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Abstract
We study in this paper the monotonicity properties of the numerical solutions to
Volterra integral equations with nonincreasing completely positive kernels on nonuni-
form meshes. There is a duality between the complete positivity and the properties
of the complementary kernel being nonnegative and nonincreasing. Based on this, we
propose the “complementary monotonicity” to describe the nonincreasing completely
positive kernels, and the “right complementary monotone” (R-CMM) kernels as the
analogue for nonuniform meshes. We then establish the monotonicity properties of
the numerical solutions inherited from the continuous equation if the discretization
has the R-CMM property. Such a property seems weaker than log-convexity and there
is no restriction on the step size ratio of the discretization for the R-CMM property to
hold.

Keywords Resolvent · Convolution · Complete positivity · Nonuniform mesh ·
Fractional differential equations

Mathematics Subject Classification 65L20 · 65R20

1 Introduction

The time-delay memory is ubiquitous in physical models, which may be resulted from
dimension reduction as in the generalizedLangevinmodel for particles in heat bath [13,
19, 40, 41] or may be resulted from viscoelasticity in soft matter [5, 30], or dielectric
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susceptibility for polarization [2, 33], to name a few examples. Due to the causality and
time translational invariance [29, Chap. 1], the memory terms are often modeled by
a one-sided convolution

∫ t
0 a(t − s) f (s) ds where a is the memory kernel. Causality

refers to the fact that the output cannot precede the input,which implies, byTichmarsh’s
theorem, that the Fourier transform of a is analytic in the upper half plane so that the
real and imaginary parts satisfy the Kramers-Kronig relation (see [29]). Besides the
causality, the memory kernel a should also reflect the fading memory principle [30,
36]. A popular model to build in these physical principles would be the nonincreasing,
completely positive kernels, which are a class of kernels with nonnegative resolvent
kernels (see [4, 27] and see also Sect. 2.1 for the definitions). These kernels have been
proved to reflect many important asymptotic properties that the system is expected
to have [4]. A special but important class of the nonincreasing completely positive
kernels is the completely monotone (CM) functions, which have been well studied in
literature [32, 38]. The CM functions have been widely used in physical modeling.
For example, the interconversion relationship in the linear viscoelasticity is modeled
by a convolution quadrature with completely monotone kernels [25]. There are many
interesting models with memory in literature for various applications [1, 6, 31, 35,
39].

A basic model for the memory is the Volterra integral equations (see [11, 25, 28,
37]). In this work, we focus on the Volterra integral equations taking values in R. Let
f : [0,∞) × R → R be a given smooth function. The integral equation we consider
in this work is

u(t) = h(t) +
∫ t

0
a(t − s) f (s, u(s)) ds, (1.1)

where u : [0, T ) → R is the solution curve. The function h(t) is a given signal
function. The function a(·) is the convolution kernel and is assumed to be nonzero.
We will allow a to be weakly singular in the sense that a(0+) could be ∞ but it is
integrable on (0, 1):

0 <

∫ 1

0
a(t)dt < ∞. (1.2)

A special example of the integral Eq. (1.1) is the time fractional ordinary differential
equations (FODEs) with Caputo derivative [7] of order α ∈ (0, 1)

Dα
c u = f (t, u), u(0) = u0. (1.3)

Here, the Caputo derivative is defined by

Dα
c u = 1

�(1 − α)

∫ t

0

u′(s)
(t − s)α

ds. (1.4)
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See also [15, 17] for some generalized definitions. The time fractional ODE (1.3) is
equivalent to the integral equation (see [7, 17] etc)

u(t) = u0 + 1

�(α)

∫ t

0
(t − s)α−1 f (s, u(s))ds. (1.5)

Hence, the FODEs are Volterra equations with kernel

a(t) = 1

�(α)
tα−1+ , t+ = t1t≥0. (1.6)

If a = 1t≥0, it reduces to the usual ODE, which is in fact the α → 1 limit of the above
time fractional equation.

The Volterra Eq. (1.1) with completely positive kernels (not necessarily nonin-
creasing) has two important monotonicity properties. The first is the order preserving
property for two solution curves (i.e., two solution curves will not cross) for reasonable
given input signals h (see Theorem 2.1 below). A second monotonicity property is
that the solution to the autonomous equations is monotone for reasonable given sig-
nals (see Theorem 2.2 below). Also, as we will remark in Sect. 2.1, the nonincreasing
property of the kernel a cannot be implied by the complete positivity, but is required
by the fading memory principle.

Due to the memory kernels, especially some weakly singular kernels, the models
often exhibit multi-scale behaviors [6, 35, 39], which bring numerical challenges.
The adaptive time-stepping is often adopted to address this issue [12, 14, 21, 26, 34].
Suppose that the computational time interval is [0, T ]. Let 0 = t0 < t1 < t2 < · · · <

tN = T be the grid points. We define

τn := tn − tn−1, n ≥ 1. (1.7)

Let un be the numerical solution at tn . By implicit discretization of the Volterra integral
Eq. (1.1), one may obtain

un = h(tn) +
n∑

j=1

ānn− j f (t j , u j )τ j = h(tn) +
n∑

j=1

ann− j f (t j , u j ). (1.8)

Here, {ānn− j } is an approximation of a(tn − s) on [t j−1, t j ] while ann− j is like the
integral of a(tn − s) on this interval. It is clear that

Lemma 1.1 Suppose f (t, ·) is Lipschitz with Lipschitz constant M uniform in t. If
M sup j≤N a j

0 < 1, then the numerical solution to (1.8) is uniquely solvable.

From the viewpoint of structure-preserving methods, it is desired that the discrete
numerical methods preserve the monotonicity properties of the solutions. Our main
goal is to investigate this for the scheme above.

In [20], the so-called CM-preserving schemes have been proposed for equations
with CM kernels so that these two monotonicity properties can be preserved. These
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schemes have been shown to enjoy good stability properties. Recently, Chen and
Stynes used the CM-preserving property to obtain sharp error estimate for the multi-
term time-fractional diffusion equations [3]. However, the CM-preserving schemes are
based on the convolution and thus they are restricted on uniform meshes. Moreover,
if the time continuous kernel itself is not CM, there is no reason to consider such a
class of discretizations.

We aim to identify a suitable class of variable discretizations so that the mono-
tonicity properties for numerical solutions will be preserved. In Sect. 2.2, we find
that the complete positivity is enough to preserve the desired properties for uniform
meshes. However, for nonuniform meshes, the complete positivity is not enough for
the desired properties. We thus turn our attention to more restricted kernels that are
also nonincreasing, which is natural due to the fading memory principle and turns
out to be suitable for variable step discretizations. Hence our focus in this paper is
the nonincreasing completely positive kernels. By a characterization of completely
positive kernels due to Clement and Nohel [4], the nonincreasing completely posi-
tive kernels have a nice dual symmetry, which we call complementary monotonicity.
We also propose “right complementary monotone” (R-CMM) kernels for nonuniform
meshes inherited from the continuous kernel, with whichwe prove that themonotonic-
ity properties for nonuniform meshes hold. The well-known L1 discretization and a
piecewise constant integral scheme for the time fractional equations are shown to be
R-CMM. The R-CMM property is stronger than the complete positivity but is weaker
than the usual condition that a is log-convex. In a subsequent work, we will show that
the completely positive discretizations, and thus the R-CMM discretizations, enjoy
very good stability results. Moreover, it is found that there is no restriction on the
ratios of the stepsizes for the R-CMM property to hold, so it is flexible in applications.

The rest of the paper is organized as follows. In Sect. 2, we first present some con-
cepts and results for the time continuous equations and schemes with uniformmeshes.
In Sect. 3, we focus on the nonincreasing completely positive kernels. Motivated by
the duality between the complete positivity and the properties of the complementary
kernel, we propose the concept of “complementary monotonicity” (CMM) and study
the discrete analogue on uniform meshes. In Sect. 4, we show properties for the R-
CMM kernels on nonuniform meshes. In Sect. 5, we prove the main results in this
paper, namely the schemes whose kernels are R-CMMwill preserve the monotonicity
properties. The application to the FODEs is discussed in Sect. 6 while some illustrat-
ing numerical experiments are performed in Sect. 7. Lastly, we conclude the work in
Sect. 8.

2 Concepts and preliminaries

In this section, we first introduce some basic concepts and basic results for our later
discussion. In particular, we first summarize several properties of the time continuous
integral equations inSect. 2.1. Then,wediscuss themonotonicity preserving properties
of the numerical solutions on uniform meshes in Sect. 2.2.
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2.1 The resolvent kernels and complete positivity

We first recall the standard one-sided convolution for two functions u and v defined
on [0,∞)

(u ∗ v)(t) =
∫

[0,t]
u(s)v(t − s) ds, (2.1)

which can be generalized to distributions whose supports are on [0,∞) (see [15,
sections 2.1,2.2]). The convolution is commutative, associative. The identity is the
Dirac delta δ. With this convolution, the Volterra integral Eq. (1.1) can be written as

u = h + a ∗ f (·, u(·)).

The resolvent kernels often play important roles (see [4, 27] for examples).

Definition 2.1 Let λ > 0. The resolvent kernels rλ and sλ for a are defined respectively
by

rλ + λrλ ∗ a = λa, sλ + λsλ ∗ a = 1t≥0. (2.2)

Clearly, the resolvent kernel rλ satisfies

(δ + λa) ∗ (δ − rλ) = δ. (2.3)

It is clearly that (see [4])

sλ = 1 ∗ (δ − rλ) = 1 −
∫ t

0
rλ(τ ) dτ. (2.4)

Intuitively, δ − rλ = λ−1rλ ∗ a(−1). Considering the complementary kernel ac that
satisfies ac ∗ a = a ∗ ac = 1t≥0, one then has formally that sλ = λ−1rλ ∗ ac.

In [4], the so-called “completely positive” kernels were considered by Clement and
Nohel.

Definition 2.2 Let T > 0. A kernel a ∈ L1(0, T ) is said to be completely positive if
both the resolvent kernels rλ and sλ defined in Definition 2.1 are nonnegative for every
λ > 0.

A sufficient condition is the following (see [27]).

Lemma 2.1 If the kernel a ∈ L1(0, T ) is nonnegative, nonincreasing and t 	→ log a(t)
is convex, then a is completely positive.

In fact, the statement for the log-convexity of a in [27] is that t 	→ a(t)/a(t + T ) is
nonincreasing for all T > 0. If a is CM, log a is convex (see [27, Lemma 2]).

The following description of the complete positivity has been proved in [4, Theorem
2.2]. (The second claim has beenmentioned in Remark (i) below themain result there.)
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Lemma 2.2 Let T > 0. A kernel a ∈ L1(0, T ) with a 
≡ 0 is completely positive on
[0, T ] if andonly if there existsα ≥ 0andc ∈ L1(0, T )nonnegative andnonincreasing
satisfying

αa + c ∗ a = a ∗ (αδ + c) = 1t≥0. (2.5)

Moreover, provided that a is completely positive, α > 0 if and only if a ∈ L∞(0, T )

and in this case a is in fact absolutely continuous on [0, T ].
This result tells us that there is a complementary kernel ac = αδ+c for a. Clearly, ac

is a nonnegative and nonincreasing measure on [0, T ]. We note that a completely pos-
itive kernel a is nonnegative (see [4, Proposition 2.1]). However, it has been remarked
in [4] that a can increase at some subintervals, and also a does not have to be convex.
Hence, the complete positivity does not necessarily satisfy the requirement of fading
memory.

Now, we present some monotonicity properties of the time continuous equations
with completely positive kernels. We will always assume that h ∈ C([0, T ],R) ∩
C1((0, T ],R) where T > 0 is the largest time considered. If a ∈ L1(0, T ) and f is
smooth as assumed, then u is absolutely continuous on [0, Tb) where Tb ≤ T is the
largest time of existence (see [11, 37]).

The first result is about the order preserving property of two solution curves.

Theorem 2.1 Suppose the kernel a is completely positive. If the input signals hi ∈
C([0, T ],R) ∩ C1((0, T ],R) (i = 1, 2) and γ (t) := h1(t) − h2(t) satisfies that

βλ(t) := (δ − rλ) ∗ γ (t) = γ (t) −
∫ t

0
rλ(t − s)γ (s) ds ≥ 0, ∀λ > 0,

then the two solutions to (1.1) satisfy that u1(t) ≥ u2(t) for all t on the common interval
of existence. If moreover γ (0) > 0, then u1(t) > u2(t) for all t . Consequently, if h1
and h2 are two constants with h1 > h2, then u1(t) > u2(t).

The key in the proof is to convolve the integral equation with δ − rλ to obtain the
following relation for v = u1 − u2:

v(t) = βλ(t) +
∫ t

0
rλ(t − s)[1 + λ−1g(s)]v(s) ds, (2.6)

where g(s) = ∫ 1
0 ∂u f (s, zu1(s) + (1 − z)u2(s)) dz. This will give the nonnegativity

of v and see the details in Appendix A. For fractional ODEs, hi (t)’s are constants so
βλ ≥ 0 is obvious. Hence, the solution curves of the fractional ODEs never cross each
other. This recovers the result in [10, Theorem 4.1].

Next, we consider another monotonicity, the monotonicity of one solution with
respect to time.

Theorem 2.2 Consider the Volterra Eq. (1.1) and a solution u corresponding to an
input signal h ∈ C([0, T ],R) ∩C1((0, T ],R). Suppose that a is completely positive.
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(i) If (δ − rλ) ∗ h′ ≥ 0, f (0, h(0)) ≥ 0 and ∂t f (t, u)|u=u(t) ≥ 0 on the solution
curve, then the solution is nondecreasing.

(ii) If (δ − rλ) ∗ h′ ≤ 0, f (0, h(0)) ≤ 0 and ∂t f (t, u)|u=u(t) ≤ 0 on the solution
curve, then the solution is nonincreasing.

If any of the inequalities is strict, then u is strictly monotone. As a consequence, if h is
a constant and the equation is autonomous ( f only depends on u), then any solution
curve is monotone.

For the proof, one may refer to Appendix A. The basic idea is again to convolve the
equation with δ − rλ and take the derivative on time to obtain an equation for u′(t):

u′(t) = β(t) + rλ ∗ ([1 + λ−1∂u f ]u′),

Here, β is a term related to h and the initial value, ∂t f (t, u). If h is a constant and the
equation is autonomous, β(t) = λ−1rλ(t) f (h(0)). This clearly is a generalization of
the result for autonomous time fractional ODEs in [9, Theorem 3.3]. For the special
case a(t) ≡ 1, h(t) ≡ u0 and f (t, u) = f (u), it reduces to the autonomous ODE

u̇ = f (u).

Then, rλ = λe−λt and the equaiton for u′ above becomes

u′(t) = e−λt f (u0) +
∫ t

0
e−λ(t−s)(λ + f ′(u(s)))u′(s) ds.

It is clear that the right hand is in fact equal to f (u(t)). Such a form is interesting
as one can see easily that u′(t) has the same sign as f (u0), which implies that u is
monotone.

2.2 Monotonicity-preseving property for completely positive kernels on uniform
meshes

Consider the discretization (1.8) when it is uniform, i.e. τn ≡ τ is a constant and
ann− j ≡ an− j depends only on the value n− j . We recall the usual convolution, which
is commutative,

(a ∗ b)n =
n∑

j=0

an− j b j . (2.7)

It is clear that δd = (1, 0, 0, · · · ) is the convolution identity and the convolution inverse
of a exists if and only if a0 
= 0.

Corresponding to Definition 2.2, the complete positivity for uniform meshes was
introduced in [8] as follows.
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Definition 2.3 A sequence a = (a0, a1, · · · ) with a0 
= 0 is said to be completely
positive if the resolvent sequence given by

rλ + λrλ ∗ a = λa

is nonnegative for all λ > 0 and it holds that
∑n

i=0(rλ)i ≤ 1 for all n.

The following has been proved in [8].

Lemma 2.3 The sequence a with a0 
= 0 is completely positive if and only if the
convolutional inverse b = a(−1) satisfies

b0 > 0; b j ≤ 0, j ≥ 1;
n∑

j=0

b j ≥ 0, n ≥ 1. (2.8)

This result actually is an analogue to Lemma 2.2. This is because ac = b ∗ (1, 1, · · · ).
Hence, the nonnegativity and nonincreasing properties of ac are reflected by (2.8).

We have the following result.

Theorem 2.3 Suppose that f (t, ·) is Lipschitz with constant M > 0. Consider the
scheme (1.8) on a uniform mesh such that ann− j ≡ an− j . If the discrete kernel a =
(a0, a1, · · · ) is completely positive and Ma0 < 1, then the following property holds:

(a) If the two input signals h(i)(tn), i = 1, 2 satisfyβn = [(h(1)−h(2))∗(δd−rλ)]n ≥ 0
for any λ > 0, then u(1)

n ≥ u(2)
n .

(b) Suppose moreover that f (t, u) = f (u) does not depend on t and h(t) = u0 is a
constant, then the numerical solution is monotone.

Proof The proof of part (a) is the same as the one for the nonuniform case later in
Theorem 5.1, so we skip it here. We focus on the part (b). We assume that f (u0) > 0.
The case for f (u0) = 0 is obvious while the case for f (u0) < 0 is similar.

For n = 1, one has that u1 − a0 f (u1) = u0. Let μ(u) = u − a0 f (u), which is
clearly increasing. Clearly, μ(u0) < u0 = μ(u1) and thus u1 > u0. Define

vn := un+1 − un, n ≥ 0.

Hence, v0 > 0 and we aim to show vn ≥ 0 for n ≥ 1.
The scheme (1.8) is then written as u − u0 = a ∗ f (u), where u − u0 := (u1 −

u0, u2 − u0, · · · ) and f (u) = ( f (u1), f (u2), · · · ). Taking convolution with δd − rλ,
one has

un − u0 = rλ ∗ (u − u0 + f (u)/λ)n,
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which gives

vn = (rλ)n [u1 − u0 + f (u1)/λ] +
n∑

j=1

(rλ)n− j

[

u j+1 − u j + f (u j+1)

λ
− f (u j )

λ

]

= (rλ)n [v0 + f (u1)/λ] +
n∑

j=1

(rλ)n− j (1 + g j

λ
)v j ,

where g j = ∫ 1
0 f ′(zu j+1 + (1 − z)u j ) dz. It follows that

[1 − (rλ)0(1 + gn/λ)]vn = (rλ)n[v0 + f (u1)/λ] +
n−1∑

j=1

(rλ)n− j (1 + g j

λ
)v j

Choosing λ large enough, v0 + f (u1)/λ > 0 and 1+ g j/λ > 0 for j ≤ n − 1. Since
(rλ)0 = λa0/(1 + λa0) and |gn| ≤ M , then for Ma0 < 1, the coefficient of vn is
positive for λ large enough. Then, one can see that vn > 0. ��

However, for the nonuniformmeshes, the complete positivity introduced in [8] is not
enough for the monotonicity as can be seen in the proof of Theorem 5.2. Fortunately, if
we focus on the slightly restricted kernels that are also nonincreasing, which is natural
in physical models due to the fading memory, then the monotonicity properties can be
established for the nonuniform case as well. This is the main motivation of this paper
and will be explained in detail in the remaining part.

3 Complementarymonotone kernels

As we have discussed above, we will require the original kernels to be nonincreasing
and completely positive. This turns out to be a beautiful property which worth separate
investigation. In Sect. 3.1, we study this property and then the analogue on uniform
meshes in Sect. 3.2.

3.1 Time continuous complementary monotone kernels

In this subsection, we study the properties of the kernels if we require the kernel to be
both nonincreasing and completely positive. Lemma 2.2 gives a nice characterization
of the duality between the complete positivity and the nonnegativity and nonincreasing
property. If the kernel itself is nonincreasing (and it is already known to be nonneg-
ative), then ac is completely positive. The kernel and its complementary kernel then
obey a dual symmetry, which we call “complementary monotonicity” in the sense that
both the kernel and the complementary kernel are nonnegative andmonotone, and also
completely positive.

Motivated by Lemma 2.2, we will consider kernels of the following form:

A := {a = αδ + ã : α ≥ 0, ã is integrable on [0, T ]}. (3.1)
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For such kernels, a ∈ A is nonincreasing if and only if ã is nonincreasing. It is
nonnegative if and only if ã is nonnegative. We then define the following.

Definition 3.1 A kernel a ∈ A with a 
≡ 0 is said to be complementary monotone
(CMM) if a is nonnegative and nonincreasing and there exists a kernel ac ∈ A that is
nonnegative and nonincreasing such that a ∗ ac = 1t≥0.

UsingLemma2.2, one can show the following characterization of theCMMkernels,
where a completely positive kernel is allowed to be in A.

Proposition 3.1 Fix T > 0. The following are equivalent.

(a) A kernel a ∈ A is CMM on [0, T ].
(b) The kernel a is nonincreasing and is completely positive on [0, T ].
(c) The complementary kernel ac ∈ A exists, and is nonincreasing, completely posi-

tive on [0, T ].
Note that in [4], the kernel does not have an atom at t = 0. Here, we allow an

atom at t = 0 and no longer require it to be an L1 function. However, the proof for the
properties of the complementary kernels and resolvents in [4, Theorem 2.2] is actually
valid as well. We sketch the proof in Appendix B for the convenience of the readers.

The result above indicates that the nonincreasing property of the kernel is kind of
crucial for the complete positivity of the complementary kernel. This indicates that
the complete positivity of the complementary kernel may have given a description to
the fading memory principle.

Remark 3.1 Since the complementary kernel is a(−1) ∗ 1t≥0. Then, the above result
actually indicates that a(−1) exists for CMM kernels in A, given by

a(−1) = αcδ′ + (ãc)′,

where ac = αcδ + ãc and the derivative is in distributional sense. If ãc(0+) exists and
is nonzero, then there is an additional δ in the convolutional inverse.

3.2 Complementary monotone kernels on uniformmeshes

We focus on the discrete analogue of complementary monotonicity for the uniform
meshes, i.e., τn ≡ τ and thus t j = jτ . Though the complete positivity is already
enough for the numerical solutions to preserve the desired properties, the complemen-
tary monotonicity itself is interesting enough for separate discussion even for uniform
meshes.

Similar to Definition 3.1, we introduce the following.

Definition 3.2 A sequence a = (a0, a1, · · · ) is complementary monotone (CMM) if
it is nonnegative, nonincreasing, and its complementary kernel ac satisfying a ∗ ac =
(1, 1, · · · ) is also nonnegative and nonincreasing.

Remark 3.2 We note a characterization of the convolution inverse of a completely
monotone (CM) sequence in [16] (or [20] for an improved version). A sequence
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v = (v0, v1, . . .) is said to be CM if the sequence δ jv := (I − E) jv has non-
negative elements for any integer j ≥ 0 (i.e., (δ jv)k ≥ 0 for any integer k ≥ 0),
where E is the shift operator with (Ev) j = v j+1. In [16], it has been shown that
the inverse of a CM sequence a can be written as a(−1) = (a−1

0 ,−c1,−c2, · · · ) with
(c1, c2, · · · ) being CM. Consequently, consider the complementary ac in the sense
that a ∗ ac = (1, 1, 1, · · · ). Then, ac = a(−1) ∗ (1, 1, · · · ) and ac is also CM. This is
in fact our original motivation to consider using complementary kernels to investigate
the monotonicity preserving properties, before we noticed [4, Theorem 2.2].

Below, we will show that the CMM property is simply the complete positivity plus
the nonincreasing property.

Theorem 3.1 The following are equivalent:

(a) The sequence a = (a0, a1, · · · ) is CMM.
(b) a0 
= 0 and a = (a0, a1, · · · ) is nonincreasing and completely positive.
(c) The sequence a = (a0, a1, · · · ) is nonincreasing with a0 
= 0, and its convolu-

tional inverse b = a(−1) = (b0, b1, · · · ) satisfies

b0 > 0, b j ≤ 0, ∀ j ≥ 1. (3.2)

(d) The complementary kernel of a is nonincreasing and completely positive.

Proof (c) ⇒ (a): By the relations a0b0 = 1 and

anb0 = −
n∑

j=1

an− j b j , n ≥ 1,

it is straightforward to see that amust be nonnegative if b0 > 0 and b j ≤ 0 for j ≥ 1 by
induction. See Lemma 4.1 below for the more general version on nonuniform meshes.
By ac = b∗(1, 1, · · · ), ac is nonincreasing. Besides, since a is nonincreasing, the first
element in (ac)(−1) = a∗(1,−1, 0, · · · ) is positive and other elements are nonpositive.
By the result just proved, ac is nonnegative, or

∑n
j=0 b j ≥ 0.

(a) ⇒ (b): That a0 > 0 and a is nonincreasing are clear. Since ac is nonnegative
and nonincreasing, (2.8) holds. Lemma 2.3 then gives the result.

(b) ⇒ (c): This follows directly by Lemma 2.3.
The complementary kernel of a exists if and only if a0 
= 0. Since a is CMM if and

only if the complementary kernel ac is CMM, then the equivalence between (d) and
(a) is then clear as we have established the equivalence between (a) and (c). ��

Theorem 3.1 indicates that the CMM property is just nonincreasing plus the
complete positivity. As we can see from the equivalence between (a) and (c), the
nonincreasing property somehow implies the nonnegativity of ac (or

∑n
j=0 b j ≥ 0).

The following tells us that the CMM property is weaker than the log-convexity.

Lemma 3.1 If a = (a0, a1, · · · ) is nonnegative, nonincreasing and is log-convex in
the sense a j−1a j+1 ≥ a2j , then it is CMM.
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We refer the readers to [22, Lemma 2.3] for the result on the signs of the inverse if the
discrete kernel is log-convex. We remark that for a to be CMM, b2 ≤ 0 is equivalent
to a0a2 ≥ a21 . Nevertheless, the log-convexity for all j is clearly strong.

4 Complementarymonotone kernels on nonuniformmeshes

In the following, we generalize the CMM properties mentioned in Sect. 3 to the the
nonuniform meshes. This will be the main tool we use in this paper to prove the
monotonicity preserving properties on nonuniform meshes.

4.1 Pseudo-convolution

Let us have brief review of the pseudo-convolution discussed in [8]. We arrange the
kernel {ann− j } into a lower triangular array A of the following form

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a10
a21 a20

· · · ...
...

ann−1 · · · an1 an0

· · · ...
...

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.1)

Once we have arrays of this form, the pseudo-convolution between two such kernels
A and B is defined by the “matrix product”. In particular, C := A∗̄B is given by

cnk =
k∑

j=0

ank− j b
n+ j−k
j , or cnn−k =

n∑

j=k

ann− j b
j
j−k . (4.2)

If anj = a j and bnj = b j are both independent of n, then it reduces to the usual
convolution. By the definition, the convolution for n ≤ N does not depend on the data
with n > N . Hence, though the discussion here is for infinite arrays, the result can
apply to array kernels with finite data.

Consider the following special kernels. Here, I is the generalization of the identity
matrix and we expect it to be the identity for pseudo-convolution. The kernel L is the
correspondance of 1t≥0 or the kernel (1, 1, · · · ) for uniform meshes, which would be
used to define complementary kernels. The kernel L(−1) is expected to be the inverse
of L and thus the correspondance of (1,−1, · · · ) for uniform meshes.

I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

...

1
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1
...

...
...

1 1 · · · 1
...

...
...

...
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, L(−1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1 1

−1 1
... 1

· · · ...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.3)
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It can be verified that I is indeed the identify for the pseudo-convolution, and the
following properties hold.

(a) The pseudo-convolution is associative.
(b) For a given A, if a kernel B satisfies A∗̄B = I , then B∗̄A = I .

The kernel B is actually the ROC kernel defined in [23]. Clearly, B is both the left
inverse and the right inverse of A for pseudo-convolution so we may simply call it the
inverse, and denote

A(−1) := B, such that B∗̄A = A∗̄B = I .

The following lemma from [8, Lemma 4.3] is reminiscent of the M-matrices and is
often useful.

Lemma 4.1 Let B be the inverse of A. If B has positive diagonal elements and non-
positive off-diagonal elements, then A has nonnegative elements and the entries on
the diagonal are positive.

The kernel L corresponds to the sequence (1, 1, · · · ) in the usual convolution, and
L(−1) in (4.3) is clearly the inverse of L . With this, one may define the complementary
kernels.

Definition 4.1 For a given A, the kernel CR with A∗̄CR = L is called the right com-
plementary kernel. The kernel CL with CL ∗̄A = L is called the left complementary
kernel.

If A is invertible, then direct verification tells us that CR = A(−1)∗̄L and CL =
L ∗̄A(−1). Using this fact, one has C (−1)

R = L(−1)∗̄A and C (−1)
L = A∗̄L(−1). Conse-

quently, one has the following observation.

Lemma 4.2 Moreover, anj is nonincreasing in n if and only if the inverse of CR has
nonpositive off-diagonals; anj is nonincreasing in j if and only if the inverse of CL has
nonpositive off-diagonals.

One can also define the pseudo-convolution between a kernel and a vector. Consider

V = {x = (x1, x2, · · · )T : xi ∈ R}.

Define the pseudo-convolution ∗̄: K × V → V , y = A∗̄x by

yn =
n∑

j=1

ann− j x j . (4.4)

then, it holds that A∗̄(B∗̄x) = (A∗̄B)∗̄x .
Remark 4.1 Here, the index of the vector x starts with i = 1 instead of i = 0. This
convention is adapted to the fact that there are only n− 1 elements “ann− j” for fixed n,
and consistent for the implicit numerical scheme used in Sect. 6 later. This should be
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compared to the convolution kernel a = (a0, a1, · · · ) above which starts with index
i = 0. The difference between “vectors” and “kernels” is not essential and they can be
unified if we understand the vector x as the first column of an array kernel bnn− j ≡ bn− j

so that x j = b j
j−1 = b j−1. Thenwhen ann− j = an− j is a uniform convolutional kernel,

A∗̄x = a ∗ b reduces to the usual convolution between kernels.

Next, we consider the resolvent kernels for nonuniform meshes using the pseudo-
convolution:

Rλ + λRλ∗̄A = λA ⇐⇒ A − Rλ∗̄A = 1

λ
Rλ. (4.5)

Lemma 4.3 Suppose the diagonal elements of A are positive and its right complemen-
tary kernel is CR. Then, the resolvent Rλ defined by (4.5) always exists for λ > 0.
Moreover, the following holds:

(a) Rλ∗̄A = A∗̄Rλ, Rλ∗̄A(−1) = A(−1)∗̄Rλ;
(b) I − Rλ = (I + λA)(−1) = λ−1Rλ∗̄A(−1);

The following proved in [8] describes the asymptotic behavior of the resolvents.

Lemma 4.4 Suppose that A is invertible. The resolvent Rλ satisfies the following as
λ → ∞:

Rλ = I − λ−1A(−1) + O(λ−2).

The O(λ−2) is elementwise under the limit λ → +∞.

4.2 Basic definitions and results

For the array kernels, the monotonicity of the kernels is not very straightforward now.
We need to look at the columns and rows.

Definition 4.2 Consider an array kernel A = (ann− j ). We call A column monotone if

it has nonnegative entries and an−1
j−1 ≥ anj . We call it to be row monotone, if it has

nonnegative entries and anj−1 ≥ anj . We call it doubly monotone if it is both column
monotone and row monotone.

The columnmonotonicity actuallymeans that for different timen, the approximationof
the kernel a on a fixed interval I j = (t j−1, t j ) is nonincreasing. The rowmonotonicity
means that for a fixed time n, the approximation of the kernel a is monotone over
different intervals I j .

As a generalization of the uniform mesh case, we propose the following.

Definition 4.3 (a) A columnmonotone kernel A is called right complementarymono-
tone (R-CMM) if its right complementary kernel CR is doubly monotone.

(b) A row monotone kernel is called left complementary monotone (L-CMM) if its
left complementary kernel is doubly monotone.
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(c) A doubly monotone kernel A is complementary monotone (CMM) if it is both
R-CMM and L-CMM.

We have seen that the signs of the entries of the inverse together with the non-
increasing property can also be used to characterize the CMM property for uniform
meshes, but this is not the case for nonuniform meshes. If A(−1) has positive diag-
onal and nonpositive off-diagonals (so that the kernel is completely positive), then
CR is row monotone but is not necessarily column monotone, even with the column
monotonicity of A. An important relation (4.10) we need later is hard to establish.
Hence, we use the complementary kernel to define the R-CMM property here. Note
that we are not requiring the kernel A itself to be doubly monotone because the row
monotonicity is not needed.

The pseudo-convolution for n ≤ N is not affected by the data with n > N . Hence,
one may consider the local versions of the CMM concepts.

Definition 4.4 If A is column monotone for n ≤ N and CR is doubly monotone for
all n ≤ N , then we call A to be “local R-CMMwith range N”. The local L-CMM and
local CMM are similarly defined.

The results below aremainly stated for R-CMMkernels, while the ones for L-CMM
can be proved similarly. Moreover, we only study the global CMM properties and the
local versions can be easily obtained by the local feature of the pseudo-convolution.

We now give some characterizations of the R-CMM kernels.

Theorem 4.1 The following are equivalent.

(a) The array kernel A is R-CMM;
(b) The right complementary kernel CR is doubly monotone and C (−1)

R has positive
diagonals and nonpositive off-diagonals;

(c) A is column monotone, and both A(−1) and (L(−1)∗̄A∗̄L)(−1) have positive diag-
onals and nonpositive off-diagonals.

Proof The equivalence between (a) and (b) follows from Definition 4.3 and the fact
C (−1)
R = L(−1)∗̄A. From (b) to (c), one only has to use the fact C (−1)

R = L(−1)∗̄A
and apply Lemma 4.1. From (c) to (b), one apply directly the observation A(−1) =
CR ∗̄L(−1) and (L(−1)∗̄A∗̄L)(−1) = L(−1)∗̄CR . We omit the details. ��

Clearly, the column monotonicity of A is equivalent to the nonpositivity of off-
diagonals in C (−1)

R . This, together with the positive diagonals, implies that CR must
have nonnegative elements. We remark, however, the column monotonicity of A is
clearly stronger than the nonnegativity of the elements of CR .

Below, we present some necessary conditions hidden in Theorem 4.1 above.

Corollary 4.1 Suppose A is R-CMM. Then, the following facts hold.

(1) The kernel L(−1)∗̄A∗̄L has nonnegative entries, and it implies that for each n ≥ 1,

n+1∑

j=k

an+1
n+1− j ≥

n∑

j=k

ann− j , 1 ≤ k ≤ n − 1. (4.6)

Moreover, it is row monotone.
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(2) Let A(−1) = B = (bnn− j ). Then It holds that

bn0 > 0, bnn− j ≤ 0,
n∑

j=1

bnn− j ≥ 0,∀n ≥ 1 j < n. (4.7)

The claims in (4.7) are just reinterpretation of the signs for the elements of comple-
mentary kernels. The condition (4.6) is actually very natural, since

n∑

j=k

ann− j ≈
∫ ∑n

j=k τ j

0
a(s) ds.

Below, we give a sufficient condition for A to be R-CMM. We recall a basic result
in [22, Lemma 2.3]:

Lemma 4.5 If a kernel Ã = (ãnn− j ) has positive entries such that

ãn−1
j−1 ã

n
j+1 ≥ ãnj ã

n−1
j , (4.8)

then the inverse has positive diagonal elements and nonpositive off-diagonal elements.
If moreover, Ã is column monotone, then the right complementary kernel C̃R has
nonnegative elements so that C̃R is row monotone.

Note that the statement here is slight different from that in [22, Lemma 2.3]. In [22,
Lemma 2.3], the conditions of column monotonicity and (4.8) are proposed together.
However, if we go over the proof, one can find that the column monotonicity is used
for the signs of RCC kernels, namely the last inequality in (4.7). Moreover, in [22,
Lemma 2.3], they assumed strict monotonicity along columns, which is not needed
by us.

As mentioned, we need CR to be column monotone. The condition (4.8) imposed
on A seems not enough for A to be R-CMM.We need to put conditions on L(−1)∗̄A∗̄L
as well. Hence, a sufficient condition would be the following.

Proposition 4.1 If the following conditions are satisfied:

(1) A is column monotone;
(2) the kernels A and L(−1)∗̄A∗̄L both have positive elements and both satisfy (4.8);

then A is R-CMM.

Note that we are not requiring the column monotonicity for L(−1)∗̄A∗̄L , which may
not hold for schemes considered. We believe that the conditions in Proposition 4.1 are
kind of strong in general. Nevertheless, we will use Proposition 4.1 for the example
in Sect. 6.

The R-CMM could be preserved under a certain scaling transform. In fact, we have
the following.
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Lemma 4.6 Suppose A is R-CMM and τ is diagonal as

τ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

τ1
τ2

...

τ j
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.9)

with the property that 0 < τ1 ≤ τ2 ≤ τ3 · · · . Then, A∗̄τ is R-CMM.

Proof For any diagonal kernel with τi > 0, A∗̄τ is again columnmonotone.Moreover,
(A∗̄τ)(−1) = τ (−1)∗̄A(−1). Hence, the signs of the elements in inverse of A∗̄τ are as
desired. Moreover,

(L(−1)∗̄A∗̄τ ∗̄L)(−1) = L(−1)∗̄τ (−1)∗̄A(−1)∗̄L = L(−1)∗̄τ (−1)∗̄CR .

Note that CR is doubly monotone. Clearly, if τ1 ≤ τ2 ≤ τ3 · · · , then τ (−1)∗̄CR is
column monotone. Then, (L(−1)∗̄A∗̄τ ∗̄L)(−1) has the desired signs. The result then
follows from Theorem 4.1. ��

Note that, under this scaling, (4.8) and the column monotonicity of A are invariant
(the doubly monotonicity is hard to preserve under the scaling though). Hence, the
property R-CMM is kind of robust under such a scaling. (The condition (4.8) for
L(−1)∗̄A∗̄L may be broken, though.)

4.3 R-CMM versus complete positivity

Similar to Definition 2.3, the complete positivity was introduced in [8].

Definition 4.5 An array kernel A is completely positive if 0 < (Rλ)
n
0 < 1, (Rλ)

n
n− j ≥

0 and
∑n

j=1(Rλ)
n
n− j ≤ 1 for all λ > 0.

It has been shown in [8] that the following holds.

Lemma 4.7 Let A be an invertible array kernel and B = A(−1) = (bnn− j ). Then, A is
completely positive if and only if the conditions (4.7) hold.

Moreover, similar to Definition 4.4, due to the local property of the pseudo-
convolution, we can also introduce the local complete positivity.

Definition 4.6 A kernel is called locally completely positive with range N if for all
n ≤ N , 0 < (Rλ)

n
0 < 1, (Rλ)

n
n− j ≥ 0 and

∑n
j=1(Rλ)

n
n− j ≤ 1 for all λ > 0.

The characterization in Lemma 4.7 also holds for the local version, that is conditions
(4.7) shold hold for all n ≤ N .

By Corollary 4.1, A being R-CMM is clearly stronger than being completely pos-
itive. In fact, the column monotonicity of A implies that CR is nonnegative and thus
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∑n
j=1(Rλ)

n
n− j ≤ 1. However, CR being nonnegative cannot imply that A is column

monotone. Hence, R-CMM is stronger.
Similar to the uniform mesh version in Theorem 3.1, one has the following results.

Theorem 4.2 The following are equivalent.

(a) The array kernel A is R-CMM;
(b) The kernel A is column monotone with positive diagonals, and both the resolvents

of A and L(−1)∗̄A∗̄L defined in (4.5) have nonnegative entries for all λ > 0;
(c) The diagonals of A are positive and I + λA is R-CMM for all λ > 0.

Proof (a) ⇒ (b): Let B = A(−1). Then B has positive diagonals and nonpositive off-
diagonals by the R-CMM property. Note that R(−1)

λ = I + λ−1A(−1) has nonpositive
off-diagonals and positive diagonals. Then, the entries of Rλ are nonnegative.

LetM = λL(−1)∗̄A∗̄L whose inverse has nonpositive off-diagonals by theR-CMM
property of A. Writing (I + M)(−1) = I − N , then N is the resolvent of L(−1)∗̄A∗̄L .
One can similarly find N (−1) = I + M (−1). Hence, N has nonnegative entries by
Lemma 4.1.

(b) ⇒ (c): clearly, I + λA is column monotone. Note that (I + λA)(−1) = I − Rλ

has nonpositive off-diagonals. Consider L(−1)∗̄(I + λA)∗̄L = I + λL(−1)∗̄A∗̄L .
The inverse of L(−1)∗̄(I + λA)∗̄L is thus I minus the resolvent of L(−1)∗̄A∗̄L with
parameter λ > 0, and thus has nonpositive off-diagonal entries. Theorem 4.1 implies
that I + λA is R-CMM.

(c)⇒ (a): the condition implies that λ−1 I+A is R-CMM for all λ > 0. Taking λ →
∞, one can show that the complementary kernel is continuous in λ−1 elementwise.
The monotonicity and nonnegativity is preserved in the limit. ��
Corollary 4.2 If A is R-CMM, then it holds that

n∑

j=k

(Rλ)
n
n− j ≥

n−1∑

j=k

(Rλ)
n−1
n−1− j ,∀1 ≤ k ≤ n − 1. (4.10)

Proof Since I + λA is also R-CMM, then (I − Rλ)∗̄L , as the complementary kernel
of I + λA, is doubly monotone. Hence, Rλ∗̄L are nondecreasing along the columns
and thus (4.10) holds. ��
Remark 4.2 Note that the right complementary kernel of Rλ is λ−1CR + L which is
doubly monotone. If we can show that Rλ is column monotone, then Rλ is R-CMM,
which is left for future study.

The relation (4.10) is an important property we need in Sect. 5 to show that the
numerical solutions to autonomous equation on nonuniform meshes are monotone.
This relation is inherently present on uniform meshes derived from complete positiv-
ity as rλ is nonnegative. For nonuniform meshes, it is difficult to obtain using only
complete positivity. The R-CMMproperty is slightly stronger but seemsmore suitable
as it has built in the fading memory principle.
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5 Monotonicity properties for the numerical solutions

In this section, we consider the numerical scheme (1.8). In other words

u = h + Ā∗̄τ ∗̄ f = h + A∗̄ f , (5.1)

where τ is given in (4.9). We will consider the schemes where A is R-CMM and
investigate the two monotonicity properties mentioned in Sect. 2.1 in the discrete
level.

The following fact is an analogue of Theorem 2.1. It is about the completely positve
kernels and thus also R-CMM kernels.

Theorem 5.1 Suppose f (t, ·) is uniformly Lipschitz continuous on [0, T ] with Lip-
schitz constant M > 0. Assume A is locally completely positive with range N
(see Definition 4.6). Assume M sup j≤N a j

0 = M sup j≤N τ j ā
j
0 < 1. If γ (tn) :=

h(1)(tn) − h(2)(tn) satisfies r = γ − Rλ∗̄γ ≥ 0 where Rλ is defined in (4.5), then the
corresponding numerical solutions satisfy u(1)

n ≥ u(2)
n for all n ≤ N. In particular, if

h(i)’s are two constants and h(1) ≥ h(2), then the claim holds.

Proof Clearly, we can consider completely positive kernels without loss of generality.
Basically, if wn = u(1)

n − u(2)
n , then

wn = γ (tn) +
n∑

j=1

ann− j giwi , gi =
∫ 1

0
∂u f (ti , zu

(1)
i + (1 − z)u(2)

i ) dz.

This is just w = γ + A∗̄(gw) where gw = (g1w1, g2w2, · · · ). Taking pseudo-
convolution with I − Rλ on the left, Lemma 4.3 then gives

wn = rn + Rλ ∗ (w + gw/λ)n, (5.2)

where r = γ − Rλ∗̄γ ≥ 0. Choosing λ large enough, 1 + gn/λ > 0 for all n ≤ N .
Then,

(1 − (Rλ)
n
0 − (Rλ)

n
0gn/λ)wn = rn +

n−1∑

j=1

(Rλ)
n
n− jw j (1 + g j/λ). (5.3)

By Lemma 4.4,

1 − (Rλ)
n
0 + (Rλ)

n
0λ

−1gn = λ−1(an0 )
−1 + (1 − λ−1(an0 )

−1)λ−1gn + O(λ−2).

Since |gn| ≤ M , it follows that the coefficient of wn in (5.3) is positive if λ is large
enough by the condition M sup j≤N a j

0 < 1. Since Rλ ≥ 0 by the complete positivity,
the result then follows by simple induction.

If h(i)’s are two constants with h(1) −h(2) ≥ 0, using Lemma 4.7, one can conclude
that r ≥ 0. The result then follows. ��
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Below, we discuss themonotonicity of the solutions. Here, we only consider h(t) ≡
u0 and the autonomous cases. The following result is an analogue of Theorem 2.2.

Theorem 5.2 Assume h(t) ≡ u0 and f (t, u) ≡ f (u). Suppose f is Lipschitz contin-
uous with | f ′(u)| ≤ M for some M > 0. If A is local R-CMM with range N for the
numerical method, then for M sup j≤N a j

0 = M sup j≤N τ j ā
j
0 < 1, the solution {un} is

monotone for all 0 ≤ n ≤ N.

Proof If f (u0) = 0, one can see that the solution is always un ≡ u0 (note that the
numerical solution is uniquely solvable).

Below, we only focus on f (u0) > 0, as the discussion for f (u0) < 0 is similar.
Again, we consider the R-CMM sequences without loss of generality (for the local
R-CMM ones, one only needs to repeat the argument for n ≤ N ).

Consider first n = 1. Then,

u1 − a10 f (u1) = u1 − τ1ā
1
0 f (u1) = u0.

Let μ(u) = u − τ1ā10 f (u). Clearly, μ(u0) < u0 = μ(u1) and the function is increas-
ing. Hence, one has u1 > u0. Now, define

vn := un+1 − un, n ≥ 0.

Hence, v0 > 0 and we aim to show vn ≥ 0 for n ≥ 1.
Recall A is R-CMM, and Rλ is its resolvent. Let u − u0 := (u1 − u0, u2 − u0, · · · )

and f (u) = ( f (u1), f (u2), · · · ). Then,u−u0 = A∗̄ f (u). Taking pseudo-convolution
with I − Rλ on the left, one has

un − u0 = Rλ∗̄(u − u0 + f (u)/λ)n,

which gives

vn = (Rλ)
n+1
n [u1 − u0 + f (u1)/λ] +

n∑

j=1

(Rλ)
n+1
n− j

[

u j+1 − u0 + f (u j+1)

λ

]

−
n∑

j=1

(Rλ)
n
n− j

[

u j − u0 + f (u j )

λ

]

=: I1 + I2 + I3.

Mimicking the proof for the uniformmesh case in Theorem 2.3, one would arrange
it into the following

I2 + I3 =
n∑

j=1

[(Rλ)
n+1
n− j − (Rλ)

n
n− j ]

[

u j+1 − u0 + f (u j+1)

λ

]

+
n∑

j=1

(Rλ)
n
n− j (v j + λ−1g jv j ), (5.4)

123



BIT Numerical Mathematics            (2024) 64:24 Page 21 of 33    24 

where g j = ∫ 1
0 f ′(zu j+1 + (1− z)u j ) dz. The issue is that the sign of the first term is

not easy to determine. Hence, we must rearrange the terms to resolve this. We rewrite

u j+1 − u0 = u1 − u0 +
j∑


=1

v
, f (u j+1) = f (u1) +
j∑


=1

g
v
.

Introduce the notation

Snj :=
n∑


= j

(Rλ)
n+1
n−
 −

n∑


= j+1

(Rλ)
n
n−
.

By relation (4.10), Snj ≥ 0. Using Snj , one then has

I1 + I2 + I3 = Sn0 (u1 − u0 + f (u1)/λ) +
n−1∑

j=1

v j (1 + g j/λ)Snj

+vn(1 + gn/λ)(Rλ)
n+1
0 ,

so that

vn(1 − (Rλ)
n+1
0 − (Rλ)

n+1
0 λ−1gn) =

n−1∑

j=1

v j (1 + g j/λ)Snj + γn, (5.5)

where

γn = Sn0 (u1 − u0 + f (u1)/λ).

Hence, for λ sufficiently large u1 − u0 + f (u1)/λ > 0 and thus γn ≥ 0.
Now, consider the coefficient of vn . By Lemma 4.4,

εn := 1 − (Rλ)
n+1
0 + (Rλ)

n+1
0 λ−1gn

= λ−1(an+1
0 )−1 + (1 − λ−1(an+1

0 )−1)λ−1gn + O(λ−2).

Since |gn| ≤ M and an+1
0 = ān+1

0 τn+1, if Man+1
0 < 1, then εn > 0 for λ large

enough.
For each n, one may choose a suitably large λ (depending on n) so that the coeffi-

cients are positive to find vn ≥ 0, by induction. ��
Remark 5.1 For time fractional ODEs, ān0 ∼ 1

�(α+1) τ
α−1
n . Then, the condition on the

stepsize in Theorem 5.2 agrees with the one in [20].

We perform some discussion on the time fractional differential equations here as
they are an important class of the Volterra integral equations we considered. The
kernels for time fractional ODEs are clearly CM, which is thus log-convex and CMM.
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The so-called CM-preserving schemes on uniform meshes were proposed in [20].
These schemes are on the uniform meshes and require the discrete kernel {a j } to be
a CM sequence. It has been shown that the CM-preserving methods have many good
stability properties and have been used successfully to prove some sharp estimates [3].
The standard L1 scheme, the Grünwald-Letnikov method, and the method with aver-
aged kernel are CM-preserving for the time fractional ODEs [20]. The CM-preserving
schemes are clearly CMM by Remark 3.2. However, such methods may be restricted
in applications, as they are restricted to uniform meshes and high order schemes often
break the CM property.

Another option is to consider discretization that are log-convex, which is related
to the positive definiteness of the methods and may enjoy some good properties [22].
As indicated in Lemma 3.1, the monotonicity, nonnegativity and the log-convexity
a j+1a j−1 ≥ a2j will suffice for the CMM property on uniform meshes. This means
that the CMM property is in fact kind of weak for uniform meshes.

As for the nonuniform meshes, the results in Proposition 6.1 and 6.2 later for the
time fractional ODE are interesting in the sense that there is no restriction on the ratios
τ j+1/τ j for the stepsizes. This may indicate that the R-CMM property is quite flexible
in practice.

6 Application to fractional ODEs

We now consider some schemes for the fractional ODE (1.3). The L1 scheme [24, 34]
is the most popular discretization, obtained by linear interpolation of the derivative u′
in the differential form:

Dαu(tn) ≈ Dα
τ un := C ∗̄∇τun = C ∗̄L(−1)∗̄(u − u0)n, (6.1)

where

cnn− j = 1

τ j�(1 − α)

∫ t j

t j−1

(tn − s)−α ds. (6.2)

Hence, the implicit discretization using the L1 scheme is then

Dα
τ un = f (tn, un), n ≥ 1. (6.3)

Clearly, this scheme can be converted into the integral form using the pseudo-
convolution, resulting in

un = u0 + A∗̄ f (ti , ui ) = u0 + Ā∗̄τ ∗̄ f , A = B(−1).

In this scheme, cnn− j is the average of (tn − s)−α/�(1 − α) on [t j−1, t j ] while ann− j

is the integral of (tn − s)α−1/�(α) on this interval. In fact, the scaling of cn0 is like
τ−α
n so that the scaling of an0 is like τα

n . The differential scheme is said to be R-CMM
if A is R-CMM.

123



BIT Numerical Mathematics            (2024) 64:24 Page 23 of 33    24 

Proposition 6.1 The L1 scheme (6.3) is always R-CMM.

We just outline the proof: C is clearly doubly monotone and satisfies cn−1
j−1c

n
j+1 ≥

cnj c
n−1
j . Then, C (−1) has positive diagonals and nonpositive off-diagonals. Then, A is

R-CMM by Theorem 4.1 (b).
Next, we consider the integral Eq. (1.5) for the fractional ODEs. We consider the

simplest scheme for the integral on the nonuniform meshes.

un = u0 +
n∑

j=1

ann− j f (t j , u j ), (6.4)

with the coefficients given by

ann− j = 1

�(α)

∫ t j

t j−1

(tn − s)α−1 ds. (6.5)

That means we approximate f (s, u(·)) using the constant interpolation with the right
point on each time interval. Such an integral averaged method on uniform meshes
has been applied to investigate the time continuous fractional gradient flows and the
fractional SDEs in [18].

Proposition 6.2 The kernel A in the scheme (6.4), (6.5) for the fractional ODE is
R-CMM.

Proof We basically apply Proposition 4.1 to show that A is R-CMM. Here, we verify
the conditions. Let A = (ann− j ). It is clear that

ann− j = 1

�(α + 1)
((tn − t j−1)

α − (tn − t j )
α).

Clearly, A is strictly column monotone (strictly decreasing along the columns).
Step 1 We verify the log-convexity condition (4.8). Fixing n, consider the ratio

rnj = ann− j

an−1
n−1− j

= (tn − t j−1)
α − (tn − t j )α

(tn−1 − t j−1)α − (tn−1 − t j )α
.

We now verify that rnj is decreasing for j . To do this, we consider the function

θ(x, y) = (tn − t j−1 − x)α − (tn − t j − y)α

(tn−1 − t j−1 − x)α − (tn−1 − t j − y)α
, 0 ≤ x ≤ τ j , 0 ≤ y ≤ τ j+1.

Clearly, 0 ≤ θ ≤ 1. Moreover,

∂θ

∂x
= [(tn−1 − t j−1 − x)α − (tn−1 − t j − y)α]−2αAx ,
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where

Ax = (tn−1 − t j−1 − x)α−1[(tn − t j−1 − x)α − (tn − t j − y)α]
− (tn − t j−1 − x)α−1[(tn−1 − t j−1 − x)α − (tn−1 − t j − y)α].

To show Ax ≤ 0, consider the mapping z 	→ Ax (z) for 0 ≤ z ≤ τ j + y − x :

Ax (z) := (tn−1 − t j−1 − x)α−1[(tn − t j−1 − x)α − (tn − t j−1 − x − z)α] −
(tn − t j−1 − x)α−1[(tn−1 − t j−1 − x)α − (tn−1 − t j−1 − x − z)α].

One can find that Ax (0) = 0 and

A′
x (z) = α(tn−1 − t j−1 − x)α−1(tn − t j−1 − x − z)α−1

−α(tn − t j−1 − x)α−1(tn−1 − t j−1 − x − z)α−1.

Since (tn − t j−1 − x)(tn−1 − t j−1 − x − z) > (tn−1 − t j−1 − x)(tn − t j−1 − x − z)
for z > 0, one has A′

x (z) < 0. Hence, Ax = Ax (τ j + y − x) < 0.
For the derivative on y, the calculation is similar. In fact

∂θ

∂ y
= [(tn−1 − t j−1 − x)α − (tn−1 − t j − y)α]−2αAy,

with

Ay = (tn − t j − y)α−1[(tn−1 − t j−1 − x)α − (tn−1 − t j − y)α]
−(tn−1 − t j − y)α−1[(tn − t j−1 − x)α − (tn − t j − y)α].

Here, we consider z 	→ Ay(z) for 0 ≤ z ≤ y + τ j − x :

Ay(z) := (tn − t j − y)α−1[(tn−1 − t j − y + z)α − (tn−1 − t j − y)α]
−(tn−1 − t j − y)α−1[(tn − t j − y + z)α − (tn − t j − y)α].

Using similar trick, one can show that Ay(0) = 0 and A′
y(z) < 0 for z > 0. Hence,

Ay = Ay(y + τ j − x) < 0. Hence, θ is decreasing on the region considered. This
then verifies that rnj > rnj+1, and thus (4.8).

Step 2 We consider �(1 + α)L(−1)∗̄A∗̄L = (βn
n− j ). Then, we show the log-

convexity condition (4.8) for this kernel. It is not hard to determine that

βn
n− j = (tn − t j−1)

α − (tn−1 − t j−1)
α.

It is straightforward to see that every element is positive.Note that this is rowmonotone,
and may not be column monotone.
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To verify (4.8), the ratio considered would be different

r̄ nj = βn
n− j

βn
n−( j−1)

= (tn − t j−1)
α − (tn−1 − t j−1)

α

(tn − t j−2)α − (tn−1 − t j−2)α
.

We will show that this is decreasing in n. The calculation is similar. Define

θ̄ (x, y) = (tn − t j−1 + x)α − (tn−1 − t j−1 + y)α

(tn − t j−2 + x)α − (tn−1 − t j−2 + y)α
, 0 ≤ x ≤ τn+1, 0 ≤ y ≤ τn .

It can be shown similarly that

∂θ̄

∂x
< 0,

∂θ̄

∂ y
< 0.

This then implies that θ̄ is decreasing on the region considered. Hence, we find

r̄ nj > r̄ n+1
j .

This is equivalent to (4.8).
Hence, A and L(−1)∗̄A∗̄L verify the conditions in Proposition 4.1, so A is R-CMM.

��

7 Numerical experiments

In this section, we perform some numerical experements to support our theory.

7.1 Example 1: An illustrating integral equation

We consider the following integral equation

u(t) = h +
∫ t

0
a(t − s) f (s, u(s)) ds,

where h ∈ R is a constant and we take

a(t) =
2∑

i=1

ωi exp(−λi (t − s)), ω1 = 0.6, ω2 = 0.4, λ1 = 1, λ2 = 2.

We use the approximation

un = h +
n∑

j=1

ann− j f (t j , u j ),
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Fig. 1 The numerical solutions
with a random mesh and
different initial values for the
integral equation with kernel
a(t) = ∑2

i=1 ωi exp(−λi t). The
order of the solution curves is
preserved, and each solution
curve is also monotone

where

ann− j =
∫ t j

t j−1

a(tn − s) ds =
2∑

i=1

ωi

λi
(e−λi (tn−t j ) − e−λi (tn−t j−1)).

With the monotonicity of a(·), the columnmonotonicity of A is clear (for fixed j , with
increasing n, ann− j becomes smaller). Similar as in the proof of Proposition 6.2, we
may consider

rnj := ann− j

an−1
n−1−1

= a(tn − s jn)

a(tn−1 − s jn)
, for some s jn ∈ (t j−1, t j ).

Here, we have applied the mean value theorem that
∫ t j
t j−1

f (s) ds/
∫ t j
t j−1

g(s) ds =
f (s′)/g(s′) for some s′ ∈ (t j−1, t j ) if g is positive on (t j−1, t j ). It can be verified
directly that t 	→ a(τ + t)/a(t) is increasing for any τ > 0 as t 	→ a(t) is log-convex.
Hence, as j is larger, tn−1 − s jn is smaller, so that rnj is decreasing, which implies that
rnj+1 < rnj . One can similar consider βn

n− j and r̄ nj as in the proof of Proposition 6.2

and find that r̄ n+1
j < r̄ nj . This means that the discretization is R-CMM.

We take

f (u) = ue−u

and run the numerical experiments with initial values u0 = 0.99, 1, 1.01 for a random
mesh τ j ∼ 0.1 · U (0, 1), where U (0, 1) is the uniform distribution on (0, 1). The
results are shown in Fig. 1. Clearly, both types of monotonicity are preserved for the
numerical results, agreeing with our theory.
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Fig. 2 Numerical solutions with different meshes and different initial values for L1 scheme. a increasing
mesh; b decreasing mesh; c randommesh. The orders of the solution curves stay monotone, and each curve
is also monotone

7.2 Example 2: A simple fractional ODE

In this example, we perform the numerical simulations for the time fractional ODEs. In
particular, we verify numerically that both the L1 discretization (6.3) and the integral
averaged scheme (6.4), (6.5) are able to preserve the monotonicity properties of the
numerical solutions.

As an example, we consider the following fractional ODE.

Dα
c u = sin(1 + u2), u(0+) = u0 ⇐⇒ u(t) = u0 + 1

�(α)

∫ t

0
(t − s)α−1 f (u(s)) ds,

where we take α = 0.6. We use three types of meshes:

– Increasing mesh with τ1 = 0.01 and τ j+1/τ j = 1.2 for j ≥ 1;
– Decreasing mesh with τ1 = 0.1 and τ j = 0.1(1 + 0.5 j)−1/2;
– Random mesh with τ j ∼ 0.1 · U (0, 1), where U (0, 1) indicates the uniform
distribution on (0, 1).

For the L1 scheme, the solution will be determined inductively by solving the
implicit equation

cn0un − f (un) = cnn−1u0 +
n−1∑

j=1

(cnn− j−1 − cnn− j )u j ,

while the numerical solution to the integral averaged scheme can be determined induc-
tively by the implicit equation

un − an0 f (un) = u0 +
n−1∑

j=1

ann− j f (u j ).

The numerical results with initial values u0 = 0, 0.1,
√
3π/2 − 1,

√
3π/2 − 2

are shown in Figs. 2 and 3, for the L1 scheme and the integral averaged scheme
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Fig. 3 Numerical solutions with different meshes and different initial values for the integral averaged
scheme. a increasing mesh; b decreasing mesh; c random mesh. The orders of the solution curves stay
monotone, and each curve is also monotone

respectively. We find that the two monotonicity properties are preserved for these
numerical solutions over each nonuniform mesh. (In the figure, the monotonicity for
the u0 = √

3π/2 − 2 curve is not very clear. With the concrete numerical values, we
have checked that they are indeed monotone.) This then verifies the theory.

8 Conclusion

Wehave studied variable-step discretizations ofVolterra integral equationswith nonin-
creasing completely positive kernels in this paper. The “complementarymonotonicity”
has been proposed to describe the nonincreasing completely positive kernels on uni-
form meshes, and the “right complementary monotone” (R-CMM) kernels has been
proposed as the analogue for nonuniform meshes. The properties of these kernels are
studied using the resolvent kernels, via the so-called "pseudo-convolution" which is
given by the matrix product between the array kernels and is a generalization of the
usual convolution on uniform meshes. We then establish the monotonicity properties
of the numerical solutions inherited from the continuous equation if the discretization
has the R-CMM property.

The tools and results in this paper may be helpful to understand the structure-
preserving properties of the numerical solutions on nonuniform meshes. There are
many interesting questions for future study. For example, it would be interesting to
generalize the results to other types of integral equations. It is also an interesting
question whether some high order schemes could have similar properties or not.

A The proofs for themonotonicity properties

We first present the proof for Theorem 2.1.

Proof of Theorem 2.1 Let v(t) := u1(t)− u2(t) and [0, Tb) be the common interval of
existence. Then,

v(t) = γ (t) +
∫ t

0
a(t − s)g(s)v(s) ds,
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g(s) :=
∫ 1

0
∂u f (s, zu1(s) + (1 − z)u2(s)) dz.

Convolving both sides with δ − rλ, one has

v(t) − rλ ∗ v(t) = (δ − rλ) ∗ γ (t) + λ−1rλ ∗ (gv).

This implies that

v(t) = βλ(t) +
∫ t

0
rλ(t − s)[1 + λ−1g(s)]v(s) ds. (A.1)

For any t ∈ [0, Tb), u1, u2 are bounded on [0, t] and hence one can choose λ large
enough to make 1 + g(s)/λ > 0 on [0, t]. Recall βλ(t) ≥ 0. Since βλ ≡ 0 is trivial,
we assume that βλ > 0 somewhere.

If βλ(0) > 0 (or equivalently γ (0) > 0), then v(0) = βλ(0) > 0 so that v(s) > 0
for s small enough. If v ever reaches 0 at a first time t∗, then (A.1) tells us that

0 = v(t∗) = βλ(t∗) +
∫ t∗

0
rλ(t∗ − s)[1 + λ−1g(s)]v(s) ds > 0.

This is a contradiction, so v(t) > 0 for all t ∈ [0, Tb).
Now, consider the degenerate case, namely βλ(t) is zero on [0, t1] and βλ(t) > 0 on

(t1, t1+δ) for some δ > 0. Then, by (2.3), γ = βλ +λa ∗βλ is also zero on [0, t1]. By
the uniqueness of the solution to (1.1), u1(t) = u2(t) or v(t) = 0 on [0, t1]. Assume
for the purpose of contradiction that v(s) < 0 on (t1, t1 + δ1) for some δ1 ≤ δ. Fix λ

such that 1 + h(s)/λ > 0 on (t1, t1 + δ1). Let A := sups∈(t1,t1+δ1)
(1 + h(s)/λ) > 0.

We take ε ∈ (0, δ1] such that
∫ ε

0 rλ(s) ds < 1/(2A). Let t2 = argmins∈[t1,t1+ε]v(s) ∈
(t1, t1 + ε]. Then,

v(t2) = βλ(t2) +
∫ t2

t1
rλ(t2 − s)(1 + h(s)/λ)v(s) ds

≥ βλ(t2) + Av(t2)
∫ t2

t1
rλ(t2 − s) ds ≥ βλ(t2) + v(t2)/2.

This is a contradiction. Therefore, v(t) ≥ 0 for t ∈ (t1, t1 + δ1) for some δ1 ≤ δ,
which can be strengthened to v(t) > 0 for t ∈ (t1, t1 +δ1) by (A.1). Then, (A.1) again
implies that v(t) > 0 for t ∈ (t1, Tb). ��

Below we present the proof for Theorem 2.2.

Proof of Theorem 2.2 Convolving both sides of the equation with δ − rλ, one has

u(t) = h(t) + (u − h) ∗ rλ + λ−1rλ ∗ f (·, u(·)).
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Taking derivative on both sides which is feasible since u is absolutely continuous, one
has

u′(t) = h′(t) + rλ(t)(u(0) − h(0)) + rλ ∗ (u′ − h′)
+λ−1rλ(t) f (0, u(0)) + λ−1rλ ∗ (∂t f + ∂u f u

′). (A.2)

Sending t → 0+ in the equation, one has u(0) = h(0). Then, the equation is reduced
to

u′(t) = β(t) + rλ ∗ ([1 + λ−1∂u f ]u′),

where

β(t) := (δ − rλ) ∗ h′ + λ−1rλ(t) f (0, h(0)) + λ−1rλ ∗ ∂t f (t, u).

The conclusions hold by similar arguments as in the proof of Theorem 2.1. ��

B Sketch of the proof for the time continuous CMMproperty

Proof of Proposition 3.1 Since a is CMM if and only if ac is CMM, hence if we can
show the equivalence between (a) and (b), then the equivalence between (a) and (c)
follows automatically.

(a) ⇒ (b): let ac = α̃cδ + k be the complementary kernel. Then, k is nonnegative
and nonincreasing and integrable on (0, T ). Consider the kernel aε defined by

aε ∗ ((ε + α̃c)δ + k) = 1t≥0.

Then, aε is absolutely continuous. Taking t → 0+, one deduces that

ε + α̃c = 1/aε(0).

Let rε,λ be the resolvent for aε . Using the intuition that δ − rε,λ = λ−1a(−1)
ε ∗ rε,λ,

one may obtain that

1 − 1 ∗ rε,λ = λ−1rε,λ ∗ acε = (λaε(0))
−1rε,λ + λ−1rε,λ ∗ k.

This can actually be justified rigorously and see the proof in [4, Theorem 2.2]. With
this, one has an equation for rε,λ:

rε,λ + aε(0)(k + λ) ∗ rε,λ = λaε(0).

Since (k + λ) is positive and nonincreasing, one can then show that rε,λ > 0. Then,
1 − 1 ∗ rε,λ = (λaε(0))−1rε,λ + λ−1rε,λ ∗ k ≥ 0 follows.

Next, one aims to take the limit ε → 0+. This limit is not straightforward as the
atom may appear. The approach is to convolve with absolutely continuous functions
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z with z(0) = 0 and z ≥ 0. Then, show uε := rε,λ ∗ z → rλ ∗ z =: u by the equations
they satisfy. In particular, rλ ∗ (λ−1ac + 1t≥0) = 1t≥0, one has

(λ1t≥0 + α̃cδ + k) ∗ u = λ1t≥0 ∗ z, εuε + (λ1t≥0 + α̃cδ + k) ∗ uε = λ1t≥0 ∗ z

Taking the difference,

ε(uε − u) + (λ1t≥0 + α̃cδ + k) ∗ (uε − u) = −εu.

One readily shows that
∫ t
0 |uε − u| ds → 0. This implies that u ≥ 0. Then, rλ ≥ 0.

The sign of s is similarly proved using the relation between rλ and sλ.
(b) ⇒ (a): the main idea is that λsλ ∗ (λ−1δ +a) = 1t≥0. It is expected that sλ → 0

as λ → ∞ since rλ is close to δ as λ → ∞. Hence, the goal is to take certain limit of
λsλ such that the limit would be the complementary kernel, which is then nonnegative
and nonincreasing.

By the conditions given, it can be shown that λsλ is uniformly bounded by
(∫ t

0 b(τ ) dτ
)−1

which is uniformly bounded on [ε, T ] for any ε > 0. To find a

convergent subsequence, one regard λsλ as a family of measures and then consider the
topology tested against the absolutely continuous functions. The narrow limit is then
the complementary kernel, which could possibly have an atom at t = 0. This intuition
can be made rigorous and see the proof of [4, Theorem 2.2]. ��
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