
Colloidal Stochastic Resonance in Confined Geometries

Qian Zhu,1 Yang Zhou ,1 Fabio Marchesoni,2,3 and H. P. Zhang 1,*

1School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
2Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University,

Shanghai 200092, China
3Dipartimento di Fisica, Universitá di Camerino, I-62032 Camerino, Italy

(Received 7 February 2022; revised 1 April 2022; accepted 4 August 2022; published 22 August 2022)

We investigate the dynamical properties of a colloidal particle in a double cavity. Without external
driving, the particle hops between two free-energy minima with transition mean time depending on the
system’s entropic and energetic barriers. We then drive the particle with a periodic force. When the forcing
period is set at twice the transition mean time, a statistical synchronization between particle motion and
forcing phase marks the onset of a stochastic resonance mechanism. Comparisons between experimental
results and predictions from the Fick-Jacobs theory and Brownian dynamics simulation reveal significant
hydrodynamic effects, which change both resonant amplification and noise level. We further show that
hydrodynamic effects can be incorporated into existing theory and simulation by using an experimentally
measured particle diffusivity.
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Noise is widely regarded as a disturbance in signal
detection and transmission. However, quite to the contrary,
an optimal amount of noise was shown to amplify the
response of a nonlinear system to a weak external
forcing signal [1–13]. Such a counterintuitive resonant
phenomenon, known as stochastic resonance (SR), has
been observed in the most diverse natural systems, ranging
from physics [10], to chemistry [14], engineering [15], and
biomedical sciences [16]. SR represented a paradigmatic
shift in the way we think about noise in systems out
of equilibrium: we realized that noise can play a con-
structive role in many technological applications, such as
energy harvesting [17], image processing [18], and signal
amplification [12].
Since its discovery in the early 1980s, SR has been

studied mostly in purely energetic multistable potentials
[10]. However, at the microscopic scale, the dynamics of a
system is governed by its free energy, which can be
dominated by entropic rather than energetic terms. For
example, in soft condensed matter and in a variety of
biological systems [19,20], particles are often confined to
constrained geometries, such as micro- and nanofluidic
devices [21–24], porous mediums [25–27], and cells
[28–31], whose size and shape surely affect the SR
mechanism. Burada et al. [13] considered the case of a
Brownian particle moving in a double cavity under the
action of a periodic force, oriented along the cavity axis,
and a constant transverse force. They eliminated the
particle’s transverse degrees of freedom by introducing
an effective entropic term in the Fick-Jacobs (FJ) equation
[32,33] for its axial coordinate, and demonstrated that the
entropic barrier corresponding to the opening connecting

the two cavities suffices to cause SR. Hereafter many
theoretical and numerical studies on entropic SR in con-
fined structures have appeared. Researchers have inves-
tigated how entropic SR depends on a variety of factors,
like boundary shape [34–36], external forcing [37–39], and
noise properties [40,41]; the possibility of using entropic
SR for particle manipulation has also been explored [42].
As of today, a quantitative experimental demonstration

of entropic SR is missing, even though detailed exper-
imental data are urgently needed to validate theoretical
assumptions and compare with numerical predictions.
Here, we experimentally measure diffusion-driven trans-
port of Brownian particles along the axis of a double cavity.
In the absence of external driving, the particles switch
spontaneously between two free-energy wells. Under
periodic driving, SR occurs for driving periods of about
twice the switching time [1–13]. Discrepancies between
experimental results and predictions from the FJ theory and
Brownian dynamics (BD) simulations are a measure of
prominent hydrodynamic effects overlooked in the current
literature; a close quantitative agreement is restored only
by introducing a space-dependent diffusion function to be
measured inside the cavity [22,43–47].
Experimental setup.—Our experimental setup is built

on an inverted microscope stage. As shown in Fig. 1(a),
a superparamagnetic colloid of radius r ¼ 0.25 μm is
immersed in a double-well microstructure and experiences
an oscillatory force in the x direction, F̃ðtÞe⃗x. The force is
generated by a pair of permanent magnets mounted on a
linear stage, which modulates the magnets’ position to
control the force [48]. To generate a potential barrier [13], a
third magnet was introduced, which exerts a force −G̃e⃗y in
the y direction.
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Our cavities were fabricated on a coverslip by means of
a two-photon direct laser writing system. The quasi-2D
cavity has a uniform height [H ¼ 2.7 μm in Fig. 1(a)]. The
space accessible to the particle center in the cavity
has a local width 2gðxÞ along its axis x. As shown by
solid lines in Fig. 1(b), gðxÞ is given the form of an
approximate cosine of period L, which then tapers off to a
constant in correspondence with the bottlenecks; gnðwÞ
represent its minimum(maximum) half-width, respectively
[48]. We varied gn (from 0.25 to 0.75 μm) and fixed other
parameters (L ¼ 6.4 μm, gw ¼ 2.95 μm) in the experi-
ment. Particle motion in the quasi-2D cavity was recorded
through a microscope. The projected particle trajectory in
the x − y plane was extracted from the recorded videos by
standard particle tracking algorithms. Experiments were
carried out at room temperature T0 ¼ 297 K.
Numerical simulation and FJ theory.—The Brownian

motion of a particle with a friction coefficient γ0 can be
modeled by the Langevin equation,

dr⃗
dt

¼ −Ge⃗y þ FðtÞe⃗x þ
ffiffiffiffiffiffi
D0

p
ξ⃗ðtÞ; ð1Þ

where the first two terms on the rhs are the contributions
from the external forces, G ¼ G̃=γ0 and FðtÞ ¼ F̃ðtÞ=γ0,
D0 ¼ kBT=γ0 is the free particle diffusivity, and ξ⃗ðtÞ is a 2D
zero-mean Gaussian noise with correlation functions
hξiðtÞξjðt0Þi ¼ 2δijδðt − t0Þ for i; j ¼ x, y. The driving
force in the x direction, F̃ðtÞ, is given as a square wave
with an amplitude F̃0 and a period Tν, see the inset of
Fig. 1(a). Particle motion in our cavity occurs mainly in the
lateral direction. For such quasi-one-dimensional (1D)
channels [49,50], Jacobs and Zwanzig proposed a reduced
theoretical formulation [32,33]; they assumed that the
transverse degrees of freedom equilibrate fast and elimi-
nated them adiabatically by means of an approximate
perturbation scheme. The FJ equation governing the
probability density, pðx; tÞ, of the stochastic process of
Eq. (1) reads

∂

∂t
pðx;tÞ¼ ∂

∂x

�
D0

∂p
∂x

þ½V 0ðx;D0Þ−FðtÞ�pðx;tÞ
�
; ð2Þ

with effective potential [20]

Vðx;D0Þ ¼ −D0 ln

�
2D0

G
sinh

�
GgðxÞ
D0

��
: ð3Þ

We remark that, although originally the friction coefficient,
γ0, and the particle diffusion constant, D0, were assumed
to be constant, the FJ equations (2) and (3) can be
generalized for space dependent coefficients to incorporate
additional boundary curvature [51–54] and hydrodynamic
effects [22,46].
Particle free diffusion.—We first investigate particle

diffusion in an unbiased cavity, FðtÞ ¼ 0. The temporal
record of the particle x coordinate plotted in Fig. 2(a),shows
that the particle stochastically switches between two free-
energy minima at �xm ¼ �3.2 μm. Following the pro-
cedure detailed in the Supplemental Material SM [48], we
identified the switching event times, ti, marked in the figure
by vertical lines; the time difference between two sub-
sequent switching events, T ðiÞ ¼ ti − ti−1, is defined as the
residence time at time ti. In Figs. 2(b) and 2(c), we plot the
probability distribution of the residence times, NðT Þ,
measured in experiments with two different cavity neck
widths (gn ¼ 0.25 and 0.75 μm), with and without the y
magnet (Gon=Goff ). In all experiments NðT Þ can be fitted
by the exponential law, NðT Þ ¼ ð1=TkÞ expð−ðT =TkÞÞ,
with one free parameter, the Kramers time Tk [10]. Our
experimental estimates of the Kramers times, reported in
Figs. 2(d) and 2(e), increase sharply with decreasing neck
width, gn, or adding an energy barrier, G [13].
From the FJ equations (2) and (3), we calculated the

mean first-passage time [10,22] for the particle to diffuse
from −xm to xm, which is known to return a close
approximation of the Kramers time,

(a)

(b)

FIG. 1. (a) Schematic illustration (not to scale) of the exper-
imental setup, including a superparamagnetic particle in a double
cavity, a pair of permanent magnets on a translation stage in the x
direction, and a third permanent magnet in the y direction.
Oscillatory forcing in thexdirection is shown in the inset. (b)Optical
image of a double cavity (scale bar, 2 μm).Black solid lines,�gðxÞ,
represent the effective boundary of the space accessible to the
particle center, see Fig. S1 in SM. Geometric parameters,L, gn, and
gw, are defined in the text. The spatially varying particle diffusivity,
Dðx; yÞ, is overlayed on the right half of the image;D0 is the particle
diffusivity in the open region of the cavity.
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Tk ≈
Zxm

−xm

dχ

DðχÞ sinhðGgðχÞDðχÞ Þ

Zχ

−xm

sinh

�
GgðζÞ
DðζÞ

�
dζ: ð4Þ

We have replaced the diffusion constant,D0, in Eqs. (2) and
(3) by an x-dependent particle diffusivity, which incorpo-
rates both the entropic corrections resulting from the
adiabatic elimination of the transverse coordinate [51–
54], and the hydrodynamic effects [22,46], that is

DðxÞ ¼ DhydðxÞ
½1þ g0ðxÞ2�1=3 : ð5Þ

The elimination of the transverse coordinate [51–54]
requires that the cavity slope cannot be significantly greater
than one; see Sec. VII in the SM for further discussions.
Following the approach of Ref. [22] to include hydro-
dynamic effects, we measured the xx component of the
particle diffusivity tensor throughout the cavity, Dxðx; yÞ—
examples of the spatially dependent diffusivity are reported
in Figs. 1(b) and S4. The measured diffusivityDxðx; yÞwas

then averaged in the y direction to extract the averaged
diffusivity, DhydðxÞ, appearing in Eq. (5), see detailed
procedure in the SM [48]. As shown by black curves in
Figs. 2(d) and 2(e), Eqs. (4) and (5) yield predictions in
excellent agreement with experiments. On the contrary,
had we used the constant diffusivity, D0, measured in the
open part of the cavity, this approach would have worked
only for cavities with wide necks, see blue curves in
Figs. 2(d) and 2(e). Such a discrepancy is due to the
hydrodynamic effects, which significantly suppress dif-
fusivity in the neck region. In BD simulations, hydro-
dynamic effects can be reproduced by integrating the
Langevin equation (1) for local friction and diffusion
coefficients, γxðx; yÞ and Dxðx; yÞ (see SM [48] for
technical details); results are shown as triangles in
Figs. 2(d) and 2(e).
Stochastic resonance.—After quantifying the equilib-

rium dynamics, we next carried out nonequilibrium
experiments, whereby the colloid trapped in a cavity is
periodically driven by a pair of permanent magnets. In sharp
contrast with the undriven cases of Figs. 2(b) and 2(c),
the residence time distributions in Figs. 3(a) and 3(b) exhibit
a series of peaks, centered at the odd multiples of the half-
driving period,Tn ¼ ðn − 1=2ÞTν, withn ¼ 1; 2;… [9–11].
Under a standard two-state approximation, NðT Þ can be
calculated from the Langevin equation (1) [4,10]. We
empirically adapted that result to our system, NðT Þ ¼
N0½1 − 1

2
ðF̃0xm=kBTÞ2 cos ð2πT =TνÞ� exp ð−ðT =TkÞÞ=Tk,

where N0 is a normalization factor and the time scale, Tk,
is determined through Eq. (4) [6,10]. As illustrated in
Figs. 3(a) and 3(b), predictions of the equation above agree
fairly closely with experiments and BD simulations without
any additional fitting parameter.
To quantify the statistical synchronization between

periodic forcing and well switching, we integrated the
area under the first NðT Þ peak at T ¼ Tν=2: P1 ¼R 3Tν=4
Tν=4

NðT ÞdT [the red area under the first peak in
Figs. 3(a) and 3(b)]. Our experimental data for P1, plotted
in Fig. 3(c), exhibit a broad peak centered around
Tν¼ 2Tk, which is consistent with many previous results
[11,55].
To further test the FJ theory, we numerically integrated

Eq. (2) [56–58] and used the probability distribution,
pðx; tÞ, to compute the time-dependent average, hxðtÞi ¼R
xpðx; tÞdx. Through an appropriate Fourier expansion

[13], we extracted the amplitude, M1, of the first harmonic
of hxðtÞi at the driving frequency, ν ¼ 1=Tν. Accordingly,
the spectral amplification, η, defined as the ratio of the
power stored in the system response and the power of the
external force, FðtÞ, at frequency ν, could be computed as
η ¼ ½M1=F0�2. The spectral amplification increases with
the driving period as shown in Fig. 3(c); experimental,
theoretical, and simulation data agree again with one another
[9,55].

(a)

(b) (c)

(d) (e)

FIG. 2. Diffusion in a double cavity without periodic forcing.
(a) Temporal record of the particle x coordinate. The blue(red)
areas denote its residence times of the particle on the left(right)
side of the cavity. (b), (c) Distribution of residence times in wide
and narrow neck cavities. Experimental and fitting results are
denoted by symbols and dashed lines, respectively. (d), (e)
Kramers times in different cavities without, (d), and with trans-
verse force G ¼ 0.55 μm=s, (e). Experimental and numerical
results are represented by symbols; predictions from the FJ theory
by blue (constant diffusivity, D0) and black [measured x-
dependent diffusivity, DhydðxÞ] curves.

PHYSICAL REVIEW LETTERS 129, 098001 (2022)

098001-3



The results of Fig. 3 prove that we can reliably account
for hydrodynamic effects in nonequilibrium situations by
means of a suitable space dependent diffusion function.
This gives us a powerful tool to investigate SR under the
influence of strong hydrodynamic effects. To that end, we
performed BD simulations [Eq. (S3) in SM] for the
spatially varying friction coefficient, γxðx; yÞ, computed
with COMSOL, and different temperatures, T, to tune the
noise level. From the BD particle trajectories, we computed
the spectral amplification, η. In Fig. 4, we plot η as a
function of the noise level, quantified here by the thermal
energy, kBT. In all cases, a resonant peak of η is observed at
some intermediate value of kBT, which means that SR
occurs also in the presence of strong hydrodynamic effects,
and the FJ theory with DhydðxÞ yields predictions (solid
curves) in excellent agreement with BD simulations. The
ηðkBTÞ curves displayed in Fig. 4 clearly show that (i) the
resonance peak is more pronounced as the forcing fre-
quency decreases [Fig. 4(a)]; (ii) the maximal amplification
is enhanced by lowering the intensity of the transverse
force, G [Fig. 4(b)]; and (iii) both the peak amplification
and the optimal SR noise level increase with decreasing the
forcing amplitude, F0. Results in Figs. 4(a)–4(c) are
qualitatively similar to those earlier obtained for systems
with constant diffusivity [10,13]. The data in Fig. 4(d) show
how hydrodynamic effects quantitatively affect the SR
behavior overall. For the wide neck cavity (gn ¼ 0.75 μm),
the spatial modulation of γxðx; yÞ is negligible; hence, FJ
predictions with DhydðxÞ (solid curve) and D0 (dashed
curve) are in excellent agreement with the BD simulation
output. On the contrary, for the narrow neck cavity

(gn ¼ 0.25 μm), where hydrodynamic effects are known
to be strong, the FJ theory with constant diffusivity, D0,
would predict higher amplification peaks and lower optimal
noises.

(a)

(c)

(b)

FIG. 3. (a), (b) Normalized residence time distributions from experiments, theory, and simulations, for two forcing periods, Tν ¼ 60 s
(a) and Tν ¼ 240 s (b), in a wide neck cavity (gn ¼ 0.75 μm) with Kramers time Tk ¼ 120 s. The red vertical bars represent the area of
the first peak, P1, from the experiments. (c) First peak of the residence time distributions, P1 (I-III), and spectral amplification, η (IV-VI),
plotted versus the normalized forcing period, Tν=Tk, under three different experimental conditions. Transverse force G ¼ 0.55 μm=s
was used for experiments of the middle and right columns in (c) (Gon). Error bars represent standard errors from experimental
measurements.

(a) (b)

(c) (d)

FIG. 4. Dependence of the spectral amplification, η, on the
noise level, kBT, for different experimental conditions,(a) driving
frequency ν, (b) transverse force G, (c) driving amplitude F0,
(d) cavity minimum half-width gn. Circles and solid lines
represent results, respectively, from BD simulation and FJ theory
with spatially varying friction coefficient. The dashed curves
in (d) are obtained from the FJ theory with constant diffusivity,
D0, in Eq. (5). The narrow neck cavity (gn ¼ 0.25 μm) was
used in (a)–(c).
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Conclusion.—We have experimentally investigated col-
loidal transport in a double cavity. When a particle is
subjected to a periodic force with a period twice the
Kramers time, the particle’s motion is statistically
synchronized with the drive. This provides a direct dem-
onstration of the entropic SR mechanism theoretically
predicted in Ref. [13]. We further observed that strong
hydrodynamic effects in cavities with tight constrictions
can quantitatively affect the optimal SR parameters. We
successfully reproduced such hydrodynamic effects in the
nonequilibrium BD simulations and FJ theory by intro-
ducing a space dependent friction coefficient to be either
measured from experiments or computed from hydrody-
namic models. Our results confirm that the proposed
generalization of the FJ theory is indeed a predictive tool
to study driven transport in tightly constrained geometries
with strong entropic and hydrodynamic effects.

We acknowledge financial support from the
National Natural Science Foundation of China (Grants
No. 12074243, No. 11774222, and No. 11422427). We
thank Xiang Yang, Mingji Huang, and Siyuan Yang for
useful discussions and the Student Innovation Center at
Shanghai Jiao Tong University for support.

*hepeng_zhang@sjtu.edu.cn
[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453

(1981).
[2] C. Nicolis, Tellus 34, 1 (1982).
[3] S. Fauve and F. Heslot, Phys. Lett. 97A, 5 (1983).
[4] McNamara and Wiesenfeld, Phys. Rev. A 39, 4854 (1989).
[5] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S.

Santucci, Phys. Rev. Lett. 62, 349 (1989).
[6] T. Zhou, F. Moss, and P. Jung, Phys. Rev. A 42, 3161

(1990).
[7] P. Jung and P. Hanggi, Phys. Rev. A 44, 8032 (1991).
[8] J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss,

Nature (London) 365, 337 (1993).
[9] L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys. Rev.

Lett. 74, 1052 (1995).
[10] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev.

Mod. Phys. 70, 223 (1998).
[11] D. Babic, C. Schmitt, I. Poberaj, and C. Bechinger, Euro-

phys. Lett. 67, 158 (2004).
[12] R. L. Badzey and P. Mohanty, Nature (London) 437, 995

(2005).
[13] P. S. Burada, G. Schmid, D. Reguera, M. H. Vainstein, J. M.

Rubi, and P. Hänggi, Phys. Rev. Lett. 101, 130602 (2008).
[14] P. Hanggi, ChemPhysChem 3, 285 (2002).
[15] Z. J. Qiao, Y. G. Lei, and N. P. Li, Mech. Syst. Signal

Process 122, 502 (2019).
[16] M. D. McDonnell and D. Abbott, PLoS Comput. Biol. 5,

e1000348 (2009).
[17] C. R. McInnes, D. G. Gorman, and M. P. Cartmell, J. Sound

Vib. 318, 655 (2008).
[18] O. van der Groen and N. Wenderoth, J. Neurosci. 36, 5289

(2016).

[19] P. Hänggi and F. Marchesoni, Rev. Mod. Phys. 81, 387
(2009).

[20] P. S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, and P.
Talkner, ChemPhysChem 10, 45 (2009).

[21] S. Matthias and F. Muller, Nature (London) 424, 53 (2003).
[22] X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, and H. P.

Zhang, Proc. Natl. Acad. Sci. U.S.A. 114, 9564 (2017).
[23] M. J. Skaug, C. Schwemmer, S. Fringes, C. D. Rawlings,

and A.W. Knoll, Science 359, 1505 (2018).
[24] C. Schwemmer, S. Fringes, U. Duerig, Y. K. Ryu, and A.W.

Knoll, Phys. Rev. Lett. 121, 104102 (2018).
[25] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Rev.

Geophys. 44, RG2003 (2006).
[26] D. Wang, H. Wu, L. Liu, J. Chen, and D. K. Schwartz, Phys.

Rev. Lett. 123, 118002 (2019).
[27] H. Wu and D. K. Schwartz, Acc. Chem. Res. 53, 2130

(2020).
[28] H.-X. Zhou, G. Rivas, and A. P. Minton, Annu. Rev.

Biophys. 37, 375 (2008).
[29] P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85, 135

(2013).
[30] F. Hofling and T. Franosch, Rep. Prog. Phys. 76, 046602

(2013).
[31] A. Agrawal, Z. C. Scott, and E. F. Koslover, Annu. Rev.

Biophys. 51, 247 (2022).
[32] M. Jacobs,Diffusion Processes (Springer, New York, 1967).
[33] R. Zwanzig, J. Phys. Chem. 96, 3926 (1992).
[34] P. S. Burada, G. Schmid, D. Reguera, J. M. Rubi, and P.

Hänggi, Eur. Phys. J. B 69, 11 (2009).
[35] P. K. Ghosh, F. Marchesoni, S. E. Savel’ev, and F. Nori,

Phys. Rev. Lett. 104, 020601 (2010).
[36] R. Mei, Y. Xu, Y. Li, and J. Kurths, Phil. Trans. R. Soc. A

379, 20200230 (2021).
[37] P. S. Burada, G. Schmid, D. Reguera, J. M. Rubi, and P.

Hänggi, Europhys. Lett. 87, 50003 (2009).
[38] H. Ding, H. Jiang, and Z. Hou, J. Chem. Phys. 143, 244119

(2015).
[39] L. C. Du, W. H. Yue, J. H. Jiang, L. L. Yang, and M.M. Ge,

Phil. Trans. R. Soc. A 379, 20200228 (2021).
[40] L. Zhao, X. Q. Luo, D. Wu, S. Q. Zhu, and J. H. Gu, Chin.

Phys. Lett. 27, 040503 (2010).
[41] J. Z. Xu and X. Q. Luo, Chin. J. Phys. 63, 382 (2020).
[42] N. Shi and V. M. Ugaz, Phys. Rev. E 89, 012138 (2014).
[43] J. Happel and H. Brenner, Low Reynolds Number Hydro-

dynamics (Prentice Hall, Englewood Cliffs, NJ, 1965).
[44] W.M. Deen, AIChE J. 33, 1409 (1987).
[45] S. L. Dettmer, S. Pagliara, K. Misiunas, and U. F. Keyser,

Phys. Rev. E 89, 062305 (2014).
[46] K. Misiunas, S. Pagliara, E. Lauga, J. R. Lister, and U. F.

Keyser, Phys. Rev. Lett. 115, 038301 (2015).
[47] X. Yang, Q. Zhu, C. Liu, W. Wang, Y. Li, F. Marchesoni, P.

Hänggi, and H. P. Zhang, Phys. Rev. E 99, 020601(R)
(2019).

[48] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.098001 for de-
tailed experimental procedure, additional experimental
and numerical results, and description of Brownian dy-
namics model (2020).

[49] B. Hille, Ion Channels of Excitable Membranes (Sinauer
Associates, Sunderland, MA, 2001).

PHYSICAL REVIEW LETTERS 129, 098001 (2022)

098001-5

https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.3402/tellusa.v34i1.10781
https://doi.org/10.1016/0375-9601(83)90086-5
https://doi.org/10.1103/PhysRevA.39.4854
https://doi.org/10.1103/PhysRevLett.62.349
https://doi.org/10.1103/PhysRevA.42.3161
https://doi.org/10.1103/PhysRevA.42.3161
https://doi.org/10.1103/PhysRevA.44.8032
https://doi.org/10.1038/365337a0
https://doi.org/10.1103/PhysRevLett.74.1052
https://doi.org/10.1103/PhysRevLett.74.1052
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.1209/epl/i2004-10055-3
https://doi.org/10.1209/epl/i2004-10055-3
https://doi.org/10.1038/nature04124
https://doi.org/10.1038/nature04124
https://doi.org/10.1103/PhysRevLett.101.130602
https://doi.org/10.1002/1439-7641(20020315)3:3%3C285::AID-CPHC285%3E3.0.CO;2-A
https://doi.org/10.1016/j.ymssp.2018.12.032
https://doi.org/10.1016/j.ymssp.2018.12.032
https://doi.org/10.1371/journal.pcbi.1000348
https://doi.org/10.1371/journal.pcbi.1000348
https://doi.org/10.1016/j.jsv.2008.07.017
https://doi.org/10.1016/j.jsv.2008.07.017
https://doi.org/10.1523/JNEUROSCI.4519-15.2016
https://doi.org/10.1523/JNEUROSCI.4519-15.2016
https://doi.org/10.1103/RevModPhys.81.387
https://doi.org/10.1103/RevModPhys.81.387
https://doi.org/10.1002/cphc.200800526
https://doi.org/10.1038/nature01736
https://doi.org/10.1073/pnas.1707815114
https://doi.org/10.1126/science.aal3271
https://doi.org/10.1103/PhysRevLett.121.104102
https://doi.org/10.1029/2005RG000178
https://doi.org/10.1029/2005RG000178
https://doi.org/10.1103/PhysRevLett.123.118002
https://doi.org/10.1103/PhysRevLett.123.118002
https://doi.org/10.1021/acs.accounts.0c00408
https://doi.org/10.1021/acs.accounts.0c00408
https://doi.org/10.1146/annurev.biophys.37.032807.125817
https://doi.org/10.1146/annurev.biophys.37.032807.125817
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1146/annurev-biophys-111121-103956
https://doi.org/10.1146/annurev-biophys-111121-103956
https://doi.org/10.1021/j100189a004
https://doi.org/10.1140/epjb/e2009-00051-5
https://doi.org/10.1103/PhysRevLett.104.020601
https://doi.org/10.1098/rsta.2020.0230
https://doi.org/10.1098/rsta.2020.0230
https://doi.org/10.1209/0295-5075/87/50003
https://doi.org/10.1063/1.4939081
https://doi.org/10.1063/1.4939081
https://doi.org/10.1098/rsta.2020.0228
https://doi.org/10.1088/0256-307X/27/4/040503
https://doi.org/10.1088/0256-307X/27/4/040503
https://doi.org/10.1016/j.cjph.2019.11.009
https://doi.org/10.1103/PhysRevE.89.012138
https://doi.org/10.1002/aic.690330902
https://doi.org/10.1103/PhysRevE.89.062305
https://doi.org/10.1103/PhysRevLett.115.038301
https://doi.org/10.1103/PhysRevE.99.020601
https://doi.org/10.1103/PhysRevE.99.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.098001
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.098001


[50] M. Wanunu, T. Dadosh, V. Ray, J. M. Jin, L. McReynolds,
and M. Drndic, Nat. Nanotechnol. 5, 807 (2010).

[51] D. Reguera and J. M. Rubi, Phys. Rev. E 64, 061106
(2001).

[52] P. Kalinay and J. K. Percus, Phys. Rev. E 74, 041203 (2006).
[53] D. Reguera, G. Schmid, P. S. Burada, J. M. Rubi, P.

Reimann, and P. Hänggi, Phys. Rev. Lett. 96, 130603
(2006).

[54] R. Verdel, L. Dagdug, A. M. Berezhkovskii, and S. M.
Bezrukov, J. Chem. Phys. 144, 084106 (2016).

[55] L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys. Lett.
A 195, 116 (1994).

[56] P. Hänggi, Helv. Phys. Acta 51, 183 (1978).
[57] O. Farago and N. Gronbech-Jensen, Phys. Rev. E 89,

013301 (2014)-01.
[58] N. Bruti-Liberati and E. Platen, Stoch. Dyn. 08, 561 (2008).

PHYSICAL REVIEW LETTERS 129, 098001 (2022)

098001-6

https://doi.org/10.1038/nnano.2010.202
https://doi.org/10.1103/PhysRevE.64.061106
https://doi.org/10.1103/PhysRevE.64.061106
https://doi.org/10.1103/PhysRevE.74.041203
https://doi.org/10.1103/PhysRevLett.96.130603
https://doi.org/10.1103/PhysRevLett.96.130603
https://doi.org/10.1063/1.4942470
https://doi.org/10.1016/0375-9601(94)90082-5
https://doi.org/10.1016/0375-9601(94)90082-5
https://doi.org/10.5169/seals-114941
https://doi.org/10.1103/PhysRevE.89.013301
https://doi.org/10.1103/PhysRevE.89.013301
https://doi.org/10.1142/S0219493708002457

