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Abstract

The run-and-tumble behavior is a simple yet powerful mechanism that enables microor-
ganisms to efficiently navigate and adapt to their environment. These organisms run
and tumble alternately, with transition rates modulated by intracellular chemical con-
centration. We introduce a neural network-based model capable of identifying the gov-
erning equations underlying run-and-tumble dynamics. This model accommodates the
nonlinear functions describing movement responses to intracellular biochemical reac-
tions by integrating the general structure of ODEs that represent these reactions, without
requiring explicit reconstruction of the reaction mechanisms. It is trained on datasets of
measured responses to simple, controllable signals. The resulting model is capable of
predicting movement responses in more realistic, complex, temporally varying environ-
ments. Moreover, the model can be used to deduce the underlying structure of hidden
intracellular biochemical dynamics. We have successfully tested the validity of the iden-
tified equations based on various models of Escherichia coli chemotaxis, demonstrat-
ing efficacy even in the presence of noisy measurements. Moreover, we have identified
the governing equation of the photo-response of Euglena gracilis cells using experimen-
tal data, which was previously unknown, and predicted the potential architecture of the
intracellular photo-response pathways for these cells.

Author summary

Microscopic organisms like bacteria and algae often adjust their movement in response
to changing environments, such as light or chemical signals. They do this using a behav-
ior called run-and-tumble, alternating between straight swimming and reorientation.
Understanding how internal cell processes drive this behavior is difficult, especially when
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we can't directly observe the biochemical pathways involved. In this study, we present

a machine learning approach that discovers the governing rules behind these behaviors
using only observable input-output data. Our model, based on neural networks, learns
from how cells respond to simple stimuli and can predict how they behave under more
complex, realistic conditions, without needing to know the details of internal reactions.
We validated the method using simulations of bacterial chemotaxis and real experi-
mental data from Euglena gracilis, a microorganism that responds to light. Our model
accurately predicted cell responses and revealed insights into possible internal signaling
structures. This approach provides a powerful tool for studying biological behavior and
could help uncover how other organisms process environmental information.

Introduction

In the intricate natural environment, organisms have developed a variety of sensory receptors
to perceive external stimuli, including chemoattractants [1-13], thermal changes [14], hydro-
dynamics [15-17], and light conditions [18-34]. These sensory systems are essential for the
survival of organisms, enabling them to avoid harmful environments, locate food sources, find
mates, and secure suitable habitats. Complicated information acquired from their sensors is
processed through many biochemical and neural pathways. Studying these signal-processing
pathways, which have evolved over millions of years, is crucial for understanding organisms’
complex searching strategies and adaptive capacities to thrive in diverse ecosystems.

A variety of proteins, ions, complex biological macromolecules, and neurons are involved
in processing information and producing appropriate behavioral responses. Information
extraction procedures can often be described using the time dynamics of intracellular bio-
chemical reactions that determine how the internal states change under specific inputs or
stimuli. One can denote the governing equation of ] internal-state variables of interest by
m(t) = (my(t), my(t), -, my(t))T € R and write the evolutionary equation in the general
ordinary differential equations (ODEs) form:

Hy (my (), ma(t), - my(t),s(t))
dm _ _ | Ho (ma (), ma(8), -+ my (£), (1))
dt : :

(@) |\ Hy (ma (£), ma(8), -, my (1), 5(1))

=H (m(t),s(¢)), (1

where s(t) denotes the external stimuli. H = {H;, Hy, .-, H;} denotes the set of functions that
characterize the regulatory relations among m(t). The particular values of internal variables
together with the value of external stimuli determine the behavioral response at the cellular

level, which can be quantified by f through an output function F:

f(#) = F(m(t),5(t)) )

Here, the particular forms of H and F depend on the biological systems and species.
While the general formula above appears straightforward, the specific forms of H and
F may be highly nonlinear. Determining the exact mathematical expressions for H and F
requires both comprehensive knowledge of intracellular biochemical reaction networks and
precise quantification of internal state variables. To date, quantitative understanding and the
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development of associated mathematical models for signal processing and directed motil-
ity have been primarily established for E. coli chemotaxis. In contrast, acquiring such mea-
surements of internal reactions in more complex unicellular organisms remains particularly
challenging, thereby limiting the applicability of traditional modeling frameworks to these
systems.

A natural question arises: Is it possible to discern the governing equations from given
stimulus-response data without explicit knowledge of the underlying intracellular biochemi-
cal reactions H and the behavioral response function F? How do we design the external signal
and use its characteristic information (values and gradients) to infer the possible underlying
structure of intracellular kinetics?

We introduce a novel framework for identifying the governing equations of stimulus-
response data, thereby eliminating the need to know the specific forms of Egs (1) and (2). By
reformulating Egs (1) and (2) using the chain rule, we obtained new equations that are sat-
isfied by the stimulus-response data and their derivatives. The terms in these new equations
can be represented by fully connected neural networks, which can be trained using appropri-
ate loss functions. The trained neural network model can predict the cell’s temporal response
to any type of external stimulus, provided that the stimuli do not change too rapidly. Further-
more, one can infer the number of necessary internal variables for different stimuli.

To validate the proposed approach, we first apply it to numerical experiments using estab-
lished models of Escherichia coli chemotaxis. The results demonstrate that the model accu-
rately captures stimulus-response behavior and effectively recovers key properties of the
underlying system. Although the E. coli chemotaxis pathway is more complex than models
using only one (J = 1) or two (J = 2) internal variables, when the stimulus does not change too
rapidly, most proteins can be considered to be in a quasi-equilibrium state. Given our focus
on investigating the quantitative relationship between stimulus inputs and behavioral outputs,
previous studies [35-37] have shown that models with one (J = 1) or two (J = 2) internal vari-
ables suffice to reproduce the diverse behavioral patterns observed experimentally. Therefore,
this study systematically examines these two cases (J = 1 and ] = 2) as representative scenarios.

Following validation with E. coli chemotaxis models, we then applied our method to exper-
imental data of Euglena gracilis phototaxis behavior. E. gracilis, a eukaryotic microorgan-
ism, plays a significant role in ecological systems. These organisms are known for their pho-
totactic responses, which are crucial to ecological phenomena such as algal blooms and diel
vertical migration. A wide range of photo-responsive behaviors have been reported for E. gra-
cilis, including positive and negative phototaxis, polygonal swimming motion, and localized
spinning [38]. When confined to a 2D environment, as in [39], E. gracilis exhibits a run-and-
tumble pattern and uses phototaxis to redistribute itself based on light intensity. However, the
complex photo-receptive systems of E. gracilis are difficult to measure directly, and current
knowledge about the functional forms of H and F is limited. It remains uncertain how many
internal variables are essential to describe their phototaxis behavior. Our work has achieved
two key outcomes for the phototaxis response of E. gracilis: First, we derived the governing
equation that can predict the response under any given stimulus (though there is a thresh-
old for how rapidly the stimulus can change, due to limitations in the available experimental
data). Second, we inferred the potential structure of the underlying intracellular biochemical
dynamics.

The insights derived from this study are not accessible via conventional recurrent neural
networks (RNNs) [40], neural controlled differential equations (Neural CDEs) [41], or the
convolution response kernel method [42,43]. RNNs lack the interpretability required to elu-
cidate the underlying intracellular biochemical dynamics and require equidistant sampling of
data points. Furthermore, Neural CDEs encounter difficulties in managing integrals involving
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dual internal variables [41]. In contrast, our proposed method circumvents the complexities
associated with path integrals and offers a general governing equation. While the convolution
response kernel method [42,43] can delineate the relationship between external stimuli and
output signals, it is challenging to identify a universal response kernel applicable to diverse
external stimuli. More importantly, we are able to achieve good predictive performance with
a relatively small training set.

Methods
The modeling framework

The main idea of our approach is to use chain rules to eliminate the internal variables. We
establish a comprehensive functional relationship between the time derivatives of the stim-
ulus and the tumbling fraction, which is then represented and trained by the neural network
approximations.
Single internal variable model (SIVM). When there is only a single internal-state variable
m in Eq (1), the equation becomes
dm
—— =H(m,s). 3
o HOm.s) ®
After applying the chain derivative rule to the output function f(t) = F(m(t),s(¢)) and
substituting Eq (3), one has

df dm ds
. :Fm >S)— Fs >S)
g (s s) e+ E(ms)

ds @)
=F,,(m,s)H(m,s) + Fs(m,s)a,
where F,, and F; denote the first-order partial derivative of F in (2) with respect to m and
s respectively. Typically, the response F depends monotonically on m, as in various E. coli
chemotaxis models [35,36]. Assume that F in (2) monotonically depends on m, then for given
sand f, one can determine a unique m that satisfies f= F(m, s). This indicates that one can
identify a function M such that

m=M(f,s). )
Substituting Eq (5) into Eq (4) yields
g:Fm(M(fsS)’S)H(M(f,S),S) +FS(M(f,s),s)% ©)

The first term F,,(M,s)H(M, s) and the coefficient of the second term F;(M, s) on the right
side of (6) can be expressed as functions that depend only on f and s, which we denote as
G1(f,s) and Gy (f; s), respectively. Eq (6) can then be written as:

f =Gi(f:s) + Ga(fys)s. (7)

The above equation has no internal variable m and depends only on stimulus s(¢) and
response f(t).
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Dual internal variable model (DIVM). When two internal states (m,n) are necessary, the
dual internal variable reaction can be modeled by the following ODEs:

dm

I = Hy(m,n,s),

: o
= H,(m,n,s)

Similarly, if F(m,n,s) exhibits a monotonic dependence on m and » in the dual internal-
state situation, as is valid for the E. coli chemotaxis pathway [4,44], one can assume that there

exists a function M such that
m=M(f,n,s) 9)

can be determined. Applying the chain rule to the temporal derivative of f(t) = F(m(¢), n(t),s(t))
and then using Egs (8) and (9) yields

g_F(mns) +F(mns) +F(mns)

=F,(m,n,s)H,(m,n,s) + F,(m,n,s)H,(m,n,s) + F,(m, n,s)% (10)

=F,,(M(f,n,s),n,s)H (M(f,n,s),n,s)

+ F,(M(fyn,5),n,8)Hy(M(fyn,5), n,8) + E(M(f, n,s),n,s)%

The Eq (10) describes a complex relationship among variables n, f, s, and their gradients f
and s', which indicates that one can find a function N that satisfies

n=N(fs.f,s"). (11)

Though it is impossible to determine the function N since the internal-state # is not mea-
surable, (11) and (9) indicate that both m and » can be determined by (f,f,s,s").

We introduce the information of the second-order derivative of f and s. More precisely,
applying the chain rule to the second-order derivative of f, one can obtain

2 2 2 2 2 2
af g, dm, g4 +me(d—m) +F,m(@) +Fss(é)

ae " de dr dt dt dt (12)
"dr dt ™ dt dt " dt dt fde’
where
dz—m—@(mns d—m+aHl( s) aHl(mns)é
a om Y T e VP ds © T dt
=(H1)m(m,n,s)Hy (m,n,s) + (Hy)n(m, n,s)Hy(m,n,s) + (Hy)s(m, n,s)%,
dzl'l aHz dm 6H2 dn 6H2
B e )G S S )
=(Hy)m(m,n,s)Hy(m,n,s) + (Hy)n(m, n,s)Hy(m,n,s) + (Hy)s(m, n,s)%
5/ 25
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Here F,,, F, and F; denote respectively the first-order partial derivative of f with respect to
m, nand s. F, Fun, Fssy Fins, Fns and Fy,,, are the second-order partial derivatives. In Eq (12),
the first and second-order time derivatives of m and # can all be considered as functions that
depend on m, n, s, and s'. Thus, the right-hand side of (12) can be expressed as

f'=Gs(m,n,s,s") + Gy(m,n,s,s")s". (13)

where G3(m, n,s,s") and G4(m, n,s,s") are two undetermined functions. By substituting
Eq (9) and Eq (11) into Eq (13), one has

1" =Gs(fs.frs) + Gafs.frs)s" (14)

Eq (14) includes no internal variables m, n, and depends only on stimulus s(¢) and
response f(t).

The two models (7) and (14) give general forms that directly connect the signal s(¢) and
response f(t). However, the particular forms of G (f;5), G2(f5), G3(f;s.f»s") and G4(f;s,f » ")
need to be determined from data and we use deep neural networks (DNN) to represent them
in the subsequent part.

Remark. The monotonicity of the response function F with respect to internal variables is

essential for inverting the function. While this assumption holds for E. coli chemotaxis,
its generalizability to other microorganisms can be reasoned as follows. The central idea of
our reformulation is this: the quantities  and n are unknowns that could potentially rep-
resent the concentration of a specific protein or a function derived from it. This approach
allows m and n to be defined flexibly, such that they do not inherently need to correspond
to the concentration of a specific protein. We assume one key protein concentration is c,
and define m = ¢(c). By making no assumptions about the specific form of ¢, we can always
posit the existence of a function ¢ such that F is monotonic with respect to ¢(c), even if F is
non-monotonic with respect to c itself.

Chemotaxis models in E. coli

A well-studied example of signal processing and behavioral response is the run-and-tumble E.
coli chemotaxis system. E. coli can move toward favorable environments through alternating
run-and-tumble patterns by rotating flagella, governed by an internal chemosensory system,
which can be described in the form of (1) and (2):

o The intracellular mechanism of the E. coli chemosensory system. The internal bio-
chemical reactions in E. coli is of the form (1) and can be highly complex. The forms
and numbers of ODE:s differ significantly in different models. One type of E. coli model
considers the molecular details including receptor clusters and a coupled biochemical
reaction network [45-53]. The other category considers only the system-level proper-
ties of the signaling pathway, which employs a receptor clustering-based framework
and takes the signaling complex as the basic unit [35-37,54-58]. Some complex mod-
els can finely describe the dynamics of internal variables with up to 158 ODEs [58]. The
signalling pathways that primarily govern cell motility can often be described by 1 to 2
ODEs [35,37].

 The behavioral response. Flagella of each E. coli rotate either counter-clockwise (CCW)
or clockwise (CW). When most flagella rotate CCW, the bacterium runs straight; when
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most flagella rotate CW, the cell stops and changes its movement direction. The concen-
tration of the response regulator protein affects the rotational direction of the flagella,
thus the probability that the bacterium is in the running or tumbling phase. The behav-
ioral response of E. coli cells can be described by a tumbling fraction (the probability
that the cells are in the tumbling state) or tumbling frequency, which can be modeled by
the equation of the form (2). These two quantities are also modeled by functions of var-
ious forms. For example, the tumbling fractions take the following forms: f= F(m;,s)

in [35], f= F(m;) in [44], or f= F(my,my,s) in [4]. The specific forms of F vary in the
literature, depending on the experimental setup and bacterial strains.

In the past decades, great progress has been made in understanding the mechanism of
the chemosensory system and behavioral response, leading to various mathematical models.
Here, we present an exposition of three representative models in the literature: one reduced
model with J = 1 and two comprehensive dynamical models with J = 2.

The well-studied E. coli chemosensory system mainly adapts to the relatively slow receptor
methylation and demethylation processes catalyzed by two enzymes CheR and CheB, which
can be described by one ODE. The slow dynamics of receptor methylation level, denoted
as m, and tumbling fraction, denoted as f, can be generally modeled by the following single
internal-state model I [36,44]:

T H 5 >
g~ Hu(ms) (Model )

f=Fi(m,s).

Model I for m is typically coupled with equations for the downstream phosphorylation
and dephosphorylation reactions of CheA, CheY, and CheB. Since these reactions occur
much faster than the methylation and demethylation reactions, one can use quasi-steady state
(QSS) approximations to get the simplified Model I. The specific forms and parameter val-
ues of Hy; and Fy can be found in Appendix A of S1 Text, and the validation of the monotonic
dependence of F; on m can be found in Fig E(A) in S1 Text.

The second model takes into account the excitation of the signal transduction pathway, in
which CheY-P plays an important role. The changes in the methylation level () [35] and the
CheY-P concentration (Y}) [53] can be modeled by the evolution equation of the following
form with f determined only by Y}, [44]:

% :HH,I(m)S))
dy.
7;7 _ HILZ(m, YP,S), (Model II)

f=Fu(Yp).

The temporal scales of m and Y, differ significantly. The methylation level 7 changes on a
much slower time scale (ranging from seconds to minutes) compared to the CheY-P concen-
tration, which evolves on a timescale of less than 1 s [53]. The specific forms and parameter
values of Hyp,1, Hyi, and Fi can be found in Appendix A of S1 Text, and the validation of the
monotonic dependence of Fi; on Y}, can be found in Fig E(B) in S1 Text.

A third model with dual internal states that do not have temporal scale differences can be
found in [4]. Based on the findings that changes in CheY-P levels during adaptation lead to
changes in FliM proteins, the dynamics of FliM proteins FliM and receptor methylation level
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m in Model I1I are:
dm
o H > >
dr IH,l(m S)
d
a13111\/[ = Hippo (m, FliM, 5), (Model III)

f: FIII (m, FllM, S).

Here Fi;; depends monotonically on m and FliM (see Fig E(C-D) in S1 Text). The temporal
scales of m and FliM in Model III are similar.

These three models have connections, yet are distinct. As shown in Fig F in S1 Text, their
different responses to a sudden change in s(t) are displayed. Model I is based on detailed
biochemistry reactions, where the CheY-P level Y, is determined by m and s through QSS
approximation. When s(¢) changes fast, in a short time scale, the QSS approximation no
longer holds, necessitating the use of Hyy,(m, Yy, s) in Model II to describe the dynamics of
Y,. Model I and II can explain the “perfect adaptation” [59], which indicates that when cells
are exposed to sudden environmental changes, they respond by temporarily changing their
tumbling frequency, then gradually returning to their pre-stimulus tumbling frequency over
time. On the other hand, Model III emphasizes the “overshoot” feature during the adapta-
tion process, quantifying the degree of excessive response before the return to pre-stimulus
behavior. The particular forms of Hy (m,s) in [36], Hyp,1 (m,s) in [35], and Hyy, (m,s) in [4]
are different in different works, but the last two are linear approximation of the first one. More
details of Models I-III are included in Appendix A in S1 Text. Given the diversity of E. coli
models, identifying the appropriate model to describe a new experimental dataset presents a
challenge.

Due to the complexity of model selection and the difficulty of determining the number of
internal states, it becomes essential to establish governing equations that give the relationship
between stimuli and response signals without relying on information about internal reactions.
Although the internal chemical reactions within cells may be highly complex, the key reac-
tions affecting their movement behavior can be described using only 1-2 ODEs, as in the E.
coli chemotaxis pathway.

Photo-response movement in algae

Photosynthetic microorganisms, such as microalgae, exhibit phototaxis—directional move-
ment in response to light stimuli [22,25,26]. For example, E. gracilis adjusts its flagellar beat-
ing patterns in response to perceived light intensity, enabling navigation toward or away
from light sources [23-25,29,33,60-63]. In microalgae, photoreceptors convert optical signals
into electrical signals via electron/ion interactions, which are then transmitted to locomotor
organelles like flagella.

o The possible intracellular mechanism of the E. gracilis photoreception system The
photoreceptor has been revealed to be photoactivated adenylyl cyclase, which produces
cyclic adenosine monophosphate (cAMP) upon blue light exposure. Intracellular cAMP
levels rise sharply within 1 s of illumination before rapidly returning to baseline. This
transient cAMP signal may activate a protein kinase, which could phosphorylate one
or several flagellar proteins to alter beating patterns, ultimately regulating phototactic
behavior of E. gracilis [64]. However, no model is available to quantify the intracellular
signaling pathway.

« The behavioral response. When confined to a 2D environment, as reported in [39],

E. gracilis exhibits a run-and-tumble movement pattern. Tumbling is defined as a
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decrease in translational velocity or a concurrent increase in angular velocity [6,39]. The
behavioral response can be quantified by the tumbling fraction, which displays complex
patterns in response to changes in light intensity.Details of the experimental setup and
measurement method are in Appendix B in S1 Text.

Adaptive photo-responses have been observed in other algae species, such as Chlamy-
domonas reinhardtii [34,65] and Volvox carteri [21]. These species exhibit a similar response
pattern: an initial rapid increase in the signal, followed by a slower recovery to the resting
state. Models of the form given by Eqgs (1) and (2) with J = 2 have been proposed in the liter-
ature to describe the photo-responses of Chlamydomonas reinhardtii [34] and Volvox carteri
[21]. However, the light-response mechanisms of E. gracilis remain poorly understood. One
can hypothesize that its photoresponse model shares a similar underlying structure.

Implementation

Experimental data typically contain noise, which can be modeled by adding a white noise ¢
of Gaussian type with zero mean and standard deviation o¢. The measured data points y; are
given by

yi=fit+en €~ N(0,02), i=1,2,, N, (15)

Noisy data cannot be accurately differentiated and requires prior smoothing. One can
smooth the data sequence using a spline method to get the reference solutions. We apply the
cubic smoothing spline method to noisy data points, and the reference is the minimizer of

N i
min p 3 biJF + (1-p) [ DT

Here, the first term measures the error and the second term controls the roughness. D*f
denotes the second order derivative of the function f. One can adjust the smoothing param-
eter p to regulate the smoothness of the reference solution. For the discontinuous responses,
such as those under step stimuli, the smoothing method will be used to smooth the noisy data
for each segment of constant stimulation, rather than smoothing the entire data sequence. We
use the “csaps” function in MATLAB to achieve the process. Following the analysis provided
in [66], the discrepancy between the smoothed value f; and the theoretical value f; is negligi-
ble. In our subsequent part, we adopt the smoothed data as the reference and denote points in
this data set by f;.

Based on Egs (7) and (14), deep neural networks Gg’lN(f, s), Gg’ZN(f, s), Gg’}N(f, s,f,s') and
Gg;N (f;s.f,s") can be constructed and trained to approximate the corresponding functions
Gi1(f,5), G2(f,9), Gs(fs.f »s") and Gy (f; s, 1, s).

In the SIVM, we train the function based on the function values of the discrete-time points
ti (i=1,2,--, N"™"), The stimulus and responses at these discrete time points are s; and f;, f;
is the approximation of f (#;). At all discrete-time ¢;, Gg’lN (fi-si) and GQZN (fi»si) should satisfy
Eq (7). Therefore, the SIVM loss is defined as

train
1 N

N 2 Ui G, (fsi) - Gy (fsi)s))’ (16)

i=1

Lsrym =
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Similarly, given (f;, s, f},s: ), the DIVM loss based on Eq (14) is

1 I\](ram

2
LDIVM:NU’ain z (f;,_GIQ\Z\](ﬁ)Si)ﬂ:S;)_GgZN (_ﬁssiaf;)S;)S;,) . (17)

i=1

Denote the time step by At, one can approximate f}, s; in (16) and (17) by

f;:fi_fi—l’ s;:5i+1—5i—1; (18)
At 2At

£/ and s’ by

f” _fi+1 -2fi+fia Siv1 =28+ Si)
= e Jikl T &oi T2l

@7 T (ary 19

It should be emphasized that, when constructing the losses, the idea is similar to that of
physics-informed neural networks (PINN) [67-69], where physical laws expressed by differ-
ential equations and the chain rule are employed. The SIVM/DIVM loss resembles the PDE
loss in PINN, but the f and f are not derived from the automatic differentiation, and the
time variable t does not appear explicitly in the neural network. Moreover, the time variable
is only used to provide the approximations in (18) and (19). As far as one can get the time
derivatives, there is no need to use equally spaced discrete time points, which differs from
RNNs [40]. Therefore, during training, one can use data from different time series and cut the
series freely.

The data are divided into three parts: 70% for training, 10-15% for validation, and the
remainder for testing. Owing to the inherent noise in the experimental data of f, even after
smoothing, attempting to approximate f* can lead to the amplification of error. This may lead
to overfitting during the training, thereby affecting the prediction accuracy of f. To avoid over-
fitting, during training the functions G~ (f;s), Gg (f;5), G (f;.f »s') and G5 (5. ,s")
by the training data, one has to test the results on the validation set. The obtained functions
are validated by the function values of f in the validation set. More precisely, given the initial
values of f in the validation set, such that

R ) fi=f(t), forSIVM,
Sinitial = ]Acl :f( t ))}2 :f( l‘z), for DIVM,

one can iteratively obtain f;,.; by the following equations:

A

Jinr=)i =Gy (fosi) + Gy (fosi)si»  for SIVM,

At (20)
Ai - 2Ai + Ai— 7 2 7 AN
fH(AJ;)zfl =Gy (frsinfis i) + G (firsis fios1)si'» for DIVM.
Then the long-term responses can be iteratively given by
, o+ At (GYVFosi) + GYN(osi)s,), i 2 for SIVM, o)
e —fiy + 2fi + (A1)? (G&N@,si,ﬂ,sg) + Ggf(ﬁ,si,};,sl’-)sl’-') , i>3for DIVM.
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The mean squared errors are employed to evaluate the accuracy of the validation set,
whose definition is

Nvali
Eqaii = % z; F-£)". (22)
We terminate the training process until E,,j; stops decreasing significantly. An illustrative
schematic is shown in Fig 1.
Upon completion of the training process, we use the same methodology in Eq (21) to pre-
dict the function values of fon the test data set. The prediction accuracy is quantified using
the relative mean squared error:

l Ntest A f 2
i~ Ji
Erest = Ntiest Z ( f, ) . (23)

Results

Parameters of DNN are trained upon the losses defined by Eq (16) or Eq (17). The DNN
architecture comprises feed-forward neural networks with 4 hidden layers and 20 neurons

NN
Gﬁl (f?S)
S
(f,9) Ly
NN
GHZ (f’S)
f;zz Evali
training set
(discrete pairs)
i=15S
NNs for SIVM validation set
NN
G63 (f,S,f',S,)
(f+5£'55") .
DIVM
Go (f+5, f'8")
f;23 Evali
training set
(discrete
quadruplets) fi:l,zn S
NNs for DIVM validation set

Fig 1. Schematic of SIVM and DIVM. The input dataset for SIVM and DIVM are respectively discrete pairs (f;,s;) and
quadruplets (f;,s,fl,s]) (i = 1,2,-+, N™"). The neural networks Gg’i\’(f s) and Gg’;\](f, s) are trained through SIVM loss

Lsrvm, while Gg’i’ (f,s.f,s') and Gg’i\’ (f,s.f ,s") are constrained by DIVM loss Lpryym. During the training of neural

networks, we assess the performance of the validation set through Eyyy; between f; and f; to avoid overfitting.

https://doi.org/10.1371/journal.pchi.1013287.9001
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in each hidden layer. We use the tanh activation function and choose the Glorot uniform
method for the weight initialization. For the training, we use an Adam optimizer with default
hyperparameters and a learning rate of 107, Ey; in (22) is outputted every 50 or 100 training
epochs during the training process.

Performance on the E. coli tumbling fraction

We first study the performance of our algorithms for the E. coli models when adding noise
to the data in the training set. The training data are generated by using the following two
different types of s(t):

« Piecewise constant (PWC) functions. s(¢) across the temporal domain [ Tiyin, Tinax] i @
piecewise constant function:

K
s(t) = Z Ci(1)
k=1
where the time domain is randomly divided into K* intervals
Toin=T1 <Ty <+ < T <Tpyy <+ < TK‘+1 = Traxs

and

C (t)_ Ck> if tE[Tk>Tk+l)
¢ 0, otherwise

ck is a constant randomly selected between [smin> Smax |-
« Linear combination of cosine (LCC) functions. The linear combination of cosine

functions is defined as:
1< 2t
s(t) = EZap (1 - cos (bp)) ,

p=1

where a, and b, are randomly chosen from a uniform distribution of the intervals
[Amin> Gmax | and [Dmin, bmax |> respectively.

An illustration of the two types of stimulus is presented in Fig G(A, C) in S1 Text.

We generate tumbling responses f; using a forward Euler discretization. To represent exper-
imental noise, we introduce Gaussian noise €; with a mean of zero and a standard deviation o,
through a given signal-noise ratio (SNR) which can be calculated by

Psi 1
_ — _ / gna
Oc =V Proise = 1OSNR/L0”

For the j-th numerical solution with N]?la“‘ data points, the power Pignq1 of the original
signal can be achieved by calculating the mean square value of the original signal: Pgigna =

ata
1/N]‘~1ata Zfijdl f+. We set SNR to a range of 20 to 22, which aligns with the measured E. gracilis
experimental data, which we will discuss later.
Here, we use stimulus-response data obtained by simulating Model I-III and then adding
some noise. The particular choices of Smin> Smax> @min> @max> Omin> and by relate to the time
scale of the behavioral response. Due to the related experimental phenomena, different E. coli
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models have different response time scales, which play a role in the design of the data sets.
That is, the stimuli in the test set can have different forms, but their magnitudes and rates of
change have to be in a similar range to those in the training set. Detailed settings for each
model’s training, validation, and test sets are in Appendix D in S1 Text.

It should be noted that, during training and testing, we only use data with s’ (¢) and s” (¢)
that are finite. More precisely, we exclude those points near the jump discontinuities of s(¢)
and s’ (t). We train the NNs for each model using the SIVM and DIVM losses separately.
After training, we determine that the NNs are not overfitted by monitoring the error decrease
Eq (22) on the validation set.

We then enrich the testing set with smooth stimuli that do not belong to the two types of
basic stimuli. Due to the fold-change detection of E. coli cells [70], in [3,48,53], exponential
sine wave signal s(t) = exp(agcos(27t/by)) is used to investigate the cells’ response. We test
our scheme’s performance using a generalization of the exponential sine signal and consider
the following more complex stimuli:

« Exponential functions with exponents being a linear combination of cosines
(ELCC):

Q
s(t) =exp (Z aq(1 - cos(2mt/by)) - cq) .

q=1

where ag, bq and ¢, are chosen randomly in a interval.

For testing, we compare the predicted dynamics inferred by both algorithms f; based on
Eq (21), with the reference solution. The results are shown in Fig 2 and very good agreement
can be observed. For ELCC signals used in Fig 2(A)-2(C), the range of a,, b, is consistent
with that used in the LCC functions. c, is employed to adjust the magnitude of s(¢) to satisfy
(1) € (Smin> Smax) With sy being the maximum (minimum) of the stimuli in the training set.

Model I is a model with a single internal variable. As shown in Fig 2(A), the predicted val-
ues obtained from both algorithms are very close to the reference values, indicating that both
SIVM and DIVM can effectively handle the situation with a single internal variable. Model
IT has two internal variables, and there is a significant reaction time scale difference between
the two variables. The results in Fig 2(B) demonstrate that DIVM performs exceptionally well
in predicting the test data. At the same time, SIVM, although slightly less accurate, still pro-
vides relatively accurate predicted values. Unlike Model II, Model III considers two internal
variables with no significant difference in reaction speeds. Fig 2(C) shows that the perfor-
mance of SIVM is significantly inferior to that of DIVM. These results suggest that DIVM can
accurately give good long-term predictions for signal patterns that do not appear in the train-
ing set, for single and dual internal variable models. On the other hand, SIVM works for data
generated with a single internal variable model and sometimes dual internal variables as well.

The performance of SIVM and DIVM for different datasets offers a way to infer the
required number of internal variables to model dynamics that produce specific response
signals. By comparing the performance of SIVM and DIVM on datasets from Model I and
Model ITI, we can deduce that if both algorithms perform well, the dataset can be modeled by
the response of a single internal variable. Conversely, if only DIVM performs well, it suggests
that the internal biochemical reactions corresponding to the dataset need to be described by
two ODE:s, as shown in Fig 2(C).

We further investigate our algorithms’ robustness to complex stimuli with stochastic fluc-
tuations. Specifically, the noisy stimuli are given by s; = s;"8" + ¢; where s*8" represent noise-
less PWL, LCC, and ELCC signals. We generate tumbling responses f; by simulating Model

origin
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Fig 2.
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Performance of SIVM and DIVM on E. coli models I-III under ELCC signals. (A) Model I; (B) Model II;

(C) Model III. Top row: the simplified topological relationships among external stimuli, internal variables, and tumbling
fractions in the three different E. coli models. x — y denotes that x influences y, which can be both excitation or inhibition.
Second row: The outside signal s(¢) of the form ELCC. The third row: the predictive performance of SIVM. The fourth row:
the predictive performance of DIVM. Here, the response data (gray circles) are obtained by adding Gaussian noise to the
numerical solutions of the corresponding models with SNR following the uniform distribution U(20,22). These noisy data,
after smoothing, serve as the reference values (black solid line).

https://doi.org/10.1371/journal.pcbi.1013287.9g002

I-1IT based on these noisy stimuli (as shown in Fig B in S1 Text). The cubic smoothing spline
method is applied to smooth the data sequences s(¢) and f(¢), from which the derivatives f,

!

s;,fi',and s}’ are approximated. During both training and testing, we utilize noisy stimulus-
response data (f;, s;). The performance of both algorithms in predicting response data using
noisy stimuli is similar to that using smooth stimuli, indicating that our algorithms are robust
to complex stimuli with stochastic fluctuations. Although noise levels can degrade model per-
formance (see Table E in S1 Text), our algorithms guarantee stable long-term predictions of

f(t) without significant noise-induced fluctuations.

Performance on the measured E. gracilis tumbling fraction

Next, we extend the application of our algorithms to experimental data of Euglena gracilis
cells. E. gracilis move with similar run-and-tumble patterns with E. coli, as illustrated in
Fig 3(A), while the biological pathways for their photo-responsive movement are not yet fully
understood. During “runs’, the cell moves in a near-ballistic manner, whereas in “tumbles’,
it spins before selecting a new direction for the subsequent “run”. Then, the fraction of tum-
bling particles during every second can be quantified (shown in Fig 3(B)-3(E)) under varied
light-intensity stimuli s(¢) (s(t) is the light intensity whose unit is W/m?).

In the experiment, we have measured the corresponding tumbling fraction of E. gracilis for
different s(t). Three different types of signal s(¢) are used, PWC, LCC and
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Fig 3. Performance of SIVM and DIVM on E. gracilis experimental data. (A) Typical cell trajectory with uniform light
intensity, where the red dots highlight tumble events. (B-C) Measured tumbling fraction with PWC and PWCL stimuli.
(D-E) Performance of SIVM and DIVM for different LCC stimuli (yellow dotted line). Gray circles are the experimental
data. (D) is for s}, = 4.18 X 10™> W/(m?-s) and (E) is for s}, = 10.441 x 107> W/(m?-s). Top row: the LCC stimuli;

middle row: predictive performance of SIVM; bottom row: predictive performance of DIVM.

https://doi.org/10.1371/journal.pcbi.1013287.9g003

o Piecewise constant and linear (PWCL) functions. s(¢) is a combination of piecewise
constant and linear functions:

K K
S(t) = Z CZk—l (t) + Zsz(t),
k=1 k=1

where the time domain is randomly divided into 2K" intervals
Thin=T1 <Ty <+ <Tp <o < T2K’+1 = Trax-
For k=1,---, K, the linear functions are defined as

Ok + K (8- To), if 1€ (Tok, Toks1)

sz(t) =
0, otherwise
where
Cok+1 — Cok—
KZ _ 2k+1 2k 1.
Tope1 — T
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The values of K} encompass the gradient information of s(t). Therefore, the ranges of
Kj in the training and test sets affect the precision. An illustration of this stimulus type
is presented in Fig G(B) in S1 Text.

Given that the size of E. gracilis is significantly larger than that of E. coli, its movement is
considerably slower. Consequently, it is crucial to control the variation rate of s(¢), which can
be quantified by s'(t), in the designed light signals. Two different datasets are used to test the
performance of our proposed method, one with slow varying s(¢) while the other includes
both slow and relatively faster varying s(t). We use the absolute maximum values of the stim-
uli, denoted as s,,,, = maxe[o,77 |s'(¢)|, to characterize these two different datasets. The stim-
ulus types and s,
ing spline method is applied to the raw data to obtain the smoothed reference values. Subse-
quently, SIVM and DIVM are employed to identify the governing equation of the run-and-
tumble dynamics through the data set composed of external stimuli s and responses f. The
details for each experiment’s training and test sets are shown in Appendix D in S1 Text.

The predicted tumbling fractions under LCC signals are shown in Fig 3(D-E). Using slowly
varying s(t), the prediction errors of both SIVM and DIVM are below 3%, with DIVM outper-
forming SIVM. This suggests that when s;,,, = max,epo,71 |s'(£)| < 4.183x 107> W/ (m*-s), the
governing equation can be obtained using SIVM, and a single ODE can describe the internal
dynamics. However, when s(t) changes faster, the prediction error of SIVM is much higher
than the acceptable 10% threshold, and SIVM fails to provide an accurate governing equation.
After retraining with DIVM, the accuracy of prediction is significantly improved, as shown
in Table 1, indicating that the internal dynamics of fast-changing environments with s/, =
maxefo,r |s'(£)] < 10.441 X 107> W/ (m’-s) require two ODEs for an accurate description.

Comparisons between the two datasets reveal that E. gracilis exhibits distinct photo-
response patterns depending on the rate of change of external signals. In slowly changing

values used in the two training sets are shown in Table 1. The smooth-

environments, a single internal variable suffices to model the response, whereas in rapidly
changing environments, two internal variables with clearly distinct reaction timescales are
required. According to the biological signal transduction mechanisms of E. gracilis explored
in [64], one can hypothesize that the fast internal variable may correlate with the rapid cAMP-
mediated phosphorylation of flagellar proteins. The underlying mechanism for slow-scale
responses remains unclear.

The good performance of SIVM in slowly varying environments is similar to the case of
Model II in the test for E. coli models. Therefore, in the next subsection, we will generate a
series of data sets with different s}, based on Model II to further investigate the conditions
under which SIVM or DIVM can be applied.

Relation between SIVM and DIVM and criteria for their selection

Notably, Model II includes two internal variables, but SIVM can predict the behavioral
response. Further tests indicate that when s’ (¢) remains below a certain threshold, SIVM can

Table 1. Test errors of E. gracilis experiments.

Stimulus s (W/(m?-s)) Training set Algorithm Etest (%)

Slow 4.183x 1073 PWC, LCC SIVM 2.24%
DIVM 0.35%

Fast 10.441x 1073 PWCL, LCC SIVM 59.63%
DIVM 1.64%

https://doi.org/10.1371/journal.pchi.1013287.t001
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yield good predictions, but when s' () increases, the predictive efficacy of SIVM degrades.
This can be understood by observing that the reaction rates of the two internal variables are
significantly different in Model II. When s(#) changes slowly, one of the two internal variables
is always in a quasi-equilibrium state. Hence, the model degenerates to a one-internal-variable
model, and SIVM can predict the response. This observation raises a natural question: Is it
possible to identify the threshold Sy, when max; s'(t) < Sg, SIVM can provide a good pre-
diction, while when s’ () > S,, one has to use DIVM. In this subsection, we will explore this
issue.

The threshold S, can be derived using analytical approaches. Without loss of generality,
we assume the variable 7 in Eq (8) is the fast variable and n is the quasi-equilibrium state
that satisfies H, (1, ng, s) = 0. The applicability of SIVM implies that n(t) = ns and one inter-
nal variable m suflices. Conversely, if n(t) deviates from ng, we consider a small perturbation
dn(t) around ng such that

n(t) = ns(m(t),s(t)) + dn(t).

When the deviation dn(t) satisfies |§n(t)| < A, (where A, is a specified small threshold),
the theoretical expression for the threshold S, is given by:

5 (ns)
Ongs

Os

S¢ = A, max
s,m

Details of the derivation are provided in Appendix C of S1 Text. For Model II, the thresh-
old S, can be computed by setting, for example, A, = 0.1, s € [0,2] uM and corresponding
m € [1,1.07] near the reference methylation level, reducing the above expression to:

A, A(m,s)) 2 (1+s/K
S=2r. max (A(m.s)) (1 +5/K;) ~0.59 uM/s,

Ty me[1,107].5€[02] N,k 7z exp (N,F4(m,s)) (I/KI— 1+s/K1)

Kp+s

where 77 = 0.5 s represents the characteristic timescale of Y, and details of all other parame-
ters can be found in Appendix A of S1 Text. Thus, the threshold S, is closely tied to the biolog-
ical parameters of the underlying model, provided that the explicit formulations are known.

Alternatively, the threshold can be estimated numerically by testing the algorithm’s per-
formance across varying rates of change in s(t) (denoted as s’ (¢)). We conduct a systematic
training and test process with datasets that vary in s’ (¢). More precisely, for given external
signals s(t) belonging to LCC or ELCGC, if the total time of a continuous segment is T, s(¢) is
progressively compressed by s (tLTl) with T} < T, as shown in Fig 4(A). As T decreases, s,
increases. In Fig 4(B), one can observe that SIVM fails to give good predictions effectively,
based on the data produced by Model II when |s'(#)| becomes large.

WEe correlate SIVM and DIVM test errors with the absolute maximum values of s/ =
max;e[o,7] |s'(¢)| of different data sets, as shown in Fig 4(B). SIVM test errors increase as s;,,,
increases, whereas DIVM exhibits low test errors across all data sets. When s, exceeds a cer-
tain threshold, the testing error increases significantly. Based on this, we numerically estab-
lish a threshold for s .; exceeding this threshold suggests that SIVM is no longer suitable.
By requiring that the relative errors in (23) of the test set predictions should be below 5%, we
find this threshold is approximately S, ~ 0.5 uM/s (For E. coli, the outside signal is the chem-
ical concentration, whose unit is uM.) as shown in Fig 4(B), which is aligns with the theoret-
ical gradient threshold S, ~ 0.59 uM/s. Fig 4(C) displays the SIVM predictions of three dif-
ferent T). The smaller the T is, the larger s for all three different Ts in Fig 4(C)

PO
max 1S+ Smax
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Fig 4. Identify the s gradient threshold leading to model II degeneration from SIVM and DIVM test errors.

External stimuli are compressed in time, as shown in (A). We gradually compress the T'= 200 s stimulus signal to

T = {180, 160, 140, 120, 100} s. The absolute maximum value of the gradient s}, ., is correlated with SIVM and DIVM
test errors in (B). The error points from left to right correspond to T} = {200, 180, 160, 140, 120, 100} s respectively. (C)
illustrates the SIVM (blue dashed line) and DIVM (red dashed line) prediction outcomes of three experiments with differ-
ent Ty. Here, ELCC stimuli are used in the test set; the subplots from left to right correspond to the three error points for
Ty =140s, T1 =120 s, and T} = 100 s in (B).

https://doi.org/10.1371/journal.pcbi.1013287.9004

are near the threshold. It can be seen that the long-term predictions become worse as T;
decreases.

For the experimental data of E. gracilis, as illustrated in Fig 3(D)-3(E) and Table 1, SIVM
can model the photo-responsive movement of E. gracilis when s/, < 4.183 X 107> W/ (mz-s).
On the other hand, DIVM can achieve excellent predictive results when s, becomes larger.
Based on the discussions of the degeneration condition of DIVM, this implies that the path-
ways of E. gracilis photo-response can be modeled by one internal variable when s; ,, <
4.183% 107> W/(m*-s), while when s/ reaches 102 W/(m"-s), one has to use two internal
variables to get the correct behavior. One may set S, to be 4.183 X 107> W/ (mz-s), but to get a
better estimate of Sy, more carefully designed experimental data are required.

One can further study the extrapolation capability of the algorithms, specifically the pre-

diction accuracy when the value range and gradient range of test-set stimuli exceed those
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of the training set. We generate response data using Model IT under modified stimulus sig-
nals and construct noiseless training and test datasets. Two different categories of test sets are
constructed, which are associated with a relative maximum deviation of the absolute stimu-
lus value R; or a relative maximum deviation of the absolute stimulus gradient Ry from the
training set. The detailed method for constructing the two different categories of test sets is
provided in Appendix F in S1 Text.

After training the neural networks using both SIVM and DIVM, we apply them to the
two different categories of test sets described above. SIVM and DIVM test errors are corre-
lated with the values of R, and Ry of different data sets, as shown in Fig C(B) and Fig D(B)
in S1 Text. As the test data’s deviation from the training range increases (both in value and
the gradient of stimuli), the test errors of both algorithms grow. When R, = 0.49 (Ry = 1.38),
SIVM’s (DIVM’s) error exceeds 10%. Regarding extrapolation capability, our algorithms
maintain accurate predictions even when the gradient range expansion extends significantly
beyond the training set. DIVM consistently outperforms SIVM in handling value range
expansion.

Design principles for stimuli

Most studies of signal processing and behavioral response are based on measuring responses
to simple controllable stimuli. Recent biological experiments have measured behavioral
response under varied external stimuli, including step functions (E. coli [71], algae [21,34,
65]), ramp [65], exponential ramp [53], sine-wave [34,65,72], and exponentiated sine-wave
stimuli with low/high frequency [53]. Inspired by these experiments, we design the above
three types of stimulus signals s(¢) for training dataset generation.

We further investigate the three types of stimulus signals used in the experiments to
explore the impact of different signal combinations on NN’s training and predictive accu-
racy. The first type is the PWC, which is widely used to study the response behavior of uni-
cellular organisms to sudden signal changes [46,47,49,51]. This signal has a zero first deriva-
tive almost everywhere except at the jump points. The second type is called the PWCL, where
piecewise constant functions are connected by linear segments whose slopes may vary in dif-
ferent transition intervals. This signal has a zero-second derivative almost everywhere except
at the turning points. The third type is the LCC, one of the classic smooth signals. The exact
mathematical definitions for these three types of signals have been provided in the previous
subsections.

Nior PWC, signal, sinc'e at almo'st everywhere .s’ (1) =0, Gy (f.5), Gg (5, f: ,, s') and
GI%4 N(f, s.f, s,) are untr'amed. While for PWCL signal, at almost everywhere s’ (¢) = 0,
G, (fis.f>s') is untrained.

Our algorithms are applied to the E. coli chemotaxis Model I, II, and III. For the three dif-
ferent types of signals PWC, PWCL, and LCC, the training set comprises one, two, or three
of them, as shown in Table 2. N%t = 20,020 stimulus-response pairs are used, with 70% allo-
cated to the training set and the rest for testing.

For the SIVM, it is evident that when the training dataset contains only PWC signals, the
neural network GgZN (f,s) cannot be effectively trained. After training the neural network
with datasets composed of different signal combinations, while keeping the number of data
points and iterations the same, we evaluated the neural network’s performance on the same
test set. The results show that using a combination of PWC and LCC signals as the training
set achieves the best outcome while using only LCC signals as the training set results in the
largest errors.
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Table 2. The accuracy of the test set defined in (23) for different combinations of basic stimulus.

Training set Test set SIVM Egest (%) DIVM Egest (%)

PWC PWC, PWCL, LCC GYY(f.5) untrained Ggy (hs.f ") untrained
PWCL 1(2.42%) GgN(f, s,f,s") untrained
PWC, PWCL 1(2.61%) Gg, (£5.f»s") untrained
LCC 1(3.51%) 11 (0.51%), 111 (2.72%)
PWC, LCC 1(1.90%) 1 (0.04%), 111 (1.09%)
PWCL, LCC 1(2.51%) T (0.09%), 111 (0.84%)
PWC, PWCL, LCC 1(2.04%) 1 (0.02%), 111 (0.72%)

https://doi.org/10.1371/journal.pcbhi.1013287.t002

Similarly, within the DIVM framework, we conduct experiments using Models IT and IIL.
From Table 2, LCC signals are necessary for the training set; without them, the neural net-
work Gy (f,s,f,s") cannot be trained and its predictive performance on the test set is very
poor. The first and second derivatives of LCC signals offer abundant information, significantly
enhancing the training efficacy of the networks. Among the three different signal combina-
tions, when the training data size is the same, combining LCC signals with either PWC or
PWCL signals significantly improves predictive accuracy, which is much better than using
LCC signals alone. Utilizing all three types in the training set can improve predictive accu-
racy, but the enhancement is not significant, as shown in the last row of Table 2.

Discussion

Microorganisms adjust their motion behavior in response to external signal stimuli, thereby
better adapting to environmental conditions. Traditionally, these dynamic changes are
described by a system of ODE:s for intracellular pathways and a nonlinear response func-
tion. However, measuring the temporal dynamics of internal states is challenging, which
complicates model construction.

Hence, there is a need to construct models that directly relate external signal stimuli to
behavioral responses, without explicit information of the intracellular signaling pathways.
This study introduces a novel neural-network framework based on external stimulus-response
data. The approach relies on applying the chain rule to eliminate internal variables that simu-
late intracellular reactions, thereby establishing functional relationships (7) and (14) between
the time derivative of stimulus intensity and tumbling behavior. These relationships are then
defined as the losses (16) and (17) for training the neural networks.

We have applied this algorithm to various E. coli chemotaxis models and experimental
data of E. gracilis, validating its effectiveness in predicting motion responses under complex
environmental conditions. Moreover, the algorithm can infer the potential structure of the
response pathways, as has been realized using E. gracilis experimental data.

The framework introduced here does not require measurements of intracellular protein
levels or knowledge of the specific forms of equations governing intracellular chemical reac-
tions. Instead, it infers the potential structure of response pathways directly from movement
data. We employ neural networks to learn representations, enabling the algorithm to gener-
alize to other systems with unknown latent variables. Thus, we claim that this algorithm is a
general-purpose, easy-to-implement, and accurate simulator for identifying the governing
equations of run-and-tumble dynamics.

The current work is a first step in adapting neural network framework to identify
governing equations from stimulus-response data. The two cell types in this study exhibit
a similar run-and-tumble movement pattern, thus, the behavioral response data comprise
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tumbling fraction changes under different stimuli. Given that our model is derived in a gen-
eral form, it should, in principle, be applicable to any input-output datasets. Therefore, future
work could explore extending this approach to other types of response data to assess its
broader applicability.

We focus exclusively on the two cases J = 1 and ] = 2 in this work. Nevertheless, extend-
ing the method to systems with larger J requires information about higher-order derivatives
of the stimulus and response data, which can be challenging when dealing with noisy exper-
imental data. Moreover, since the time derivative is used in the model, only continuous-in-
time data are considered here (but the time sequence can be short); extending the method
to discontinuous stimulus and response data is necessary. Notably, several neural network
architectures, such as RNNs and Neural CDEs, remain viable for processing long time series
and performing prediction tasks. A promising future direction involves integrating our cur-
rent algorithm with other neural network approaches, which may yield novel algorithms
with biological interpretability, noise resistance, stable long-term prediction capabilities, and
enhanced applicability to more complex systems.

Supporting information

S1 Text. The supplementary document provides Appendix A-F and three supplementary
figures for the main text.
(PDF)
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