−1
)∣

∣

≤ O(1)

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

+∞
∑

k=0

k
∑

i=1

|ck|

·
(∣

∣V n
+ − V n−1

+

∣

∣ (k − i)δk−i−1δi−1 +
∣

∣V n
− − V n−1

−
∣

∣ (i − 1)δi−2δk−i
)

≤ O(1)

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞

+∞
∑

k=0

k
∑

i=1

|ck|(k − 1)δk−2

≤ O(1)

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞

+∞
∑

k=0

|ck|k(k − 1)δk−2

≤ O(1)

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞.

Combining (4.29) and the above estimates of I1 and I2, we obtain the following estimates:
∣

∣

∣

∣

(

p(1 + V n) − p(1 + V n−1)
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ O(1)

∣

∣

∣

∣

(

V n − V n−1
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

+ O(1)

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞. (4.30)

Then, we note that the initial error of the comparison in (4.27) is equal to zero. Therefore,

we integrate (4.27) with respect to t and recall (4.30) and the BV estimate in Remark 4.5 to

obtain the following estimate:
∣

∣

∣

∣

(

V n+1(·, t) − V n(·, t)
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

= O(1)

∫ t

0

∣

∣

∣

∣

(

V n − V n−1
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

(

δ√
s

+ 1

)

ds

+ O(1)

∫ t

0

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

(

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
| log s|

√
s

+

(

δ√
s

+ 1

)

∣

∣

∣

∣

∣

∣V n−1 − V n
∣

∣

∣

∣

∣

∣

∞

)

ds

+ O(1)

∫ t

0

∣

∣

∣

∣

(

V n − V n−1
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

ds + O(1)

∫ t

0

(∣

∣

∣

∣

V n
∣

∣

∣

z+

z−

∣

∣

∣

∣

+

∣

∣

∣

∣

V n−1
∣

∣

∣

z+

z−

∣

∣

∣

∣

)

ds|||V n − V n−1|||∞

.
(

δ +
√

t
)√

t sup
0<τ<t

∣

∣

∣

∣

(

V n(·, τ) − V n−1(·, τ)
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

+ δ
√

t| log t|
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
+ δ

√
t
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞. (4.31)

Taking the summation of z, one then obtains that

∑

z∈D

∣

∣

∣

∣

(

V n+1(·, t) − V n(·, t)
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

. (δ + t)

(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

BV
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

. (4.32)

• (Step 2: Absolutely continuous part) Next, for all x /∈ D , the derivative of V n+1−V n can

be defined almost everywhere from the representation (4.26). Therefore, we have the following

estimate:
∫

R\D

∣

∣V n+1
x (x, t) − V n

x (x, t)
∣

∣ dx
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≤
∫

R\D

∣

∣

∣

∣

∫ t

0

∫

R

[∫ t

τ

Hxxy(x, σ; y, τ ;
1

1 + V n
)dσ

]

[

pn(y, τ) − pn−1(y, τ)
]

dydτ

∣

∣

∣

∣

dx

+

∫

R\D

∣

∣

∣

∣

∣

∫ t

0

∫

R

[∫ t

τ

Hxxy(x, σ; y, τ ;
1

1 + V n
)dσ

]

[
(

V n − V n−1
)

Un
y

(1 + V n)(1 + V n−1)

]

dydτ

∣

∣

∣

∣

∣

dx

≡ I1 + I2. (4.33)

For simplicity, we use the following notation to represent the pressure term for the time being:

pn(y, τ) = p(vn)(y, τ).

Then, from the heat kernel estimates in Lemma A.1, we obtain that
∫ t

τ

Hxxy(x, σ; y, τ ;
1

v
)dσ

= − vx(x, τ)

[∫ x

−∞
(Hy(z, t; y, τ) + δ′(z − y)) dz −

∫ t

τ

(

1

v(x, σ)
− 1

v(x, τ)

)

Hxy(x, σ; y, τ)dσ

]

+ v(x, τ)

[

Hy(x, t; y, τ) + δ′(x − y) −
∫ t

τ

(

1

v(x, σ)
− 1

v(x, τ)

)

Hxxy(x, σ; y, τ ;
1

v
)dσ

]

− v(x, τ)

∫ t

τ

∂x

(

1

v(x, σ)
− 1

v(x, τ)

)

Hxy(x, σ; y, τ ;
1

v
)dσ. (4.34)

Plugging (4.34) into previous expression (4.33), one has that

I1 ≤ O(1)

∫

R\D

∫ t

0

∫

R

|V n
x (x, τ)| e−

(x−y)2

C∗(t−τ)

√
t − τ

∣

∣pn(y, τ) − pn−1(y, τ)
∣

∣ dydτdx

+ O(1)

∫

R\D

∫ t

0

|V n
x (x, τ)|

∣

∣pn(x, τ) − pn−1(x, τ)
∣

∣ dτdx

+ O(1)

∫

R\D

∫ t

0

∫

R

∫ t

τ

|V n
x (x, τ)| δ(σ − τ)√

σ

e−
(x−y)2

C∗(σ−τ)

(σ − τ)3/2

∣

∣pn(y, τ) − pn−1(y, τ)
∣

∣ dσdydτdx

+ O(1)

∫

R\D

∫ t

0

∫

R

e−
(x−y)2

C∗(t−τ)

t − τ

∣

∣pn(y, τ) − pn−1(y, τ)
∣

∣ dydτdx

+ O(1)

∫

R\D

∫ t

0

∣

∣pn
x(x, τ) − pn−1

x (x, τ)
∣

∣ dτdx

+ O(1)

∫

R\D

∫ t

0

∫

R

∫ t

τ

δ(σ − τ)√
σ

e−
(x−y)2

C∗(σ−τ)

(σ − τ)2

∣

∣pn(y, τ) − pn−1(y, τ)
∣

∣ dσdydτdx

+ O(1)

∫

R\D

∫ t

0

∫

R

∫ t

τ

|V n
x (x, σ)−V n

x (x, τ)| e−
(x−y)2

C∗(σ−τ)

(σ − τ)3/2

∣

∣pn(y, τ)−pn−1(y, τ)
∣

∣ dσdydτdx

≡
7
∑

j=1

I1j .

For I15, one observes that

pn
x(x, τ) − pn−1

x (x, τ)

= p′(1 + V n−1(x, τ))
(

V n
x − V n−1

x

)

(x, τ) + V n
x (x, τ)

(

p′(1 + V n) − p′(1 + V n−1)
)

(x, τ)

= O(1)
∣

∣V n
x − V n−1

x

∣

∣+ O(1)
∣

∣V n − V n−1
∣

∣ |V n
x | .
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Hence we have the estimate

I15 ≤ O(1)t |||V n|||BV

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ + O(1)t
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

BV
.

To estimate I17, we apply Hölder estimates in Lemma 4.4 to obtain that

I17 ≤ O(1)

∫ t

0

∫ t

τ

[

∫

R\D

|V n
x (x, σ) − V n

x (x, τ)| dx

]

1

(σ − τ)3/2
dσdτ

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1

≤ O(1)δ
√

t
(

1 + t|log t|
)∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
.

The other terms can be directly estimated by using similar calculations, so we omit the details

and provide the following estimates:

I11 ≤ O(1)
√

t|||V n|||BV

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
, I12 ≤ O(1)t|||V n|||BV

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞,

I13 ≤ O(1)tδ|||V n|||BV

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞, I14 ≤ O(1)
√

t
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
,

I16 ≤ O(1)δt
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
.

Now, combining the above estimates, and in view of (4.3), we have the following estimate of

I1:

I1 ≤ O(1)
√

t

(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
+
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

BV

)

. (4.35)

Similarly, we can obtain the estimates of I2 as

I2 ≤ O(1)δ

(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1
+
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

log τ
(Un

x − Un−1
x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

.

Together with (4.33) and (4.35), we conclude the error estimates of the BV norm of V n as

follows:
∫

R\D

∣

∣V n+1
x (x, t) − V n

x (x, t)
∣

∣ dx ≤ O(1)
(√

t + δ
)(

∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

1

+
∣

∣

∣

∣

∣

∣V n − V n−1
∣

∣

∣

∣

∣

∣

BV
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

log τ
(Un

x − Un−1
x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

. (4.36)

�

Now we are ready to provide the main result of this section, i.e., the local-in-time existence

of the weak solution to the nonlinear Navier-Stokes equation (1.1).

Proposition 4.8 Suppose that initial data (v∗0 , u∗
0) satisfies the condition (4.1) for small

δ. Then there exists a sufficiently small positive constant t♯ such that equation (1.1) admits a

weak solution in the sense of Definition 2.1, (v, u) = (v∗ +1, u∗), t < t♯. Moreover, the solution

has the properties


































































δ > 0, 0 < t < t♯ ≪ 1,

max
{

‖u(·, t)‖L1
x
, ‖u(·, t)‖L∞

x
,
√

t ‖ux(·, t)‖L1
x
,
√

t ‖ux(·, t)‖L∞
x

}

≤ 2C♯δ,

max

{∫

R\D

|vx(x, t)|dx, ‖v(·, t) − 1‖L1
x
, ‖v(·, t) − 1‖L∞

x
,
√

t ‖vt(·, t)‖L∞
x

}

≤ 2C♯δ,

v∗ = v∗c + v∗d , v∗d(x, t) =
∑

z<x,z∈D

v∗
∣

∣

∣

z+

z−
H(x − z), v∗c is AC,

∣

∣

∣

∣

v(·, t)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

, z ∈ D ,

(4.37)
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where H(x) is the Heaviside step function, and AC means “absolutely continuous”. In partic-

ular, the total variation of v(x, t) is Hölder continuous in time for any t > 0 in the following

sense:

‖v(·, t) − v(·, s)‖BV ≤ 2C♯δ
[ t − s

t
+ (t − s)|log(t − s)|

]

, 0 < s < t. (4.38)

Proof We will split the proof into four steps.

• (Step 1: Strong convergence) For simplicity of notation, we define the following func-

tional of the iteration error:

F
[

V n+1 − V n, Un+1 − Un
]

≡
∣

∣

∣

∣

∣

∣V n+1 − V n
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣V n+1 − V n
∣

∣

∣

∣

∣

∣

1
+
∣

∣

∣

∣

∣

∣V n+1 − V n
∣

∣

∣

∣

∣

∣

BV
+
∣

∣

∣

∣

∣

∣Un+1 − Un
∣

∣

∣

∣

∣

∣

∞

+
∣

∣

∣

∣

∣

∣Un+1 − Un
∣

∣

∣

∣

∣

∣

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

. (4.39)

Here we denote that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |
(

Un+1
x − Un

x

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
= sup

0<τ<t♯

∥

∥

∥

∥

√
τ

| log τ |
(

Un+1
x − Un

x

)

(·, τ)

∥

∥

∥

∥

L∞
x

,

and similarly for other |||·||| norms.

Then we combine Lemma 4.6 and Lemma 4.7 to obtain that the iteration error has the

following contraction property for sufficiently small δ and t♯:

F
[

V n+1 − V n, Un+1 − Un
]

≤ C♭

(

δ +
√

t♯
)

F
[

V n − V n−1, Un − Un−1
]

.

From the analysis performed in Remark 4.5, we know that C♭ is uniformly bounded when

δ is sufficiently small. Thus, for enough small δ, F
[

V n+1 − V n, Un+1 − Un
]

is a Cauchy

sequence. As the L∞ and L1 spaces are complete, we immediately obtain that the iteration

scheme admits a strong limit (v∗, u∗) in the following functional spaces:
{

v∗(x, t) ∈ L∞ (0, t♯; L
1(R)

)

,

u∗(x, t) ∈ L∞ (0, t♯; L
1(R) ∩ L∞(R)

)

,
√

tu∗
x(x, t) ∈ L∞ (0, t♯; L

1(R) ∩ L∞(R)
)

.
(4.40)

Now we let (v, u) = (v∗ + 1, u∗). Then, the strong convergence immediately implies that (v, u)

is a weak solution to the original Navier-Stokes equation (1.1) in the distribution sense. Indeed,

we can multiply a test function to equation (4.2) to get the weak formulation for the iteration

equation. Then, by strong convergence, we can pass to limit to prove that these are weak

solutions to the original nonlinear equation.

• (Step 2: Regularity) Second, for the regularity of the solutions, according to Lemma

4.3 and Lemma 4.4, we know that ‖V n‖BV and
√

t‖Un
x ‖L1∩L∞ are uniformly bounded for n.

Moreover, from the above analysis, V n and Un are convergent in the L1 sense. Therefore, we

apply Helly’s selection Theorem and the estimates in Lemma 4.3 and Lemma 4.4 to conclude

that the limit (v∗, u∗) has the following properties:

‖v∗(·, t)‖BV ≤ 2C♯δ,
√

t‖u∗
x(·, t)‖L1∩L∞ ≤ 2C♯δ. (4.41)

Similarly, as the Hölder continuity estimates of V n(x, t) in Lemma 4.4 are uniform, we apply

the convergence of the iteration scheme and Helly’s theorem to conclude the Hölder continuity

estimate of the limit solution v(x, t).
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• (Step 3: v is BV) Third, we need the jump estimate. According to Remark 4.5, we

know that V n is a BV function, i.e., it can be decomposed as follows:

V n = V n
c + V n

d , V n
d (x, t) =

∑

z<x,z∈D

dn(z, t)H(x − z), dn(z, t)
∣

∣

∣

z∈D

= V n(·, t)
∣

∣

∣

z+

z−
, V n

c is AC.

Here AC means “absolutely continuous”, and H(x) is the Heaviside function. From Lemma

4.7, we can actually show that

∣

∣

∣

∣

(

V n+1(·, t) − V n(·, t)
)

∣

∣

∣

z+

z−

∣

∣

∣

∣

is also a Cauchy sequence, and thus

the jump at time t admits a limit d(z, t) for z ∈ D . Now we follow [1] to construct the step

function

v∗d(x, t) :=
∑

z<x

d(z, t)H(x − z), |d(z, t)| ≤ 2

∣

∣

∣

∣

v∗0(·)
∣

∣

∣

x=z+

x=z−

∣

∣

∣

∣

, z ∈ D , (4.42)

where the estimate of |d(z, t)| is due to the strong convergence and the uniform boundedness

of the jump at each iteration step. From the above analysis, we know that V n
d converges to v∗d

pointwisely, so we need to show that v∗d contains exactly all of the discontinuity of v∗. Indeed,

according to (4.11) in Lemma 4.4, we have the following estimates:

|∂x (V n
c (x, t))| = |V n

x (x, t)| ≤ |(v∗0(x))x| + 2C♯δ, 0 < t < t♯, a.e. x /∈ D .

As the right-hand side in the above formula is independent of t and n, we conclude that V n
c

are equi-continuous and uniformly bounded in any bounded closed interval, which yields an

absolutely continuous limit v∗c (x, t), by Ascoli-Arzela. Finally, we conclude that

v∗ = lim
n→+∞

V n = lim
n→+∞

V n
c + lim

n→+∞
V n

d = v∗c + v∗d. (4.43)

Thus, the solution v∗ is a BV function, and has the exactly the same discontinuity as the initial

data.

• (Step 4: Flux continuity) Finally, we show the continuity of the flux of u. In fact, we

can substitute v into the equation of u and obtain an inhomogeneous linear equation of ū as

follows:

ūt =
(µūx

v
− p
)

x
.

This is of the same form as in Remark 2.3. By virtue of the regularity of u and vt = ux, we infer

that v is Lipschitz continuous with respect to t, which also follows from the Lipshitz continuity

of p(v), since p(v) is analytic.

Therefore, we apply Remark 2.3 and immediately conclude the existence of the solution ū,

and the continuity of the flux for the linear equation. Again, as the equation is linear for ū, it

thus has a unique weak solution. Therefore, u must coincide with ū and thus has a continuous

flux.

Now, we combine the above assertions, i.e., the strong convergence in the sense of (4.40),

the estimates in (4.41), and the property of v in (4.42) and (4.43), to finish the proof of the

desired properties of the solution. �

Remark 4.9 We close this section with the following remarks:

1. As pointed out in Remark 1.5, if u∗
0 satisfies the stronger assumption ‖u∗

0‖L1∩BV ≪ 1,

then the constructed weak solution satisfes that

‖ux(·, t)‖L1
x
≤ 2C♯δ.
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2. From Proposition 4.8, the solution has the following regularity with respect to x:
{

v∗(x, t) ∈ L∞ (0, t♯; L
1(R) ∩ L∞(R) ∩ BV

)

,

u∗(x, t) ∈ L∞ (0, t♯; L
1(R) ∩ L∞(R)

)

,
√

tu∗
x(x, t) ∈ L∞ (0, t♯; L

1(R) ∩ L∞(R)
)

.

However, we have not shown that u is also regular with respect to t.

3. Proposition 4.8 states that v∗ is a BV function in the sense of that it can be represented

as a sum of the step function and an absolutely continuous function. Moreover, v∗ has the same

discontinuity as initial data v∗0 . Moreover, according to (4.38), the total variation of v(x, t) may

not be Hölder continuous at t = 0.

5 Regularity and Uniqueness

By Proposition 4.8 and Remark 4.9, for the weak solution constructed in Section 3 as the

limit of iteration scheme (4.2), we already have the first order regularity with respect to x and

the continuity of the flux. In this section, we further investigate the regularity of the solution;

for instance, the regularity with respect to t. As a consequence, we will show that the weak

solution we constructed is actually the unique weak solution in the function space it belongs

to, and thus finish the proof of Theorems 1.2 and 1.3.

5.1 Regularity and Proof of Theorem 1.2

According to Proposition 4.8, the constructed solutions (v, u) are small in the short time.

In particular, the smallness of the BV estimates of the specific volume v allows us to apply

the results in Section 2 to construct the corresponding heat kernel H(x, t; y, t0;
1
v ) when t < t♯.

Then, we can take advantage of the integral representation of u to study the regularity of u

with respect to t.

Lemma 5.1 Suppose that the initial data satisfies (4.1), and that (v, u) is the weak

solution constructed in Proposition 4.8. Then ut(x, t) is well-defined for any x when t > 0.

Moreover, it has the following property:










‖ut(·, t)‖L∞(R) ≤ O(1)
δ

t
, ‖ut(·, t)‖L1(R) ≤ O(1)

δ

t
,

|ut(x + h, t) − ut(x, t)| ≤ O(1)
δ

t3/2
|h| + O(1)

( δ2

t3/2
+

δ

t

)

∣

∣h
∣

∣

∣

∣log |h|
∣

∣

2
for |h| < 1.

Proof We proceed with the proof in three steps.

• (Step 1: L∞ estimate) We can follow the arguments in Lemma 4.3 to use the heat kernel

to construct the representation

ut(x, t) =

∫

R

Ht

(

x, t; y, 0;
1

v

)

u0(y)dy +

∫

R\D

Hy

(

x, t; y, t;
1

v

)

p(v(y, t))dy

+

∫ t
2

0

∫

R\D

Hty

(

x, t; y, s;
1

v

)

p(v(y, s))dyds

+

∫ t

t
2

∫

R\D

Hty

(

x, t; y, s;
1

v

)

(p(v(y, s)) − p(v(y, t))) dyds

+

∫

R\D

(

∫ t

t
2

Hty

(

x, t; y, s;
1

v

)

ds
)

p(v(y, t))dy
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= I1 + I2 + I3 + I4 + I5. (5.1)

Now, according to the estimate of Ht(x, t; y, t0) and Hy(x, t; y, t) = −δ′(x − y) in Section 2,

Lemma A.1, we directly obtain the estimates of I1 and I2 in (5.1) as follows:

|I1| ≤ O(1)

∫

R

e−
(x−y)2

C∗t

t
3
2

u0(y)dy ≤ O(1)
δ

t
,

I2 =

∫

R\D

Hy

(

x, t; y, t;
1

v

)

p(v(y, t))dy = −∂x (p(v(x, t))) .

For I3 in (5.1), we note the vanishing of the integration of Hty with respect to y. Then we

apply the estimate of Hty in Lemma A.1 in Section 2 and the zeroth order estimates of v in

Proposition 4.8 to obtain that

|I3| =

∫ t
2

0

∫

R\D

Hty

(

x, t; y, s;
1

v

)

(p(v(y, s)) − p(1)) dyds

≤ O(1)δ

∫ t
2

0

∫

R\D

e−
(x−y)2

C∗(t−s)

(t − s)2
dyds ≤ O(1)

δ√
t
.

For I4 in (5.1), again by the estimate of Hty and the time derivative estimate of v in Proposition

4.8, one obtains that

|I4| ≤ O(1)

∫ t

t
2

∫

R\D

e−
(x−y)2

C∗(t−s)

(t − s)2
δ(t − s)√

s
dyds ≤ O(1)δ

∫ t

t
2

1√
t − s

1√
s
ds ≤ O(1)δ.

Next, for I5 in (5.1), we apply integration by parts with respect to y to obtain the following

representation:

I5 =

∫

R\D

(∫ t

t
2

Hty

(

x, t; y, s;
1

v

)

ds − δ′(x − y)

)

p(v(y, t))dy +

∫

R\D

δ′(x − y)p(v(y, t))dy

= −
∫

R\D

(∫ t

t
2

Ht

(

x, t; y, s;
1

v

)

ds + δ(x − y)

)

p′(v(y, t))vy(y, t)dy

−
∑

z∈D

(∫ t

t
2

Ht

(

x, t; ·, s; 1

v

)

ds + δ(x − ·)
)

p(v(·, t))
∣

∣

∣

z+

z−
+ ∂xp(v(x, t))

= I51 + I52 + I53.

Then we apply the time integral estimate of Ht with respect to s in Lemma A.1 and the BV

estimate of v in Proposition 4.8 to obtain that

I51 ≤ O(1)

∫

R\D

e−
(x−y)2

C∗t√
t

|vy(y, t)|dy ≤ O(1)
δ√
t
,

I52 ≤ O(1)
1√
t

∑

z∈D

∣

∣

∣

∣

p(v(·, t))
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ O(1)
δ√
t
.

Note that in I2 and I53, px only appears for x /∈ D , and it has no global L∞ bound. Fortunately,

when we combine I2 and I53, the two terms px cancel out. Therefore, we combine the estimates

above to conclude that I1 is dominant in (5.1), and that

‖ut(·, t)‖L∞ ≤ O(1)
δ

t
, 0 < t < t♯.
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• (Step 2: L1 estimate) The L1 estimate of ut can be constructed in a similar manner

as to L∞ estimate. Actually, according to the cancellation in Step 1, we have the following

estimate:
∫

R

|ut(x, t)|dx ≤
∫

R

∣

∣

∣

∣

∫

R

Ht

(

x, t; y, 0;
1

v

)

u0(y)dy

∣

∣

∣

∣

dx

+

∫

R

∣

∣

∣

∣

∣

∫ t
2

0

∫

R\D

Hty

(

x, t; y, s;
1

v

)

p(v(y, s))dyds

∣

∣

∣

∣

∣

dx

+

∫

R

∣

∣

∣

∣

∣

∫ t

t
2

∫

R\D

Hty

(

x, t; y, s;
1

v

)

(p(v(y, s)) − p(v(y, t))) dyds

∣

∣

∣

∣

∣

dx

+

∫

R

∣

∣

∣

∣

∣

∫

R\D

(

∫ t

t
2

Ht

(

x, t; y, s;
1

v

)

ds + δ(x − y)

)

∂yp(v(y, t))dy

∣

∣

∣

∣

∣

dx

+

∫

R

∣

∣

∣

∣

∣

∑

z∈D

(

∫ t

t
2

Ht

(

x, t; ·, s; 1

v

)

ds + δ(x − ·)
)

p(v(·, t))
∣

∣

∣

z+

z−

∣

∣

∣

∣

∣

dx

= I1 + I2 + I3 + I4 + I5. (5.2)

For the estimates of the last four terms, we only need to add the integration of x to the terms

in the L∞ estimates in Step 1. More precisely, for the estimate of I2 in (5.2), we have that

|I2| =

∫

R

∣

∣

∣

∣

∣

∫ t
2

0

∫

R\D

Hty

(

x, t; y, s;
1

v

)

(p(v(y, s)) − 1) dyds

∣

∣

∣

∣

∣

dx

≤ O(1)

∫ t
2

0

∫

R\D

∫

R

e−
(x−y)2

C∗(t−s)

(t − s)2
dx |(p(v(y, s)) − 1)| dyds ≤ O(1)

δ√
t
.

For the estimate of I3 in (5.2), we recall from the estimates in Proposition 4.8 that vt = ux

and that ‖ux‖L1 is of the order δ/
√

t. Therefore, we obtain the following estimates:

I3 =

∫

R

∣

∣

∣

∣

∣

∫ t

t
2

∫

R\D

Hty

(

x, t; y, s;
1

v

)

(p(v(y, s)) − p(v(y, t))) dyds

∣

∣

∣

∣

∣

dx

≤ O(1)

∫ t

t
2

∫

R\D

∫

R

e−
(x−y)2

C∗(t−s)

(t − s)2
dx

(∣

∣

∣

∣

∫ t

s

vσ(y, σ)dσ

∣

∣

∣

∣

)

dyds

≤ O(1)

∫ t

t
2

1

(t − s)
3
2

(
∫ t

s

∫

R\D

|uy(y, σ)| dydσ

)

ds

≤ O(1)

∫ t

t
2

1

(t − s)
3
2

δ(t − s)√
t

ds ≤ O(1)δ.

For the estimates of I4 and I5 in (5.2), the integration of the heat kernel with respect to x

yields a
√

t factor. Thus, we have that

I4 ≤ O(1)

∫

R\D

∫

R

e−
(x−y)2

C∗t√
t

dx (|vy(y, t)|) dy ≤ O(1)δ,

I5 ≤ O(1)
∑

z∈D

∫

R

e−
(x−y)2

C∗t√
t

dx

∣

∣

∣

∣

p(v(·, t))
∣

∣

∣

z+

z−

∣

∣

∣

∣

≤ O(1)δ.
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Finally, for the estimate of I1 in (5.2), by the estimate of Ht in Lemma A.1, we have that

I1 ≤ O(1)

∫

R

∫

R

e−
(x−y)2

C∗t

t3/2
|u0(y)|dydx ≤ O(1)

‖u0‖L1

t
≤ O(1)

δ

t
. (5.3)

Combining all of the estimates of Ii in (5.2) above, we find that I1 and I2 are dominant,

hence we conclude that ‖ut(·, t)‖L1(R) ≤ O(1) δ
t .

• (Step 3: Hölder estimate of ut(x, t) in x) Starting with the representation ut in (5.1),

and evaluating at x and x + h and taking the difference, we obtain that

ut(x + h, t) − ut(x, t)

=

∫

R

[

Ht

(

x + h, t; y, 0;
1

v

)

− Ht

(

x, t; y, 0;
1

v

)

]

u0(y)dy

+

∫

R\D

[

Hy

(

x + h, t; y, t;
1

v

)

− Hy

(

x, t; y, t;
1

v

)

]

p(v(y, t))dy

+

∫ t
2

0

∫

R\D

[

Hty

(

x + h, t; y, s;
1

v

)

− Hty

(

x, t; y, s;
1

v

)

]

p(v(y, s))dyds

+

∫ t

t
2

∫

R\D

[

Hty

(

x + h, t; y, s;
1

v

)

− Hty

(

x, t; y, s;
1

v

)

]

(p(v(y, s)) − p(v(y, t))) dyds

+

∫

R\D

[

∫ t

t
2

Hty

(

x + h, t; y, s;
1

v

)

ds −
∫ t

t
2

Hty

(

x, t; y, s;
1

v

)

ds
]

p(v(y, t))dy

=: I1 + I2 + I3 + I4 + I5. (5.4)

In what follows, we will only show the detailed estimates on I4; the other estimates can be

obtained in a similar manner.

For I4, using integration by parts, we transfer the y-derivative to pressure p to get that

I4 =

∫ t

t
2

∫

R\D

[

Ht

(

x + h, t; y, s;
1

v

)

− Ht

(

x, t; y, s;
1

v

)

]

[

∂yp(v(y, t)) − ∂yp(v(y, s))
]

dyds

+

∫ t

t
2

∑

α∈D

[

Ht

(

x + h, t; α, s;
1

v

)

− Ht

(

x, t; α, s;
1

v

)

][

p(v(·, t)) − p(v(·, s))
]α+

α−
ds. (5.5)

To take care of the singularity of the heat kernel when s is close to t, we need to gain some

factor of (t − s). Thanks to the Hölder estimate (4.38), we have that
∫

R\D

|∂yp(v(y, t)) − ∂yp(v(y, s))| dy

.

∫

R\D

[

|p′(v(y, t)) − p′(v(y, s))| |vy(y, t)| + |p′(v(y, s))| |vy(y, t) − vy(y, s)|
]

dy

.
δ2(t − s)√

t
+ δ

t − s

t
+ δ(t − s)|log(t − s)|. (5.6)

For the second term in (5.5), direct calculations show that

[

p(v(·, t)) − p(v(·, s))
]α+

α−

=

∫ t

s

[

p′(v(α+, σ))vσ(α+, σ) − p′(v(α−, σ))vσ(α−, σ)
]

dσ

=

∫ t

s

[

(

p′(v(α+, σ)) − p′(v(α−, σ))
)

vσ(α+, σ) + p′(v(α−, σ))
(

vσ(α+, σ) − vσ(α−, σ)
)

]

dσ.
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In view of vσ(z, σ) = uz(z, σ) and the continuity of flux p + µux

v , one can rewrite things as

vσ(α+, σ) − vσ(α−, σ)

= ux(α+, σ) − ux(α−, σ)

=
v(α+, σ)

µ

(

p(v(α+, σ)) − p(v(α−, σ))
)

+
v(α+, σ) − v(α−, σ)

v(α−, σ)
ux(α−, σ).

Therefore, we have that

∑

α∈D

∣

∣

∣

∣

[

p(v(·, t)) − p(v(·, s))
]α+

α−

∣

∣

∣

∣

.

∫ t

s

∑

α∈D

∣

∣

(

p′(v(α+, σ)) − p′(v(α−, σ))
)

vσ(α+, σ)
∣

∣ dσ

+

∫ t

s

∑

α∈D

∣

∣

∣

∣

p′(v(α−, σ))
v(α+, σ)

µ

(

p(v(α+, σ)) − p(v(α−, σ))
)

∣

∣

∣

∣

dσ

+

∫ t

s

∑

α∈D

∣

∣

∣

∣

p′(v(α−, σ))
v(α+, σ) − v(α−, σ)

v(α−, σ)
ux(α−, σ)

∣

∣

∣

∣

dσ

.

∫ t

s

[

δ
δ√
σ

+ δ + δ
δ√
σ

]

dσ . δ(t − s) +
δ2(t − s)√

t
. (5.7)

Plugging (5.6) and (5.7) into (5.5) and using Lemma 3.2, we obtain that

|I4| .

∫ t

t
2

δ

(t − s)
√

t
|h| |log |h||2 δ

[ t − s

t
+ (t − s)|log(t − s)|

]

ds

+

∫ t

t
2

min

(

1,
|h|√
t − s

)

1

(t − s)3/2
δ
[ t − s

t
+ (t − s)|log(t − s)|

]

ds

. δ2|h| |log |h||2
[ 1√

t
+
√

t|log t|
]

+
δ

t
|h||log|h|| + δ|h||log|h||2. (5.8)

Then, we apply similar criteria for I1, I3 and I5, and obtain the following estimates:

|I1| .
δ

t3/2
|h| + δ2

t3/2
|h| |log |h||2 , (5.9)

|I3| .
δ2

t
|h|
∣

∣log |h|
∣

∣

2
+

δ

t
|h|, (5.10)

|I5 + I2| .
δ2

t
|h| |log |h||2 + δ

|h|
t

3
2

+ δ
|h|| log |h||2

t
. (5.11)

Now, we combine (5.4), (5.8), (5.9), (5.10) and (5.11) to conclude that, for 0 < t ≪ 1 and

|h| < 1,

|ut(x + h, t) − ut(x, t)| .
δ

t3/2
|h| +

(

δ2

t3/2
+

δ

t

)

∣

∣h
∣

∣

∣

∣log |h|
∣

∣

2
.

�

Now we are ready to give a rigorous proof of Theorem 1.2.

Proof of Theorem 1.2 The existence and regularity of u has been investigated in

Proposition 4.8 and Lemma 5.1. Therefore, we only need to take care of the regularity of v.

For the first assertion, we combine the strong convergence in Proposition 4.8 and the Hölder
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estimate of the total variation of V n in Lemma 4.1 to imply that
∫

R\D

|vx(x, t) − vx(x, s)|dx ≤ 2C♯δ
[ t − s

t

]

, 0 < s < t.

This, together with the regularity obtained in Proposition 4.8 and Lemma 5.1, gives that the

constructed solution with initial condition (1.4) lies in the function space (1.5).

Next, for the second assertion, u∗
0 satisfies the stronger assumption ‖u∗

0‖L1∩BV ≪ 1. There-

fore, by a similar argument as to that of Remark 4.2, one can obtain the following estimates of

u:

‖ux(·, t)‖L1
x
≤ O(1)δ, ‖ut(·, t)‖L1

x
≤ O(1)

δ√
t
.

Thus the solution gains more regularity in t than Proposition 4.8 and Lemma 5.1. Then, with

similar arguments as to those of Remark 4.2, we can refine the estimate of the total variation

of v and obtain the key estimate
∫

R\D

|vx(x, t) − vx(x, s)|dx ≤ 2C♯δ
[ t − s√

t

]

, 0 < s < t,

which is Hölder continuous in the time variable in [0, t♯]. Thus the solution belongs to (1.6),

and we have finished the proof of the theorem. �

5.2 Uniqueness and Proof of Theorem 1.3

In this part, we will continue to study the stability of the weak solution constructed in

Proposition 4.8 and Theorem 1.2; this will imply the continuous dependence on initial data and

the uniqueness of the solution. We first state that the weak solution continuously depends on

the initial data without proof, provided that it satisfies the smallness condition (4.37).

Lemma 5.2 Let (va
0 , ua

0) and (vb
0, u

b
0) be the initial data satisfying (4.1). Let (va, ua) and

(vb, ub) be two weak solutions, in the sense of Definition 2.1, to the Navier-Stokes equation

(1.1), and assume that they satisfy the smallness properties (4.37) in Proposition 4.8.

Then, there exists a positive constant C♭ such that we have the following error estimates

showing the stability of the solution:

F
[

va − vb, ua − ub
]

≤ C♭

(

‖ua
0 − ub

0‖L∞
x

+ ‖ua
0 − ub

0‖L1
x

+ ‖va
0 − vb

0‖L1
x

+ ‖va
0 − vb

0‖L∞
x

+ ‖va
0 − vb

0‖BV

)

.

Here F is the functional defined in (4.39) of Proposition 4.8. Moreover, the following L1

stability holds:
∣

∣

∣

∣

∣

∣va − vb
∣

∣

∣

∣

∣

∣

1
+
∣

∣

∣

∣

∣

∣ua − ub
∣

∣

∣

∣

∣

∣

1
≤ C♭

(

‖va
0 − vb

0‖L1
x

+ ‖ua
0 − ub

0‖L1
x

)

.

Remark 5.3 The proof of this Lemma is similar to that in [1], where a stronger assump-

tion u0 ∈ L1 ∩BV is assumed. Indeed, thanks to the smallness requirement, one can construct

an associated BV coefficient heat kernel and obtain integral representations of the solutions

(va, ua) and (vb, ub), and then follow the arguments in Lemma 4.6 and Lemma 4.7 to complete

the proof. In particular, the weak solution constructed in Proposition 4.8 automatically satisfies

the smallness condition (4.37), which implies that it depends on initial data continuously.

Lemma 5.2 shows the continuous dependence on the initial data of the solution, if it satisfies

the smallness condition (4.37). However, given initial data satisfying (4.1), and a weak solution
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(v, u) in the function space (1.5), we do not know in advance whether or not the weak solution

is small, thus do not know whether or not our constructed solution is unique in function space

(1.5). In the next lemma, by further assuming that ‖u∗
0‖BV < δ, we prove that all possible

solutions to (1.1) will be small in the function space (1.6).

Lemma 5.4 Let the initial data satisfy the following smallness condition for small δ∗:

‖v0‖BV + ‖v0 − 1‖L1 + ‖u0‖BV + ‖u0‖L1 < δ∗ ≪ 1.

Let (v, u) be any weak solution to (1.1) in the function space (1.6). Moreover, let C♯ and δ

be the parameters given in Proposition 4.8 and Theorem 1.2. Then, if δ∗ is sufficiently small,

there exists a small positive constant t∗ such that the following smallness properties hold for

the solution:

max
{

‖u(·, t)‖L1
x
, ‖u(·, t)‖L∞

x
, ‖ux(·, t)‖L1

x
,
√

t ‖ux(·, t)‖L∞
x

}

≤ 2C♯δ, 0 < t < t∗.

Proof According to Proposition 4.8 and Theorem 1.2, at least one weak solution exists

in the space (1.6), provided that the initial data is sufficiently small. If the solution is exactly

the one we constructed before, then the smallness of the solution immediately follows from

Theorem 1.2 and we are done. In general, suppose that the solution satisfies condition (1.6)

with sufficiently small initial data. Then, we first note in Remark 1.5 that v(x, t) is continuous

in the short time. Therefore, there exists a small t∗ such that

‖v(·, t) − 1‖L1
x
≤ Cδ∗, ‖v(·, t) − 1‖L∞

x
≤ Cδ∗, ‖v(·, t) − 1‖BV ≤ Cδ∗, 0 ≤ t < t∗ ≪ 1,

which provides the smallness of v(x, t) in the short time. Then, as δ∗ and t∗ are sufficiently

small, we can follow the arguments in Section 2 to construct the heat kernel H(x, t; y, τ ; µ
v ).

Then, mulitiplying H(x, t; y, τ ; µ
v ) to the second equation in (1.1) and using integration by parts

to yield an integral representation of u,

u(x, t) =

∫

R

H(x, t; y, 0;
µ

v
)u(y, 0)dy +

∫ t

0

∫

R

Hy(x, t; y, τ ;
µ

v
)p(y, τ)dydτ. (5.12)

In what follows, we will show the smallness of u(x, t) in short time. Actually, the estimates of

u(x, t) are very similar to Lemma 4.3. First, for the zeroth order estimates, we directly apply

the representation (5.12), the properties of H , and the regularity of the solution to obtain, for

t < t∗ ≪ 1, that

|u(x, t)| ≤
∫

R

∣

∣

∣H(x, t; y, 0;
µ

v
)
∣

∣

∣ |u(y, 0)|dy +

∫ t

0

∫

R

∣

∣

∣Hy(x, t; y, τ ;
µ

v
)
∣

∣

∣ |p(y, τ) − p(1)|dydτ

≤ O(1)δ∗ + O(1)
√

t,

‖u(x, t)‖L1 ≤
∫

R

∫

R

∣

∣

∣H(x, t; y, 0;
µ

v
)
∣

∣

∣ |u(y, 0)|dydx

+

∫

R

∫ t

0

∫

R

∣

∣

∣Hy(x, t; y, τ ;
µ

v
)
∣

∣

∣ |p(y, τ) − p(1)|dydτdx

≤ O(1)δ∗ + O(1)
√

t.

Then, for the first order estimates of u(x, t), we deal with the L∞ estimate first. Actually, we

follow the representation (5.12) to obtain that

ux(x, t) =

∫

R

Hx(x, t; y, 0;
µ

v
)u(y, 0)dy +

∫ t

0

∫

R

Hxy(x, t; y, τ ;
µ

v
)p(y, τ)dydτ. (5.13)
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For the homogeneous term, the initial data will provide the small factor δ, and we follow the

proof in Lemma 4.3 to get that

∣

∣

∣

∫

R

Hx(x, t; y, 0;
µ

v
)u(y, 0)dy

∣

∣

∣ ≤ O(1)
δ∗√

t
. (5.14)

Then, for the inhomogeneous term, we also follow (4.8) in the proof of Lemma 4.3 to obtain

the estimates. Actually, as the estimates are very similar to the estimates of (4.8), we omit the

details and provide the following estimates:
∣

∣

∣

∣

∫ t

0

∫

R

Hxy(x, t; y, τ ;
µ

v
)p(y, τ)dydτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

0

∫

R

Hxy(x, t; y, τ ;
µ

v
)p(y, t)dydτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

∫

R

Hxy(x, t; y, τ ;
µ

v
) (p(y, τ) − p(y, t)) dydτ

∣

∣

∣

∣

≤ O(1) + O(1)

∫ t

0

∫

R

e−
(x−y)2

C∗(t−τ)

(t − τ)
3
2

(∫ t

τ

|vσ(y, σ)|dσ

)

dydτ

≤ O(1) + O(1)

∫ t

0

1

(t − τ)

(∫ t

τ

1√
σ

dσ

)

dτ ≤ O(1)(1 +
√

t). (5.15)

Now, since t < t∗ ≪ 1, we combine (5.13), (5.14) and (5.15), and let t∗ be sufficiently small, to

obtain that

|ux(x, t)| ≤ O(1)
δ∗√

t
+ O(1) ≤ O(1)

δ∗ +
√

t∗√
t

, 0 < t < t∗.

Similarly, we have the L1 estimates as follows:

‖ux(·, t)‖L1 ≤ O(1)(δ∗ +
√

t∗), 0 < t < t∗.

Now, we combine all of the above zeroth and first order estimates to conclude that, for suffi-

ciently small δ∗ and t∗, the following estimates hold:

max
{

‖u(·, t)‖L1
x
, ‖u(·, t)‖L∞

x
, ‖ux(·, t)‖L1

x
,
√

t ‖ux(·, t)‖L∞
x

}

≤ 2C♯δ, 0 < t < t∗.

Here C♯ and δ are given as in Proposition 4.8 and Theorem 1.2. �

Lemma 5.4 shows that if the initial data is sufficiently small, then for any weak solution

in the function space (1.6), we can find a small time t∗ such that the weak solution will be as

small as the solution constructed in Proposition 4.8 and Theorem 1.2 in the short time period

t ∈ [0, t∗]. Now, with Lemma 5.2 and Lemma 5.4 in hand, we are ready to show the proof of

the second main result, Theorem 1.3, regarding the local-in-time stability and uniqueness of

the weak solution.

Proof of Theorem 1.3 Taking all of the above, Proposition 4.8 and Theorem 1.2

guarantee the existence of the two weak solutions if δ∗ < δ and t < t♯, where δ and t♯ are given

as in Proposition 4.8 and Theorem 1.2. Next, Lemma 5.4 guarantees the smallness of the two

solutions for t ∈ [0, t∗). Therefore, for t ∈ [0, t∗), we can apply Lemma 5.2 to obtain the error

estimates

F
[

va − vb, ua − ub
]

≤ C♭

(

‖ua
0 − ub

0‖L∞
x

+ ‖ua
0 − ub

0‖L1
x

+ ‖va
0 − vb

0‖L1
x

+ ‖va
0 − vb

0‖L∞
x

+ ‖va
0 − vb

0‖BV

)

, 0 < t < t∗.
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This finishes the proof of the first part. Then, if the two solutions have common initial data,

one immediately has that F
[

va − vb, ua − ub
]

= 0, which shows that the two solutions coincide

with each other almost everywhere. �

6 Summary

In the present paper, we have studied the regularity and uniqueness of the weak solution to

the isentropic compressible Navier-Stokes equation (1.1). The key point is the representation

of the solution by heat kernels with variable BV coefficients and the corresponding Hölder

estimates. The delicate estimates of the heat kernels allowed us to gain the existence, regularity

and uniqueness of the solution to (1.1) in local time. Finally, combining the estimates of Green’s

function to (1.1) linearized around a constant state, we have followed the criteria in [1] to

conclude the global existence of the solution. We refer to [1, 24–27] for details regarding the

Green’s function and global existence. Moreover, this method can further yield a pointwise

structure of the solution, and can also be naturally extended to the non-isentropic case, which

will be left to our future works.
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Appendix

1. Estimates of Heat Kernel

Lemma A.1 (Pointwise estimate of heat kernel, [1]) Suppose that the conditions of ρ in

(2.3) hold. Then the heat equation (2.2) admits a weak solution in the distribution sense.

Moreover, there exist positive constants t♯ ≪ 1 and C∗ such that the following pointwise

estimates hold for the heat kernel when t0 < t < t0 + t♯:

|H(x, t; y, t0; ρ)| ≤ C∗
e
− (x−y)2

C∗(t−t0)

√
t − t0

, t0 < t < t0 + t♯,

|Hx(x, t; y, t0; ρ)| + |Hy(x, t; y, µ)| ≤ C∗
e
− (x−y)2

C∗(t−t0)

t − t0
, t0 < t < t0 + t♯,

|Hxy(x, t; y, t0; ρ)| + |Ht(x, t; y, t0; ρ)| ≤ C∗
e
− (x−y)2

C∗(t−t0)

(t − t0)
3
2

, t0 < t < t0 + t♯,

|Hty(x, t; y, t0; ρ)| ≤ C∗
e
− (x−y)2

C∗(t−t0)

(t − t0)2
, t0 < t < t0 + t♯.

Furthermore, we have the following estimates for the time integration of the heat kernel when

t0 < t < t0 + t♯:
∣

∣

∣

∣

∫ t

t0

Hx(x, τ ; y, t0; ρ)dτ

∣

∣

∣

∣

,

∣

∣

∣

∣

∫ t

t0

Hx(x, t; y, s; ρ)ds

∣

∣

∣

∣

≤ C∗e
− (x−y)2

C∗(t−t0) ,

∣

∣

∣

∣

∫ t

t0

Hxy(x, τ ; y, t0; ρ)dτ− δ(x−y)

ρ(x, t0)
−
∫ t

t0

ρ(x, t0)−ρ(x, τ)

ρ(x, t0)
Hxy(x, τ ; y, t0; ρ)dτ

∣

∣

∣

∣

≤ C∗
e
− (x−y)2

C∗(t−t0)

√
t − t0

,
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∣

∣

∣

∣

∫ t

t0

Hxy(x, t; y, s; ρ)ds +
δ(x − y)

ρ(y, t)
−
∫ t

t0

ρ(y, t) − ρ(y, s)

ρ(y, t)
Hxy(x, t; y, s; ρ)ds

∣

∣

∣

∣

≤ C∗
e
− (x−y)2

C∗(t−t0)

√
t − t0

,

∫ t

t0

Hxx(x, τ ; y, t0; ρ)dτ = −δ(x − y)

ρ(x, t0)
− 1

ρ(x, t0)
∂x

[∫ t

t0

(ρ(x, τ) − ρ(x, t0))Hx(x, τ ; y, t0; ρ)dτ

]

+ O(1)



|∂xρ(x, t0)|e−
(x−y)2

C∗(t−t0) +
e
− (x−y)2

C∗(t−t0)

√
t − t0



 , for x /∈ D ,

∫ t

t0

Hxxy(x, τ ; y, t0; ρ)dτ =
1

ρ(x, t0)

[

δ′(x−y)−
∫ t

t0

∂x

[

(

ρ(x, τ)−ρ(x, t0)
)

Hxy(x, τ ; y, t0; ρ)
]

dτ

]

− ∂xρ(x, t0)

ρ2(x, t0)

[

δ(x − y)−
∫ t

t0

(

ρ(x, τ) − ρ(x, t0)
)

Hxy(x, τ ; y, t0; ρ)dτ

]

+ O(1)



|∂xρ(x, t0)|
e
− (x−y)2

C∗(t−t0)

√
t − t0

+
e
− (x−y)2

C∗(t−t0)

t − t0



 , for x /∈ D ,

∫ t

t0

Ht(x, t; y, s; ρ)ds = H(x, t − t0; y; µt) − δ(x − y) + O(1)δ∗e
− (x−y)2

C∗(t−t0) , µt ≡ ρ(·, t),
∫ t

t0

Hty(x, t; y, s; ρ)ds =

∫ t

t0

ρ(y, t) − ρ(y, s)

ρ(y, t)
Hty(x, t; y, s; ρ)ds

+
1

ρ(y, t)

∫ y

−∞
Ht(x, t; ξ, t0; ρ)dξ − Hy(x, t; y, t; ρ).

Note that the estimates for the terms involving twice x-derivatives do not hold when x ∈ D ,

which is due to the appearance of the Dirac delta functions in Hxx if x ∈ D . Moreover, the

zeroth order estimate can actually be extended to global time, while the higher order estimates

have only been obtained for the local time so far.

In addition to the estimate of fundamental solution itself, we also need the comparison

estimate of two fundamental solutions to heat equation (2.2), associated with different heat

conductivities ρa and ρb.

Lemma A.2 (Comparison estimates [1]) Suppose that the conditions in (2.3) hold for ρa

and ρb. Then there exist positive constants t♯ ≪ 1 and C∗ such that the following estimates

hold when t0 < t < t0 + t♯:

∣

∣H(x, t; y, t0; ρ
b) − H(x, t; y, t0; ρ

a)
∣

∣ ≤ C∗
e
− (x−y)2

C∗(t−t0)

√
t − t0

∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

∞,

∣

∣Hx(x, t; y, t0; ρ
a) − Hx(x, t; y, t0; ρ

b)
∣

∣ ,
∣

∣Hy(x, t; y, t0; ρ
a) − Hy(x, t; y, t0; ρ

b)
∣

∣

≤ C∗
e
− (x−y)2

C∗(t−t0)

t − t0

[

|log(t − t0)|
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

BV

+
√

t − t0

(

∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

1
+ |log t|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

|log τ |∂τ

[

ρa − ρb
]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

]

,

∣

∣Hxy(x, t; y, t0; ρ
a) − Hxy(x, t; y, t0; ρ

b)
∣

∣ ,
∣

∣Ht(x, t; y, t0; ρ
a) − Ht(x, t; y, t0; ρ

b)
∣

∣

≤ C∗
e
− (x−y)2

C∗(t−t0)

(t − t0)3/2

[

|log(t − t0)|
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

BV
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+
√

t − t0

(

∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

1
+ |log t|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

|log τ |∂τ

[

ρa − ρb
]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

)

]

.

Furthermore, we also have comparison estimates for time integrals of the heat kernel as follows:
∣

∣

∣

∣

∫ t

t0

[

Hx(x, τ ; y, t0; ρ
a) − Hx(x, τ ; y, t0; ρ

b)
]

dτ

∣

∣

∣

∣

,

∣

∣

∣

∣

∫ t

t0

[

Hy(x, t; y, s; ρa) − Hy(x, t; y, s; ρb)
]

ds

∣

∣

∣

∣

≤ C∗e
− (x−y)2

C∗(t−t0)

[

∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

BV
+
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |∂τ (ρa − ρb)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

]

,

∣

∣

∣

∣

∫ t

t0

[

Hx(x, t; y, s; ρa) − Hx(x, t; y, s; ρb)
]

ds

∣

∣

∣

∣

,

∣

∣

∣

∣

∫ t

t0

[

Hy(x, τ ; y, t0; ρ
a) − Hy(x, τ ; y, t0; ρ

b)
]

dτ

∣

∣

∣

∣

≤ C∗e
− (x−y)2

C∗(t−t0)

[

∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

∞ +
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

BV
+
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |∂τ (ρa − ρb)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

]

,

∫ t

t0

[

Hxy(x, τ ; y, t0; ρ
a) − Hxy(x, τ ; y, t0; ρ

b)
]

dτ

=

[

1

ρa(x, t0)
− 1

ρb(x, t0)

]

δ(x − y) −
∫ t

t0

[ρa(x, τ) − ρa(x, t0)

ρa(x, t0)
Hxy(x, τ ; y, t0; ρ

a)

− ρb(x, τ) − ρb(x, t0)

ρb(x, t0)
Hxy(x, τ ; y, t0; ρ

b)
]

dτ + O(1)
e
− (x−y)2

C∗(t−t0)

√
t − t0

[

|log(t − t0)|
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

∞

+
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

BV
+
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |∂τ (ρa − ρb)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

]

,

∫ t

t0

[

Hxy(x, t; y, s; ρa) − Hxy(x, t; y, s; ρb)
]

ds

=

[

1

ρa(y, t)
− 1

ρb(y, t)

]

δ(x − y) +

∫ t

t0

[ρa(y, t) − ρa(y, s)

ρa(y, t)
Hxy(x, t; y, s; ρa)

− ρb(y, t) − ρb(y, s)

ρb(y, t)
Hxy(x, t; y, s; ρb)

]

ds + O(1)
e
− (x−y)2

C∗(t−t0)

√
t − t0

[

|log(t − t0)|
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

∞

+
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

BV
+
∣

∣

∣

∣

∣

∣ρa − ρb
∣

∣

∣

∣

∣

∣

1
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
τ

| log τ |∂τ (ρa − ρb)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

]

.

Next, according to the symmetry of the heat equation, we can obtain the following identities

of the heat kernel (as the proof can be constructed directly from proper integration of the

equation (2.2), we omit the details):

Lemma A.3 For the heat equation in conservative form (2.2), the solution has the fol-

lowing properties:


































































∫

R

H(x, t; y, τ ; ρ)dx =

∫

R

H(x, t; y, τ ; ρ)dy = 1,

∫

R

Hx(x, t; y, τ ; ρ)dx =

∫

R

Hx(x, t; y, τ ; ρ)dy = 0,

∫

R

Hy(x, t; y, τ ; ρ)dx =

∫

R

Hy(x, t; y, τ ; ρ)dy = 0,

∫

R

Ht(x, t; y, τ ; ρ)dx =

∫

R

Ht(x, t; y, τ ; ρ)dy = 0,

∫

R

Hτ (x, t; y, τ ; ρ)dx =

∫

R

Hτ (x, t; y, τ ; ρ)dy = 0.


