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We investigate collective dynamics in a binary mixture of programmable robots in experiments and
simulations. While robots of the same species align their motion direction, interaction between species is
distinctly nonreciprocal: species A aligns with B and species B antialigns with A. This nonreciprocal
interaction gives rise to the emergence of collective chiral motion that can be stabilized by limiting the robot
angular speed to be below a threshold. Within the chiral phase, increasing the robot density or extending the
range of local repulsive interactions can drive the system through an absorbing-active transition. At the
transition point, the robots exhibit a remarkable capacity for self-organization, forming disordered
hyperuniform states.
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Newton’s third law establishes that the interactions
between particles are reciprocal. This is true not only for
the fundamental microscopic forces but also for equilib-
rium effective forces, which are constrained by the detailed
balance in thermal equilibrium [1]. However, an intriguing
departure from this action-reaction symmetry arises when
interactions are mediated through nonequilibrium environ-
ments [2,3]. Such nonreciprocal (NR) interactions are
prevalent in active matter systems [4–13] where thermal
equilibrium is broken at the individual level and particles
often interact through actively generated hydrodynamic or
chemical fields. Examples of NR interactions span a wide
spectrum of active systems, from cell populations [14,15]
to active colloids [16–21] and feedback-controlled robotic
systems [22–27].
Extensive theoretical and numerical investigations have

revealed thatNR interactions can give rise to time-dependent
collective states that profoundly reshape system dynamics
[28–37]. For instance, the introduction of NR interactions
into a Cahn-Hilliard model sets the phase-separated state
into motion, resulting in traveling density waves [28–32].
An analogous phenomenon in angular dynamics is the
formation of a collective chiral state in a two-species
Vicsek model [38–40], where particles of both species
exhibit coherent rotation in the same direction [33,41].
The emergence of these time-dependent collective states in
NR systems exemplifies a class of transitions characterized
by parity-time symmetry breaking [7,29,33,42], unleashing
a diverse array of novel phenomena in phase separation and
pattern formation [28–37].

While theoretical and numerical studies have shed much
light on the origins, dynamics, and implications of time-
dependent collective states [28–37], quantitative experi-
ments in this area have been limited. This limitation stems,
in part, from the inherent difficulty in precisely controlling
NR interactions at the system level [14–20]. To address this
challenge, we have developed an experimental system
involving robots [22–27,33], whose interactions are pro-
grammed according to a standard NR two-species Vicsek
model, augmented with an angular speed threshold and
local repulsive interactions. Our experiments, together with
analytical and numerical analysis, demonstrate that the
angular speed threshold stabilizes chiral collective states
over a broad parameter range. Increasing local repulsion
drives robots within chiral states through an absorbing-
active transition and the robots exhibit a disordered hyper-
uniform distribution at the transition.
Our experimental setup comprises N ¼ 48 identical

robots moving in a 5.4 m× 5 m arena, depicted in
Fig. 1(a). We track robot identity m, position rm, and
heading θm via an optical motion capture system from
NOKOV, which sends tracking data to a central server at a
frequency of 300 Hz. The server computes robot angular
velocity θ̇m from received data, according to a process
detailed in the following section. Subsequently, the server
broadcasts these computed angular velocities to all robots
via a customized wireless serial communication protocol.
These robots update their angular velocities to the broad-
cast values at a frequency of 5 Hz, and they all move with a
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constant speed v0:

∂trm ¼ v0ðcosðθmÞx̂þ sinðθmÞŷÞ: ð1Þ

To calculate the angular velocities θ̇m, the central server
aggregates the contributions from orientational interactions
pertaining to the mth robot:

ωm ¼
X

n≠m
Jmn sin ðθn − θmÞ; ð2Þ

where we sum over all robot pairs and Jmn is the interaction
constant. We categorize the N robots into two species, A
and B, with equal numbers: NA ¼ NB ¼ N=2. Robots
within the same species align their motion: JAA ¼
JBB > 0. Interspecies interactions, which are of similar
strength as JAA and JBB, may exhibit nonreciprocity:
JAB ≠ JBA. We define Jþ ¼ ðJAB þ JBAÞ=2 and J− ¼
ðJAB − JBAÞ=2 to quantify the strength of reciprocal and
nonreciprocal interactions. We also incorporate local robot-
robot repulsion to prevent robots from colliding. As shown
in the inset of Fig. 1(e) and Sec. IV(A) in the Supplemental
Material (SM) [43], two robots turn away from each other
when their distance is smaller than R [44]. A similar

repulsion mechanism is implemented concerning the arena
boundaries, preventing robots from exiting the arena. The
full equation encompassing both orientational and repul-
sive interactions for computing ωm is provided in Eq. (S7)
[43]. Before sending the computed ωm to robots, we apply
an angular speed threshold Ω:

θ̇m ¼ sgnðωmÞmin ðjωmj;ΩÞ; ð3Þ

where sgn() and min() are sign and minimum functions.
This thresholding procedure, widely employed in prior
numerical and experimental studies [45–47], accounts for
the practical constraints on robot maneuverability.
In the initiation of our experiments, 48 robots are placed

in the arena with randomized headings. To preclude any
potential repulsive interactions, the robots are initially
positioned at a considerable distance from both each other
and the arena boundaries. As shown in Fig. S3(a), orienta-
tional interactions drive the system through a transient
period with significant mean angular velocity. Then, the
system reaches one of three distinctive states: flocking,
antiflocking, and chiral states. We note that the steady
flocking and antiflocking states can be disrupted by robot-
robot or robot-boundary repulsion [48–50] and that only

FIG. 1. Experimental setup and collective states. (a) An overview of the experimental setup, comprising robots in an arena, an overhead
camera, a NOKOV system of 16 motion capture cameras, and a central computer [see Fig. S1(b) for a picture of the system [43] ]. (b) A
side-view picture of a robot. Formation of flocking (c), chiral (d), and antiflocking (e) states. Trajectories of the robots are color-coded
based on time. Warm colors (on the left) represent species A, while cold colors (on the right) represent species B. Insets in (c)–(e) provide
enlarged views of two trajectories indicated by black boxes. The inset of (e) shows that two robots experience local repulsion when their
separation falls below the repulsion distanceR. Experimental parameters include: Jþ ¼ 0.03 rad=s (c),−0.02 rad=s (d),−0.04 rad=s (e),
J− ¼ 0.04 rad=s, JAA ¼ JBB ¼ 0.0175 rad=s, Ω ¼ 0.1 rad=s, R ¼ 260 mm, and v0 ¼ 5 mm=s. The normal reflection condition is
applied at the arena boundaries. See Movies S1–S3 for system evolution over a longer period time [43].
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steady states before such disruptions are analyzed to obtain
experimental results in Figs. 1 and 3. Beyond the temporal
range considered above, robot-boundary interactions can
play a decisive role in determining the long-time flocking
and antiflocking dynamics, as shown in Figs. S4 and
S5 [43].
In experiments, we vary JAB and JBA while keeping

J− ¼ 0.04 rad=s. When jJþj is sufficiently large, the
system enters time-invariant flocking states in Fig. 1(c)
with Jþ ¼ 0.03 rad=s, or antiflocking states in Fig. 1(e)
with Jþ ¼ −0.04 rad=s [33]. Conversely, if nonreciprocal
interactions predominate, a time-dependent chiral state
appears: all robots in Fig. 1(d) and Movie S2 eventually
move in circles with an angular velocity at the threshold
Ω ¼ 0.1 rad=s. We use robot headings to define two order
parameters for each species and we have ΛαeiΦ

α ¼
ð1=NαÞ

PNα
m¼1 e

iθαm , where the amplitude Λα and the head-
ing Φα characterize the heading coherence and the mean
heading of the species α, respectively [51]. Mean amplitude
Λ ¼ ðΛA þ ΛBÞ=2 in Fig. S3(b) shows that robots in three
states are polarly aligned within each species. We also
compute the difference between the mean headings:
Φ ¼ ΦA −ΦB: Fig. S3(c) shows that Φ assumes values
of 0, π, and 0.55π for flocking, antiflocking, and chiral
states, respectively.
Chiral states in our system are stable, a notable departure

from transient chiral states observed in previous robotic
experiments [33]. To elucidate the mechanisms underlying
this stability, we consider the scenario involving two NR
robots (N ¼ 2) [33,41]. The heading difference of two
robots, denoted as ϕ ¼ θA − θB, evolves according to the
equation ϕ̇ ¼ −2Jþ sinðϕÞ. This equation exhibits stable
fixed points at ϕ ¼ 0 if Jþ > 0 or ϕ ¼ π if Jþ < 0

[see inset of Fig. 2(a)]. Consequently, in the absence of
any angular speed threshold, the stable chiral motion of two
robots can only be sustained under conditions of fully
nonreciprocal interactions Jþ ¼ 0. This partly explains
why only transient chiral states were experimentally
observed in Ref. [33].
The introduction of the threshold Ω in Eq. (3) qualita-

tively changes the scenario, as shown in the right panel of
Movie S7, wherein both robots reach the threshold Ω and
form a chiral state. Beyond this specific example, we plot
the analytical solution of ϕ̇ with the threshold in Fig. 2(a),
which shows new stable fixed points. Robots initia-
lized within regions shaded in magenta ultimately evolve
toward chiral states. This development allows us to
compute the probability of two robots reaching a chiral
state from random initial ϕ: P2 ¼ 1 −max½asinðΩ=jJABjÞ;
asinðΩ=jJBAjÞ�=π, where max[] is the maximum function.
As shown in Fig. 2(b), the region of nonzero P2 (excluding
the case where Jþ ¼ 0) is bounded on the left by two white
lines defined as

Jþ ¼ �½J− −Ω=ðN=2Þ�: ð4Þ

On the right side of these lines, we have JAB JBA < 0 and
Ω < min ðNjJABj=2; NjJBAj=2Þ. Under these conditions,
the orientational interaction in Eq. (2) can generate a
sufficiently large ωm to activate the threshold condition
in Eq. (3) for both robots and resulting in stable chiral
motion. We numerically compute the probability for four
robots (N ¼ 4) to reach chiral phase from random con-
ditions, P4. Figure S8 shows that P4 is close to unity in the
majority of the parameter regime to the right of the
boundary lines defined by Eq. (4). This indicates that an
increase in N and the inclusion of intraspecies interaction
result in a greater variety of initial configurations, from
which all robots converge toward the threshold Ω to form
chiral states.
With insights from the few-robot models, we now

embark on a comprehensive investigation of the 48-robot
system in Fig. 1. We numerically construct a phase diagram
of different states, which is shown in Fig. 3(a), with
experimental data plotted as symbols. The diagram is
divided by white boundary lines, defined in Eq. (4), into
two regions. Time-invariant flocking and antiflocking
states and time-dependent chiral states appear in the left
and right regions, respectively. With parameters close to the
boundary lines, the system may randomly switch between
different states; we label this region as mixed [43].
In time-invariant flocking and antiflocking states, robot

angular velocity is generally small enough that the thresh-
old mechanism in Eq. (3) seldom comes into play. As a
result, these states in our work are similar to their counter-
parts in Ref. [33]. However, chiral states in two systems
exhibit distinct differences. In Ref. [33], both the angular
velocity and heading difference change with interaction

FIG. 2. Two-robot dynamics. (a) Rate change of heading
difference ϕ with (main panel) and without (inset) angular speed
threshold. Stable and unstable fixed points are denoted by filled
and empty circles on the x axis, respectively. The blue and
magenta shades indicate the initial heading difference that leads
to flocking and chiral states, respectively. (b) Probability of two
robots to enter chiral phase from a random initial condition.
Parameters include JAB ¼ 0.0155 rad=s, JBA ¼ −0.0105 rad=s
in (a), and Ω ¼ 0.01 rad=s in (a),(b).
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parameters. In our system, robots in chiral states maintain
identical angular velocities of Ω or −Ω (Fig. S21) and the
mean heading difference is approximately π=2� 0.24 rad
[Figs. 3(c) and 3(d)]. Within each species, robots exhibit
significant polar order [Fig. 3(b)]. This results in weak
intraspecies orientational interactions. Consequently, inter-
species interactions dominate the orientation dynamics
outlined in Eq. (2). This observation leads to a simple
picture that the heading dynamics in chiral states approx-
imately resemble those of the two-robot model with
effective interaction constants of ðN=2ÞJAB and
ðN=2ÞJBA [41]. This clarifies why stable chiral states in
Fig. 3(a) are only attainable with parameter values situated
to the right of the boundary equation Eq. (4). We system-
atically change various parameters, including Ω, N, noise
level, interaction constants, robot and boundary repulsion,
and boundary conditions. Through these parameter varia-
tions, we consistently observe the emergence of phase

diagrams akin to that in Fig. 3(a). As detailed in Sec. IV(F)
in the SM [43], Ω and N control the positions of the
boundary lines, whereas other parameter variations pri-
marily influence the states in proximity to these boun-
dary lines.
In results presented so far, we have taken deliberate

measures to mitigate the influence of robot-robot repulsion
to facilitate the comparison with the Vicsek model. For
example, the local repulsion in Fig. 1 is constrained to a
limited range R ¼ 260 mm. Consequently, 48 robots in
Fig. 1(d) enter an absorbing state, characterized by robot
separations exceeding R, wherein they execute localized
circular motion with a diameter σ ¼ 2v0=Ω. However, if a
large R is used, as shown in Movies S4 and S5 [43], robots
can robustly form chiral states but they are persistently
repelled by their neighbors, entering an active state. We
systematically investigate the absorbing-active transition in
simulations, featuring N robots confined within a periodic
box with a width W. In absorbing states with small area
fraction φ ¼ πNσ2=4W2 or R, mean-squared displace-
ments of the robots exhibit a plateau over long time, as
illustrated in the left inset of Fig. 4(a). In contrast, active
states exhibit diffusive translational motion with particle

FIG. 4. Absorbing-active transition and density fluctuation in
chiral states from simulations. (a) Dynamic phase diagram of
N ¼ 2048 robots plotted in the plane of area fraction φ and local
repulsion range R (main panel). Inset on the left: mean-squared
displacements with R ¼ 1.83σ at three different area fractions
(blue, φ ¼ 0.0997; magenta, φ ¼ 0.0994; green, φ ¼ 0.0905);
also see Movie S6 [43]. Inset on the right: diffusion constantD as
functions of φ for different R. (b) Static structure factors and
(c) density fluctuations computed with R ¼ 3.25σ, at three den-
sities with N ¼ 8192 and W ¼ 23 500, 22 628 and 18 390 mm.
Parameters include: Jþ¼0.005 rad=s, J−¼0.04 rad=s, JAA ¼
JBB ¼ 0.035 rad=s, v0 ¼ 10 mm=s, and Ω ¼ 0.33 rad=s.

FIG. 3. Collective states of 48 interacting robots. (a) Phase
diagram from numerical simulations, showcasing different states:
flocking (F), mixed (M), chiral (C), and antiflocking (AF) states.
Experimental data points are represented as symbols: circles,
upper triangles, and lower triangles correspond to chiral, flock-
ing, and antiflocking states, respectively. (b) Mean polar order
parameter within species. (c) Mean heading difference between
the two species. (d) Probability distributions of heading differ-
ence from random initial conditions at three different parameter
sets with J− ¼ 0.04 rad=s, Jþ ¼ 0.01; 0;−0.01 rad=s. Results in
(b)–(d) are obtained from simulations. The parameters used
include JAA ¼ JBB ¼ 0.0175 rad=s, Ω ¼ 0.267 rad=s, and
v0 ¼ 10 mm=s. Simulations are conducted with periodic boun-
dary conditions, without local repulsive interaction and without
random noises. The white lines in (a)–(c) are defined by Eq. (4).
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diffusivity D, which is used to pinpoint the critical con-
dition for the transition. For a given repulsion range R, the
diffusivity data in the right inset of Fig. 4(a) exhibit power-
law scaling: D ∼ ðφ − φcÞβ with β ≈ 0.64, close to the
exponent associated with the conserved directed percola-
tion universality class [52]. The extracted critical area
fraction φc are plotted in Fig. 4(a) to define the phase
boundary.
We measure density fluctuations near the transition.

Static structure factors in Fig. 4(b) reveal a scaling SðqÞ ∼
q0.45 for small q and density fluctuations in (c) scale with
the measurement window size as hδρ2i ∼ L−2.45 for large L
at φc; SðqÞ measured in states away from the transition
deviate from the q0.45 scaling. These data show that, at the
transition, robots organize themselves in a hyperuniform
state with suppressed density fluctuations [53–63].
Hyperuniformity with the same scaling exponent is
robustly observed with other parameter settings; see
Sec. V(B) in the SM [43]. The scaling exponent for
SðqÞ, 0.45, agrees with that in a variety of systems
[55,62,63]. Although our experimental system of 48 robots
is too limited in scale to directly demonstrate hyperuni-
formity, we can still use the system to explore the effects of
robot-robot repulsion. In particular, we run experiments
with a set of parameters (R ¼ 8.83σ and φ ¼ 0.01) in close
proximity to the phase boundary in Fig. 4(a). The results in
Movie S5 and Fig. S22 [43] affirm that local repulsion
drives the robots to disperse uniformly, which significantly
reduces density fluctuations.
We have implemented an experimental system compris-

ing programmable robots to explore the NR collective
dynamics [33,41]. Our system introduces two previously
unconsidered factors: angular speed threshold and local
repulsion. The threshold proves instrumental in stabilizing
chiral states arising from the NR interactions. We eluci-
dated the underlying stabilization mechanism and identi-
fied the essential working conditions through analytical and
numerical models. Additionally, our numerical simulations
have demonstrated that robots within the chiral states
undergo an absorbing-active transition as local repulsion
strength increases and that disordered hyperuniform states
emerge at the transition. These findings demonstrate the
versatility of nonreciprocity and its fusion with other
physical effects as a strategy for generating time-dependent
collective states with diverse and intriguing properties.
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