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Active matter comprises individually driven units that con-
vert locally stored energy into mechanical motion. Interactions
between driven units lead to a variety of nonequilibrium col-
lective phenomena in active matter. One of such phenomena
is anomalously large density fluctuations, which have been
observed in both experiments and theories. Here we show that,
on the contrary, density fluctuations in active matter can also be
greatly suppressed. Our experiments are carried out with marine
algae (Effrenium voratum), which swim in circles at the air–liquid
interfaces with two different eukaryotic flagella. Cell swimming
generates fluid flow that leads to effective repulsions between
cells in the far field. The long-range nature of such repulsive inter-
actions suppresses density fluctuations and generates disordered
hyperuniform states under a wide range of density conditions.
Emergence of hyperuniformity and associated scaling exponent
are quantitatively reproduced in a numerical model whose main
ingredients are effective hydrodynamic interactions and uncorre-
lated random cell motion. Our results demonstrate the existence
of disordered hyperuniform states in active matter and suggest
the possibility of using hydrodynamic flow for self-assembly in
active matter.

hyperuniformity | circular microswimmer | hydrodynamic interaction |
transverse flagellum | algae

Active matter exists over a wide range of spatial and tempo-
ral scales (1–6) from animal groups (7, 8) to robot swarms

(9–11), to cell colonies and tissues (12–16), to cytoskeletal
extracts (17–20), to man-made microswimmers (21–25). Con-
stituent particles in active matter systems are driven out of ther-
mal equilibrium at the individual level; they interact to develop
a wealth of intriguing collective phenomena, including clustering
(13, 22, 24), flocking (11, 26), swarming (12, 13), spontaneous
flow (14, 20), and giant density fluctuations (10, 11). Many of
these observed phenomena have been successfully described
by particle-based or continuum models (1–6), which highlight
the important roles of both individual motility and interparticle
interactions in determining system dynamics.

Current active matter research focuses primarily on linearly
swimming particles which have a symmetric body and self-propel
along one of the symmetry axes. However, a perfect alignment
between the propulsion direction and body axis is rarely found
in reality. Deviation from such a perfect alignment leads to a
persistent curvature in the microswimmer trajectories; exam-
ples of such circle microswimmers include anisotropic artificial
micromotors (27, 28), self-propelled nematic droplets (29, 30),
magnetotactic bacteria and Janus particles in rotating external
fields (31, 32), Janus particle in viscoelastic medium (33), and
sperm and bacteria near interfaces (34, 35). Chiral motility of
circle microswimmers, as predicted by theoretical and numerical
investigations, can lead to a range of interesting collective phe-
nomena in circular microswimmers, including vortex structures
(36, 37), localization in traps (38), enhanced flocking (39), and

hyperuniform states (40). However, experimental verifications of
these predictions are limited (32, 35), a situation mainly due to
the scarcity of suitable experimental systems.

Here we address this challenge by investigating marine algae
Effrenium voratum (41, 42). At air–liquid interfaces, E . voratum
cells swim in circles via two eukaryotic flagella: a transverse
flagellum encircling the cellular anteroposterior axis and a longi-
tudinal one running posteriorly. Over a wide range of densities,
circling E . voratum cells self-organize into disordered hype-
runiform states with suppressed density fluctuations at large
length scales. Hyperuniformity (43, 44) has been considered as
a new form of material order which leads to novel functionalities
(45–49); it has been observed in many systems, including avian
photoreceptor patterns (50), amorphous ices (51), amorphous
silica (52), ultracold atoms (53), soft matter systems (54–61),
and stochastic models (62–64). Our work demonstrates the exis-
tence of hyperuniformity in active matter and shows that hydro-
dynamic interactions can be used to construct hyperuniform
states.

Results
E. voratum belongs to the family Symbiodiniaceae (41, 42).
Dinoflagellates in this family are among the most abun-
dant eukaryotic microbes found in coral reef ecosystems; they
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convert sunlight and carbon dioxide into organic carbon and
oxygen to fuel coral growth and calcification (65). Cell motil-
ity of E. voratum has been shown to be important for algal–
invertebrate partnerships (66), although quantitative under-
standing of cell motility is still lacking.

Circular Cell Motion and Associated Flow Field. We observe the
cells at the air–liquid interface on an upright microscope. As
shown in Fig. 1 A and C, E. voratum cells have an approxi-
mately elliptic shape and are equipped with both longitudinal
and transverse flagella for motility. Away from interfaces, cells
swim in helical trajectories which are typical for motile algae;
see Fig. 1B and Movie S1. However, when cells get close to an
air–liquid interface, they adhere to the interface and start to
move in circles; all cells move in a counterclockwise direction
when viewed from the air side of the air–liquid interface. In SI
Appendix, Fig. S3, we show that cells also adhere to liquid–solid
interfaces (67) and estimate the gap between cell and interface
to be 0.3 µm. A typical counterclockwise circular trajectory at
air–liquid interface is plotted on an optical image of a cell in
Fig. 1C, where we define the long symmetric axis as the cell
body direction, X coordinate. Typical cell circling radius, transla-

tion, and angular velocities are 〈a〉= 11.6 µm, 〈vc〉= 180 µm/s,
and 〈ω〉= 16.2 rad/s, respectively. These motility characteristics
depend weakly on cell density, and their variations are quantified
in SI Appendix, Fig. S2B.

As shown in Movie S2, the longitudinal flagellum produces
a planar wave in a plane parallel to the air–liquid inter-
face. Waveforms of the longitudinal flagellum in a period
(15 ms) are shown in Fig. 1D. The transverse flagellum sits
in a groove (68–71), as shown in Fig. 1A and Movie S2; we
cannot separate the flagellum’s image from that of the cell
body to extract all information about the flagellum’s wave-
form. Instead, we extract intensity profiles from optical images
along a line (fixed in the cell body frame) cutting through
the transverse flagellum (the white line in Fig. 1C) and con-
struct a kymograph from the extracted line profiles. As shown
Fig. 1E, the kymograph shows a wave propagation to the neg-
ative Y direction with a period of about 23 ms and a wave
speed of 124 µm/s.

The swimming cell generates fluid flow (denoted by v) in space.
We measure the two flow components in the plane of cell motion
by tracking tracer particles, as shown in Movie S3. The measured
fields at different times are then averaged in the cell body (XY)

Fig. 1. Cell motility and flagellar dynamics. (A) Scanning electron micrograph of E. voratum [reprinted with permission from ref. 41]. (B) A 3D trajectory of
a cell approaching an air–liquid interface (at z = 0) from the bulk. (Inset) Time history of cell coordinates in the laboratory frame (x, y, and z). (C) Circular
trajectory plotted on an optical image of a cell at the interface. Undulations in the trajectory reflect beating phases of the longitudinal flagellum. A cell
body frame (XY) is defined with X being the direction of body axis. (Scale bars in A and C, 5 µm.) (D) Waveform of the longitudinal flagellum over a period.
(E) Kymograph to show transverse flagellum dynamics. Intensity profiles of cell image are extracted along the white line (fixed in the cell body frame) in C.
See Movies S1 and S2 for cell motion and flagellar dynamics.
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frame. A typical averaged field, v‖= vXX̂ + vYŶ, is plotted in
Fig. 2A. Although bearing some similarities to that of a source
dipole, the field does not show any obvious (left–right or fore–
after) symmetries, which are frequently found in cases of straight
swimmers (72). To reproduce such complex flow, we use a reg-
ularized Stokeslet model (73–75). In the model, the cell body is
represented by a sphere with a radius of 5 µm, which is driven
by both longitudinal and transverse flagella. As shown in Fig. 1 C
and D, the longitudinal flagellum has a conventional structure; its
planar waveform can be readily quantified and is faithfully repre-
sented in the model. However, the transverse flagellum is hidden
in the groove and difficult to observe; its structure and driving
mechanism are still being debated (68–71). We can measure the
wave period and speed from Fig. 1E, but the exact waveform of
the transverse flagellum is unknown. Due to this lack of informa-
tion for the transverse flagellum, we represent it in our model by
a slip flow pattern on the cell surface, vb. For a given slip pat-
tern, we use the regularized Stokeslet method to compute cell
(translation and rotation) velocities and a flow field correspond-
ing to the experimental result in Fig. 2A, v‖. We vary the slip flow
pattern, vb, and search for a pattern that optimizes the match
between numerical and experimental results of cell velocities and
flow fields. A resultant flow pattern, vb , from such a procedure
is shown in Fig. 2C, and maximal slip (500 µm/s) occurs in the
bright yellow region, which approximately corresponds to the
location of the transverse flagellum. With this slip pattern, we

numerically generate the in-plane flow field around a cell, shown
in Fig. 2B; two angular profiles of the in-plane flow speed (

∣∣v‖∣∣) in
Fig. 2D show good agreement between experiment and Stokeslet
results. See SI Appendix for detailed discussions on the above
procedure and results obtained in another cell (SI Appendix,
Fig. S6).

Noncircular Cell Motion. Although circular motion is most fre-
quently observed, cells also exhibit rare noncircular motion. To
demonstrate that, we show a streak image of cell motion in
Fig. 3A. While majority of cells move in circles and appear as
white “donuts,” the image also contains rare long streaks, cor-
responding to rapid translational motion of cells. The transition
to noncircular motion is likely related to changes in the longi-
tudinal flagellar dynamics, as depicted in SI Appendix, Fig. S4
(76, 77). We use a procedure with empirically chosen param-
eters to identify noncircular motion from instantaneous cell
positions (see SI Appendix, Fig. S5 and related discussions in
SI Appendix for details). This procedure shows that durations
of noncircular motion are usually less than a few seconds and
that the occurring rate of noncircular motion is approximately
10−3 s−1 per cell.

To quantify noncircular motion, we first average instantaneous
cell coordinates, r (t), over a sliding window of 2 s (∼ 5.5 circling
period). As shown in Fig. 3 B and C, circular motion is smoothed
out in the window-averaged (green) trajectory, denoted as r̄ (t).

Fig. 2. Mean in-plane flow field, v‖, measured in (A) experiment and (B) regularized Stokeslet model. Flow speed (
∣∣v‖∣∣) is represented by color, and arrows

show local flow direction. Cell symmetry axis is oriented along the X axis, and an angle from X direction is defined as φ in B. (C) An optimal slip flow pattern
obtained from our numerical procedure (see subsection Circular Cell Motion and Associated Flow Field for details). The air–liquid interface is shown by a
green line; the gap between cell body and interface is set to be 0.3 µm. (D) Angular dependence of the magnitude of the in-plane velocity at two radii,
30 µm and 40 µm, dashed lines in A and B, from experiments (symbols) and numerics (lines). (Inset) Angular dependence of far-field flow speed (at the
radius of 2,000 µm, computed from regularized Stokeslet calculation). The far-field flow is dominated by a pair of orthogonal pusher–puller dipoles (see SI
Appendix for detail). Experimental data are measured from tracer motion around a cell with a swimming speed vc = 201 µm/s and radius a = 11.5 µm; see
Movie S3.
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Fig. 3. (A) Streak image of cell motion. Raw images are obtained at cell density 178 mm−2 and averaged over 10 s to produce the streak image. (Scale bar,
200 µm.) (B) Instantaneous cell coordinates (gray line, r (t)) are averaged over a sliding window of 2 s to highlight the noncircular motion (green line, r̄ (t)).
(C) Temporal history of instantaneous (gray) and window-averaged (green) coordinates. (D) Probability distribution functions (PDF) of window-averaged
cell displacements (squared and normalized by time separation, s≡4r̄2/44t) from experiment (circles) and model (squares) for four time separations. The
experiment and model results are in agreement; for presentation clarity, we rescale model results in D by a factor of 100.

From the window-averaged trajectories, we measure probability
distributions of cell displacements for different time separations
4t . After squared displacements 4r̄2≡ (̄r (t +4t)− r̄ (t))2 are
normalized by the time separation 4t , all distributions of s ≡
4r̄2/44t collapse onto a single curve and exhibit a power-law
scaling for large s , as shown in Fig. 3D. Similar probability distri-
butions have been found under different density conditions; see
SI Appendix, Fig. S9.

Experimental Observations of Hyperuniform States. We next inves-
tigate collective states of interacting cells at the air–liquid inter-
face. Cells in the bulk suspension swim to adhere at the interface
in the first few minutes of experiments, and this leads to a
random initial distribution of cells at the interface, with a cell
density ρ. Then, cells at the interface slowly self-organize into
a steady state after a relaxation period of about several thou-
sand seconds, as shown in SI Appendix, Fig. S11. We measure
static and dynamic properties of these steady states. Fig. 4 A and
B shows typical instantaneous configurations from two experi-
ments; see also Movies S4 and S5. Although no obvious order
can be detected in these configurations, spatial distribution of
cells appears to be quite uniform at large length scales. Quan-
titatively, from instantaneous cell positions r(j)(t), we compute
density fluctuations for square interrogation windows of different
sizes L. For a given window size, we find that density fluctua-
tions follow a Gaussian distribution, as shown in Fig. 4 C, Inset.
Variances of density fluctuations are plotted against the win-
dow size in Fig. 4C; data follow the scaling determined by the
central limit theorem

〈
δρ2
〉
∼L−2 at small scales and decay

faster with the window size at large scales:
〈
δρ2
〉
∼L−2.6. Simi-

lar physics is also reflected by the static structure factors, S (k)=〈
1/N

∣∣∣∑N
j=1 exp

(
−ik · r(j)

)∣∣∣2〉, where N is the total number

of observed cells. In Fig. 4D, S (k) shows a liquid-like peak in
large k region and a scaling S (k)∼ k0.6 for small k . The length
scale corresponding to liquid-like peaks matches approximately
to the transition length between

〈
δρ2
〉
∼L−2 and

〈
δρ2
〉
∼L−2.6

scalings. The same scalings,
〈
δρ2
〉
∼L−2.6 and S (k)∼ k0.6, are

found for different cell densities. Increasing the cell density leads
to a decrease of S (k) for small k and shifts the liquid-like peak
to larger k , as shown by Fig. 4 C and D. To check the robustness
of observed hyperuniformity, we also use window-averaged cell
position, r̄ (t)defined in Fig. 3B, to compute density fluctuations
and obtain similar results, shown in SI Appendix, Fig. S11.

Beyond static structures, we also investigate the system’s
dynamic properties. To explore the possibility of local syn-
chronization, spatial correlation functions of circling phase and
velocity are computed; results in SI Appendix, Fig. S10 C and D
show that instantaneous cell motions are not spatially correlated,
suggesting a weak interaction between cells. This is confirmed by
Fig. 2 which shows that the flow velocity at the nearest cells (at
a distance ∼ 30 to 100 µm) is much smaller than cell swimming
speed. Therefore, the cell–cell interaction is not strong enough
to significantly affect the instantaneous cell motion. However, as
shown below, this weak hydrodynamic interaction can modulate
cell positions over a long time, and its long-range nature leads to
the formation of hyperuniform states.

Particle-Based Model for Hyperuniformity. We construct a numer-
ical model to illustrate the origin of observed hyperuniformity.
Dynamics in our experiments evolves over a time scale that
is much longer than cell circling periods (∼ 0.4 s). This sep-
aration of time scales allows us to build a temporally coarse-
grained (over a few circling periods) model to capture the
emergence of hyperuniformity without fully resolving fast circu-
lar cell motion (78). Therefore, particle coordinates in our model
represent window-averaged cell positions in experiments (̄r (t)
in Fig. 3B), and particles interact through period-averaged flow
field. Beyond flow advection, our model also includes stochastic
noncircular particle motion and uses the following equation to
determine the displacement of the i th particle at time nτ during
a time step τ :

r̄(i)((n + 1)τ)− r̄(i)(nτ) =∑
j 6=i

V̄
(

r̄(i)(nτ)− r̄(j)(nτ); v
(j)
c

)
τ

+η
(
D(i)

)
δ
(

mod (n, p), s(i)
) . [1]

The period-averaged flow field in Eq. 1, V̄ (R; vc), is calculated by
the regularized Stokeslet method for a cell circling with a radius
a = 10 µm and velocity vc. As shown in Fig. 5A, V̄ (R; vc) has
an outgoing component in the far field; see Materials and Meth-
ods for detailed discussions on the period-averaged flow field.
In our model, parameter v (i)

c is sampled from an experimentally
determined distribution of cell velocity in SI Appendix, Fig. S2.

The second term on the right-hand side of Eq. 1 represents
stochastic jumps. The Kronecker delta function δ () dictates
that adjacent random jumps for a given particle are temporally
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Fig. 4. (A and B) Cell configurations at two densities (41 and 369 mm−2). (Insets) Typical output of simulation. (Scale bar, 500 µm.) (C) Cell density
fluctuations plotted against interrogation window size and (D) static structure factors at four densities. Experimental and numerical results are shown by
light symbols and dark lines, respectively. The maximal measurement length scale is 800 µm in experiments and 10,000 µm in simulations. Inset in C shows
distributions of normalized density fluctuations measured at density 198 mm−2; color symbols are experimental data with different window sizes (L =

200 µm to 800 µm), and the thick line represents a normal distribution. Inset in D shows a 2D static structure factor measured at density 198 mm−2.

separated by p (an integer constant) time steps, defining a wait-
ing time T = pτ . Specifically, the i th particle jumps at time nτ if
mod (n, p)= s(i); mod()represents modulo operation, and s(i) is
an integer constant between zero and p− 1, randomly assigned
to all particles. Components of jumping displacements η

(
D(i)

)
are independently drawn from a normal distribution with a stan-
dard deviation

√
2D(i)T , as shown in Fig. 5B. Parameter D(i)

is the diffusivity for the i th particle and drawn from a Pareto
distribution with a cutoff value D0 and a power index β,

f (D ;D0,β)=

{
(β− 1)

D
β−1
0

Dβ D ≥D0

0 D <D0

, [2]

where β= 2 unless stated otherwise.
In a two-dimensional (2D) periodic domain of size Lmax =

20 mm, we simulate ρL2
max particles following Eq. 1. For a given

experimental condition, the cutoff diffusivity D0 and the waiting

time T are varied to match simulation results to experiments.
The obtained values for D0 (∼ 1 µm2/s) and T (∼ 500 s) are
listed for different cell densities in SI Appendix, Table S3.

We measure density fluctuations after randomly initialized
particles evolve to a steady state. As shown in Fig. 4 C and D, our
simulations can generate hyperuniform states and quantitatively
reproduce measured density fluctuation δρ2 and structure factor
S (k), highlighting scaling laws

〈
δρ2
〉
∼L−2.6 and S (k)∼ k0.6

for hyperuniformity. Distribution functions of cell displacements
are also well reproduced in Fig. 3D. The Pareto distribution of
D(i) with a power index β= 2 leads to the observed power-law
distribution for large displacements.

We systematically study effects of model parameters; results
are shown in Fig. 5C. An increase of particle density ρ shifts
the liquid-like peak to higher k and leads to a decrease of den-
sity fluctuation for small k , which mirrors experimental results in
Fig. 4D. Decreasing the waiting time T introduces more fluc-
tuations into the system and leads to an increase in S (k) for

Huang et al.
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Fig. 5. (A) Radial and tangential components of period-averaged flow field around a swimming cell. (Inset) Flow components, showing a cell circling with
a radius a and a velocity vc. Flow strength is capped at R = 30 µm, which approximately corresponds to the minimal distance between circular centers of
two cells in experiments. Black dashed lines show the asymptotic behavior in the far field (see Materials and Methods). (B) Normal distribution of jumping

displacements η
(
D(i)

)
(Eq. 1) and Pareto distribution of particle diffusivity (D(i)) (Eq. 2). (Inset) Three stochastic trajectories with different diffusivity. (C)

Effects of four model parameters on structure factors. A default set of parameters is used unless specified: ρ= 198 mm−2, T = 400 s, D0 = 0.95 µm2/s, and
β= 2.

small k , as shown by the second panel in Fig. 5C. Smaller cut-
off diffusivity D0 allows fewer particles with large D(i); this leads
to fewer stochastic jumps with large displacement, less fluctua-
tions in large scales, and smaller S (k) values. As shown in the
fourth panel in Fig. 5C, the power index of the Pareto distribu-
tion, β in Eq. 2, can change power-law scaling of S (k) at small
k . A larger β means fewer particles with large diffusivity; this
leads the system to approach the strong hyperuniformity limit
(44), and a larger exponent in S (k) is observed. Fig. 5C also
demonstrates that variations in ρ, T , and D0 have relatively weak
effects on the scaling exponent for small k in our observation
window (79).

Discussion
In summary, we have studied individual motility and collective
dynamics in marine algae E. voratum. Cells swim in circles at the
air–liquid interface with a longitudinal flagellum and a transverse
one. Combining experimental measurements and the regularized
Stokeslet method, we showed that period-averaged flow gener-
ated by cells has a long-ranged and out-going radial component

that disperses cells uniformly and leads to a disordered hyperuni-
form state. Stochastic cell motion with a power-law displacement
distribution (79) also plays an important role in determining the
properties of density fluctuations.

Regularized Stokeslet results in Fig. 2 can be used to clarify the
current confusion on the contributions of two flagella to propul-
sion in E. voratum (68–70). For that, we measure the stalled force
and torque with both flagella or only one of them functioning; as
shown in SI Appendix, Table S1, the longitudinal flagellum pro-
vides about 30% of the total torque and less than 10% of the
force. The regularized Stokeslet method is also used to calcu-
late 3D period-averaged flow and show that self-generated flow
can lead to directed nutrient/particle transport around cells, as
shown in SI Appendix, Fig. S8. These results provide insight into
the ecological function and evolutionary traits of two flagella in
this ecologically important dinoflagellate (41, 42, 65, 66).

Previous studies have shown that hydrodynamic interactions
lead to interesting self-organization (58). For example, bacte-
ria, when oriented perpendicularly to an interface, can gen-
erate inward flow that assembles bacterial cells into compact

6 of 8 | PNAS
https://doi.org/10.1073/pnas.2100493118

Huang et al.
Circular swimming motility and disordered hyperuniform state in an algae system

D
ow

nl
oa

de
d 

at
 S

ha
ng

ha
i J

ia
o 

T
on

g 
U

ni
ve

rs
ity

 o
n 

A
pr

il 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100493118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100493118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100493118


PH
YS

IC
S

crystals at the interface (80, 81). In contrast, circling E. voratum
cells in the current work generate repulsive interactions. This
can be understood from the far-field instantaneous flow in the
plane of cell motion. As shown in Fig. 2 D, Inset and analy-
sis in SI Appendix, out-going flow in the far field is stronger
than its in-coming counterpart. This leads to a period-averaged
repulsive interaction between cells in Fig. 5A. The same hydro-
dynamic mechanism may underlie the formation of sperm vortex
in ref. 35. Our work suggests a mechanism of using the average
along circular trajectories to generate isotropic hydrodynamic
interactions between force-free microswimmers. Such isotropic
hydrodynamic interactions in chiral active matter are different
from anisotropic dipolar interactions in conventional systems
with linearly swimming particles and may produce new collective
phenomena.

Fig. 4 shows that hyperuniformity is observed under differ-
ent cell concentration conditions with a similar scaling exponent.
Such a density independence has also been observed in other
hyperuniform systems with long-range interactions. In a one-
component plasma, particles with the same electrostatic charge
interact with repulsive Coulomb potential which imposes an
energy penalty on density fluctuations and leads to hyperuni-
formity under all particle density conditions (44). In a sedi-
mentation system of irregular objects (58), falling objects inter-
act via long-range hydrodynamic (force monopole) flow, and
objects’ irregular shapes lead to an anisotropic response to the
local flow. A combination of the long-range interaction and
anisotropic response in this system produces hyperuniformity
with a density-independent exponent.

Hyperuniformity has been observed in many systems exhibit-
ing absorbing-state transition (40, 57, 62–64, 82). For example,
a recent numerical work simulated a system of active parti-
cles which self-propel in circles (like E. voratum cells here) but
interact via short-range repulsive forces; hyperuniformity in this
system was only observed in high-density active states (40). In
contrast, E. voratum cells self-organize into hyperuniform states
under all densities, thanks to the long-range nature of hydro-
dynamic interactions (44, 48). Phoretic interactions in synthetic
active matter systems are also known to be long ranged; both
attractive and repulsive phoretic interactions have been realized
(24, 83). These long-range interactions may provide a promis-
ing avenue to generate novel hyperuniform materials with active
matter.

Materials and Methods
Cell Growth and Imaging Procedure. Species E. voratum cells are cultured
in artificial seawater with F/2 medium in a 100-mL flask which is placed
in an incubator (INFORS HT Multitron Pro) at 20 ◦C. We use a daily light
cycle which consists of 12 h of cool light with an intensity of 2,000 lx and
12 h in dark. The algal cells in the experiments are in an exponential phase
after 14-d growth and are observed a few hours after the light period starts,
when cells showed excellent motility (see SI Appendix, Fig. S1 and refs. 41
and 42). During experiments, cell culture is placed in a disk-shaped chamber
fabricated by cover glass and plastic gasket (8 mm in diameter). Cells gather
and form a monolayer at the air–liquid interface. Cell motion in the central
region of the sample is recorded by a high-speed camera (Basler acA2040-
180 km, 4-m pixel resolution) mounted on an upright microscope (Nikon
Ni-U) with a 4× or 40× magnification objective; the acquisition rate varies
from 50 frames per s to 850 frames per s. To measure fluid flow, milk (Deluxe
Milk, Mengniu) is added to provide passive flow tracers (diameter 1 µm to
∼2 µm). Holographic imaging technique is used to measure 3D cell motion.

Particle-Based Model. To obtain period-averaged flow field in Fig. 5A, we
use the regularized Stokeslet results from Fig. 2 to compute instantaneous
flow fields around a cell and average computed fields in the laboratory
frame over cell positions in a circling period. The flow field is capped at R =

30 µm, which approximately corresponds to the minimal distance between
the circular center of two cells in experiments. In simulation, we interpolate
data in Fig. 5A to find two flow components at any separation; asymp-
totic expressions for flow components (SI Appendix, Eq. S21) with a cap at
R = 30 µm can also reproduce experimental data; see SI Appendix, Fig. S12
for details. To reduce the computing load, interacting flow is assumed to
be zero beyond a cutoff length of 20,000 µm, which is twice the maximal
length of computed density fluctuations 〈δρ2〉 and structure factor S (k) in
simulations.

In our model, time step τ is set to be 10 s, during which typical particle
displacements (∼ 1 µm) are much smaller than typical particle separations
(∼ 50 µm). Analysis of experiments shows that durations of random non-
circular motion are less than 10 s (SI Appendix, Fig. S5D); such events occur
within a single time step in simulation.

Particle positions in simulations represent temporally averaged cell posi-
tions r̄(i) (t); we add a random circling phase (SI Appendix, Fig. S10C) to
each particle position to obtain instantaneous cell positions, r(i) (t), which
are used to compute density fluctuations.

Data Availability. All study data are included in the article and SI Appendix.
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