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We investigate rotational dynamics of an actively driven rotor through experiments and numerical simulations. While
probability density distributions of rotor angular velocity are strongly non-Gaussian, relative probabilities of observing
rotation in opposite directions are shown to be linearly related to the angular velocity magnitude. We construct a stochastic
model to describe transitions between different states from rotor angular velocity data and use the stochastic model to show
that symmetry properties in probability density distributions are related to the detailed fluctuation relation (FR) of entropy
productions.
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1. Introduction
When a particle is dragged through a heat bath by an

external force, it occasionally moves in the opposite direc-
tion to the external force. Such entropy consuming events
have been shown to obey the fluctuation relation.[1,2] Fluctu-
ation relations, which go beyond the traditional second law
of thermodynamics, express the relative possibility to find
entropy production and entropy consuming events in small-
scale non-equilibrium systems. Its validity has been proved
in a surprising range of experiments,[3–6] even extended to
several non-thermal systems nominally outside their realm of
applicability.[7–14]

Active matter systems consist of individual particles
which can move by consuming energy and converting it into
self-propulsion force.[15–20] Such a self-propulsion mecha-
nism drives the system out of equilibrium, and is typically
noisy in itself.[21] Random motions of active particles often
work as “active bath”,[22,23] and provide athermal fluctuations
for passive particles immersed in the system. It is an in-
trigue question to ask whether microscopic thermodynamic
laws such as fluctuation relations hold in active bath.[24–26]

In this paper, we present a statistical analysis of angu-
lar velocity fluctuations of an asymmetric rotor driven by self-
propelled robots. Our main results are as follows: (1) rotor
angular velocities, from both experiments and numerical sim-
ulations, have strongly non-Gaussian distributions; (2) relative
probability for the rotor to rotate in positive and opposite di-
rections is related to the averaged angular velocity magnitude
in a period of time; (3) symmetry properties in the probabil-

ity density distributions are related to the detailed fluctuation
relation (FR) of entropy productions at the trajectory level.

2. Experiment
Our experimental setup is shown in Fig. 1(a), consisting

of an asymmetric rotor and self-propelled robots. The rotor is
cut from a 2-cm-thick styrofoam sheet by a CNC foam cutter.
The outer radius of the rotor is 11.5 cm, and the radius of 8
inner corners of the rotor is 8.5 cm. Part of the interior mate-
rial is removed to reduce the rotor mass and finally each rotor
weights around 8 g. The rotor is connected to an axis fixed to
the bottom styrofoam board by two low-friction ceramic ball
bearings.

Robots, serving as the heat bath in our experiments, are
commercially available toys, Hexbug, whose body is 4.3 cm
long and 1.2 cm wide. Each robot is driven by a vibration
motor. The robot moves with intrinsic rotation and translation
noises, which are approximately Gaussian.[27] As shown in
Fig. 1(a), the robots are placed in a circular experiment cell,
with flower-shaped acrylic boundary. Moving robots inter-
act with the rotor through inelastic collision. Upon collision,
the robots lose their velocity components normal to the rotor
boundary and begin to slide along the surface. Such inelastic
collisions drive the asymmetric rotor into unidirectional mo-
tion (CCW) with apparent fluctuations, see Fig. 1(b).

Motion of the rotor and robots is recorded by a high-
speed camera placed vertically above the experiment arena,
with a resolution of 900 pixel×900 pixel over a field of view
of 50 cm× 50 cm. The frame rate used is 20 fps and each
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video is 1000 s long. Reflective sheets are attached to both
rotor’s edge and robots to increase the contrast. We use a stan-
dard particle tracking algorithm to locate and track the reflec-
tive markers. The velocity of each marker is computed as the
difference of location between two successive images. And
rotor’s angular velocity in each step, Ω , is obtained by aver-
aging the angular velocities, relative to the center axis, of the
8 markers on the rotor. We cut the raw angular velocity time
series into segments of 200 s long. The mean value of the
angular velocity and corresponding distribution in each time
interval are stable after the beginning 200 s. We then exclude
the first 200 s interval, and use remaining data for statistical
analysis.
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Fig. 1. (a), (d) Setup, (b), (e) temporal record of rotor velocity, and (c),
(f) probability distribution of averaged rotor velocity from experiments
(left column, ((a)–(c)) and numerical simulations (right column, (d)–(f)).
(a), (d) System composed of an asymmetric rotor and self-propelled robots.
Flower-shape acrylic boards are used to prevent robots from sticking on the
outside boundary. (b), (e) Temporal fluctuations around averaged rotation
velocity of the rotor. (c), (f) Probability distribution functions of averaged
angular velocity Ωτ .

We define a time averaged angular velocity over a time
interval τ , Ωτ (t) = (1/τ)

∫ t+τ

t [Ω (t ′)/〈Ω〉] dt ′, where 〈·〉 de-
notes an average over the entire time series, and P(Ωτ) de-
notes its probability distribution function (PDF).

A typical time series and PDF of angular velocity for a
rotor driven by 15 robots are shown in Figs. 1(b) and 1(c).
Both positive and negative fluctuations around the mean value
are observed. In order to calculate time series of Ωτ , we di-
vide the Ω/〈Ω〉 series into bins of length τ , and average over

overlapping bins, where the center of each bin is shift from the
previous one by a time difference 0.05 s, to improve statistics.
The probability distribution functions of the coarse-grained
angular velocity for different integration time τ = 0.1 s, 1 s,
2.5 s, 5 s are presented in Fig. 1(c). One could see that these
PDFs are non-Gaussian even after long time integration. Moti-
vated by findings in Refs. [12,14], we then examine the relative
probabilities of positive and negative coarse-grained angular
velocity Ωτ . We are surprised to find that the symmetry func-
tions F (Ωτ) = log [P(+Ωτ)/P(−Ωτ)] are almost linearly re-
lated to Ωτ for τ = 0.1 s, 1 s, 2.5 s, 5 s, with a slope kτ increas-
ing almost linearly with τ as shown in Fig. 2, consistent with
the results in Refs. [4,5,7,29,30]. The symmetry functions de-
viate from linear relation at large angular velocities, where the
amount of data is often insufficient.
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Fig. 2. Symmetry function log [P(+Ωτ )/P(−Ωτ )] ((a), (d)), slope of sym-
metry function ((b), (e)), and rescaled symmetry function ((c), (f)) from
experiments (left column, (a)–(c)) and simulations (right column, (d)–(f)).

3. Numerical simulation
To investigate the necessary factors that lead to the non-

Gaussian fluctuations and unusual symmetry properties, and to
explore their existence in a wider parameter space, we create
a simulation model composed of self-propelled rods and a ro-
tary rotor, see Fig. 1(d). Rods are constructed by 5 overlapping
spheres joined along a straight line and their sizes are chosen
according to the width of Hexbug robots used in experiments.
All spheres from different rods interact with each other via a
Yukawa potential. The flower-shaped boundary and the rotor
are constructed from a string of the same kind of spheres.
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In simulations, center-of-mass 𝑟 (t) and orientation an-
gle θ (t) of a rod are controlled by the second order Langevin
equations

m0
d2𝑟

dt2 = 𝑓ex +𝑓sp−α0
d𝑟
dt

+
√

2D0ξr (t) , (1)

I0
d2θ

dt2 = τex−αI0
dθ

dt
+
√

2DI0ξθ (t) , (2)

where m0 and I0 are the mass and moment of inertia of each
rod, and translational and rotational noise terms are included
to capture the naturally existing fluctuations in robots’ ve-
locity and moving directions.[27] ξr and ξθ are the standard
Gaussian noises. The translational and rotational noises are
not fundamentally coupling for dry active particles,[28] and
their magnitudes are controlled by diffusion coefficients D0

and DI0, which are separately determined by experiment mea-
surements. 𝑓ex and τex denote the external force and torque
from other rods and boundary, α0 and αI0 are the friction
coefficients. Energy is injected into the system through self-
propelled force 𝑓 sp acting on the last particle of each rod and
parallel to the rod body, which ensures the rod to easily slide
along the rotor boundary after collision. This detail is impor-
tant to repeat apparent uni-directional rotation observed in ex-
periment. Change of rotor angle Θ is described by the follow-
ing equation:

I
d2Θ

dt2 = Tex−αI
dΘ

dt
, (3)

where I is the moment of inertia of the rotor, and friction
coefficient αI is set to a very low value to simulate the low-
friction ball bearing in experiment. The rotational noise term
is excluded in Eq. (3) because the gear is a macroscopic ob-
ject and doesn’t show any spontaneous fluctuations. Tex is
the total torque due to collisions with the self-propelled rods.
Parameters used in the simulation are listed in Table 1. With
these parameters, our numerical model can reproduce the ex-
perimental results in angular velocity statistics (right column
of Fig. 1) and symmetry functions (right column of Fig. 2).
We explore the effect of the shape of the central gear, and the
magnitude of self-propelling force 𝑓 sp, and find that the non-
Gaussian shape and symmetry properties of the rotor angular
velocity distributions are qualitatively maintained. Figure 2(e)
shows that the linear dependence of slope kτ vs. τ is valid
in simulation when τ ≥ 0.5 s (Fig. 2(e)). Characteristic time

Table 1. Parameters in numerical simulations.

I/g·cm2 1500
αI/N · cm · s 0.015

m0/g 7
fsp/N 0.2

α0/N · cm−1 · s 0.01
D0/N2 0.00002

I0/g·cm2 10
αI0/N · cm · s 0.001
DI0/N2 · cm2 0.00001

scale of one self-propelling rod colliding and pushing the rotor
is approximately 0.3–0.5 s, which is comparable to this criti-
cal time scale τc. It requires further investigations in the future
to determine whether these two timescales are fundamentally
related.

4. Entropy production
We use the idea of entropy production[2,31] to deepen our

understanding of the symmetry functions in Figs. 1 and 2. To
compute entropy production along a trajectory, we need to
know the transition probability between states. To this end,
a discrete time Markovian model for angular velocity time se-
ries Ωτ is constructed for coarse-grain time larger than typical
rotor-robot collision time (0.5 s). For example, we can coarse-
grain typical data set (c.f. Fig. 1(b)) with an average time
τ = 0.5 s, then calculate difference in two successive steps
dΩτn = Ωτ(n+1)−Ωτn as the acceleration at time step n. After
binning angular velocity time series Ωτ to 26 discretized states
Ωi, we then can easily calculate PDF of acceleration for each
specific state Pa (dΩτ |Ωi). In the end, Pa (dΩτ |Ωi) severs as a
discrete time, discrete state stochastic model for rotor’s angu-
lar velocity.

Based on this stochastic description of angular veloc-
ity evolution, we can calculate trajectory-dependent total
entropy production ∆Stot as defined in Refs. [2,31] for any
trajectory of time length nτ . Here we directly follow the
method in Refs. [32,33] since the angular velocity is of odd-
parity under time reversal operation. Let x(nτ) denote a
trajectory of length nτ , (Θ0,Ωτ0) ,(Θ1,Ωτ1) , . . . ,(Θn,Ωτn),
and x† (nτ) presents its time reversal process,
(Θn,−Ωτn) ,(Θn−1,−Ωτn−1) , . . . ,(Θ0,−Ωτ0). Ωτi de-
notes the coarse-grained angular velocity at time t =

iτ , (n and i are integers). The probability of ob-
serving trajectory x(nτ) is given by P [x(nτ)] =

p0 (Θ0,Ωτ0) p(Θ1,Ωτ1|Θ0,Ω τ0) · · · p(Θn,Ωτn|Θn−1,Ωτn−1).
p0 denotes the initial distribution, and p(Θi,Ωi|Θ j,Ω j) is
a transition probability between two states, which equals to
Pa (Ωi−Ω j|Ω j) given by our stochastic model. Since our sys-
tem has rotationary symmetry, the position Θ0 dependence can
be neglected and the above expression could be easily written
in the following shorter form:

P [x(nτ)] = p0 (Ω τ0) p(Ωτ1|Ω τ0) · · · p(Ωτn|Ωτn−1) . (4)

And its reverse path x† (nτ) is constructed by initiating at the
end of the forward process, reversing the sign of the angular
momentum, and evolving backward in time. We have

P
[
x† (nτ)

]
= p†

0 (−Ωτn)

× p(−Ωτn−1|−Ωτn) · · · p(−Ωτ0|−Ωτ1) . (5)

The total entropy production is defined as the logarithm
of the ratio between the probabilities of the trajectory and its
time-reversed counterpart ∆Stot = log

(
P [x(nτ)]/P

[
x† (nτ)

])
.
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The entropy production characterizes the irreversibility of
the forward path. According to how the reverse trajec-
tory is defined, we choose the initial probability of reverse
path p†

0 (−Ωτn) as the final probability of the forward pro-
cess pn (Ωτn), as mentioned in Ref. [33]. The change in
trajectory entropy log(p0(Ωτ0)/pn(Ωτn)), which equals to
log(p0(Ωτ0)/p†

0(−Ωτn)), is naturally included in the defini-
tion. Since the rotor rotation reaches a steady state in our case,
we set both initial and final distributions of Ωτ as the steady
state distribution p0 (Ωτ) = pn (Ωτ) = P(Ωτ), which has been
provided in Figs. 1(c) and 1(f).

Given a trajectory consisting of a series of n Ωτi, we first
allocate each value into corresponding discrete state, and cal-
culate the probabilities of the forward and backward processes
using Eqs. (4) and (5). We can then calculate the entropy
production for each trajectory. The linear fluctuation relation
log P(∆Stot)

P(−∆Stot)
= ∆Stot is found to be satisfied for any trajectory

time length (Fig. 3(a)). This result in turn proves the valid-
ity of the model we use to describe the rotor’s motion. The
PDF of ∆Stot is non-Gaussian, similar to the distribution of
angular velocity (Fig. 3(b)). The same technique can be ap-
plied to simulation data. Linear relation with slope 1 and non-
Guassian PDF for ∆Stot are also observed in the numerical re-
sult (Figs. 3(d) and 3(e)).
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Fig. 3. (a) Detailed fluctuation relation of total entropy production ∆Stot
for different trajectory length nτ . Colors and markers shapes present time
lengths of trajectories (dark blue squares: nτ = 2 s, light blue circles:
nτ = 4 s, green diamonds: nτ = 6 s, red daggers: nτ = 8 s). (b) Probability
distribution functions of total entropy production ∆Stot (nτ = 6 s). (c) Total
entropy production ∆Stot versus angular displacement ∆θ . Data are divided
by nτ for the convenience of comparison. Corresponding simulation results
are presented in (d)–(f).

5. Physical significance of stochastic entropy
production
To illustrate the significance of the computed entropy pro-

duction, we now turn to the connection between ∆Stot and an-
gular displacement ∆Θ for a specific trajectory. For a given
trajectory length nτ , we calculate the average value and stan-
dard deviation of ∆Stot for all trajectories with a specific an-
gular displacement ∆Θ . We plot ∆Stot/nτ against ∆Θ/nτ in
Fig. 3(c). Here we divide both of quantities by nτ to put data
from different trajectory lengths on the same plot. Note that
∆Θ/nτ is exactly the average angular velocity Ωnτ . We find
that the data collapse for long trajectories (nτ > 6 s) and an
almost linear relation between ∆Stot/nτ and ∆Θ/nτ (i.e., Ωnτ )
appears, with a slope factor not equal to 1. This fact shows
that, in our system, the average angular velocity during a pe-
riod of time can server as a direct indication of irreversibility.
It also explains the FR-like linear dependency shown in Fig. 2.

Statistics of angular acceleration contains important in-
formation. As shown in Figs. 4(a) and 4(c), the average value
of dΩτ decreases almost linearly with rotation velocity Ωτ ,
suggesting a linear drag term in the governing equation. The
variance of dΩτ , 〈dΩ 2

τ 〉 − 〈dΩτ〉2, also depends on the ro-
tation velocity, as shown in Figs. 4(b) and 4(d): variance for
Ωτ < 0 is apparently larger than that for Ωτ > 0. A proba-
ble reason for this dependence is a strong coupling between
rotor motion and nearby robots. As shown in our previous
publication,[27] rotor’s counter-clockwise rotation (in positive
direction) is able to strongly regularize the positions and ve-
locity orientations of outside robots while rotation in negative
direction leads to more chaotic outside robot motion, hence
larger variance in angular acceleration.

With results of the mean and variance for dΩτ , we can
write a discrete time equation for the angular velocity

∆Ω = (M− γΩ)∆t + f (Ω)∆tξ , (6)

including a driving term M, a viscous drag γ , and a noise
term with variable amplitude f (Ω) ( f (0) = 1),

〈
ξi ·ξ j

〉
=

2Dδi j/∆t. The M and γ values can be obtained by fitting
mean value dΩτ ; D can be estimated by the variance of dΩτ

at Ωτ = 0. By numerically solving Eq. (6), we are able to
reproduce major results presented in Figs. 2 and 3. The dis-
tribution of noise term ξ does not have a significant effect on
our results. If f is a constant 1, equation (6) reduces to a regu-
lar Langevin equation which has been well studied;[14] in this
case, the heat bath temperature can be found as T = D/γ and
the entropy production is related to the angular displacement
as ∆S = M∆Θ/T = Mγ∆Θ/D. Inspired by this result, we plot
∆Stot/∆Θ against Mγ/D in Fig. 5 and observe a linear relation.
This suggests that rotor dynamics in our experiments is gov-
erned by a Langevin-like mechanism with a constant drive and
a viscous drag. It is possible that D/γ gives an estimation of
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the effective temperature of the heat bath of active robots. Ob-
viously, it requires more experimental and numerical data to
determine the significance of such a quantify, which is beyond
the scope of this paper.
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stand for experiment and red ones for numerical simulation. Different mark-
ers represent different experiment/simulation conditions. Blue square: 15
robots; blue circle: 10 robots; blue star: 15 robots, add silicone oil in ro-
tor bearing, which results in a 20 times higher drag coefficient when rotor
rotates. Red square: 10 self-propelled rods; red circle: 15 self-propelled
rods; red diamond: 15 self-propelled rods, obtuse angle ratchet; red trian-
gle: 15 self-propelled rods, 75% self-propelling force on each rod; red slant
triangle: 15 self-propelled rods, 50% self-propelling force on each rod.

6. Discussion and conclusion
We have studied angular velocity fluctuations of a rotor

driven by self-propelled robots. Both experiments and simu-
lations show that relative probabilities of observing rotation in
opposite directions are linearly related to the angular velocity
magnitude. To understand this observation, we constructed a
stochastic description of the coarse-grained angular velocity
time series and showed that the linear dependence found in
angular velocity symmetry functions originates from the fluc-
tuation relation of stochastic entropy production at the trajec-
tory level. Both probability density functions of the entropy

production and the directly measured rotor’s angular velocity
are non-Gaussian, which is explained by a strong coupling be-
tween the orientation of nearby robots and the rotating state of
the rotor. Our data also have shown that rotor motion bears
strong similarities to Langevin dynamics with a constant driv-
ing torque and a linear drag, which explains the linear relation
between the entropy production and angular displacement in a
specific trajectory.
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