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CONVERGENCE ANALYSIS OF AN EXPLICIT METHOD AND ITS RANDOM
BATCH APPROXIMATION FOR THE MCKEAN–VLASOV EQUATIONS WITH

NON-GLOBALLY LIPSCHITZ CONDITIONS

Qian Guo1, Jie He2,* and Lei Li3

Abstract. In this paper, we present a numerical approach to solve the McKean–Vlasov equations,
which are distribution-dependent stochastic differential equations, under some non-globally Lipschitz
conditions for both the drift and diffusion coefficients. We establish a propagation of chaos result,
based on which the McKean–Vlasov equation is approximated by an interacting particle system. A
truncated Euler scheme is then proposed for the interacting particle system allowing for a Khasminskii-
type condition on the coefficients. To reduce the computational cost, the random batch approximation
proposed in [S. Jin, L. Li and J. Liu, J. Comput. Phys. 400 (2020) 108877.] is extended to the interacting
particle system where the interaction could take place in the diffusion term. An almost half order of
convergence is proved in 𝐿𝑝 sense. Numerical tests are performed to verify the theoretical results.
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1. Introduction

The McKean–Vlasov equations are some distribution dependent stochastic differential equations (SDEs)
that are first introduced by H. McKean [29] to describe the Vlasov system in dynamics theory and mean field
stochastic differential equations. They have been widely studied due to their important applications in nonlinear
equations and finance [6, 31,36].

In this paper we consider the following McKean–Vlasov SDE:

𝑋𝑡 = 𝑋0 +
∫︁ 𝑡

0

𝑎 (𝑋𝑠,ℒ (𝑋𝑠)) 𝑑𝑠 +
∫︁ 𝑡

0

𝑏 (𝑋𝑠,ℒ (𝑋𝑠)) 𝑑𝑊𝑠, (1.1)

where ℒ(𝑋𝑠) indicates the law of 𝑋𝑠, i.e., 𝜇𝑠 := ℒ(𝑋𝑠) satisfies

𝜇𝑠(𝐸) = P(𝑋𝑠 ∈ 𝐸)
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with any Borel 𝐸 ⊂ R𝑑. Here, 𝑋0 ∈ R𝑑 is the initial value of the SDE sampled from an initial distribution 𝜇0,
𝑎 : R𝑑 × 𝒫2(R𝑑) → R𝑑, 𝑏 : R𝑑 × 𝒫2(R𝑑) → R𝑑×𝑚′ are some given fields and 𝑊· is an 𝑚′-dimensional standard
Wiener processes so 𝑊𝑠 is the process at time 𝑠. Here, 𝒫2 is defined as follows. The set of all probability measures
on R𝑑 is denoted by 𝒫(R𝑑) while the notation 𝒫𝑝 indexed by some 𝑝 ≥ 1 means the set of probability measures
having finite 𝑝-moment, i.e.,

𝒫𝑝

(︀
R𝑑
)︀

:=
{︂

𝜇 ∈ 𝒫
(︀
R𝑑
)︀

:
∫︁

R𝑑

|𝑥|𝑝𝜇(𝑑𝑥) < ∞
}︂

. (1.2)

Clearly, 𝒫𝑝 ⊂ 𝒫2 for 𝑝 ≥ 2. We consider the dynamics for all 𝑡 ∈ (0,∞). Later for numerical approximation, we
will fix one, but arbitrary, terminal time 𝑇 to study the convergence. Different from the classical SDEs [26], the
coefficients of McKean–Vlasov SDEs depend on the law of the current variable 𝑋𝑠 so the dynamics of the law
ℒ (𝑋) is nonlinear [23].

The existence and uniqueness for strong solutions of (1.1) have been established in [34] under some linear
growth and Lyapunov-type conditions. Later the existence and uniqueness for weak and strong solutions of the
McKean–Vlasov SDEs have been studied by some authors under various conditions and we refer the reader to
[4,16,30] for more details. To our knowledge, there is little literature that reports the existence and uniqueness
results on the solution of a McKean–Vlasov SDE with super-linear coefficients. In [11], the authors showed
that the McKean–Vlasov SDE has a unique solution when the drift coefficient satisfies a one-sided Lipschitz
condition, but the diffusion term is still linearly growing. It is worthwhile to mention that a recent result that
proves that the McKean–Vlasov SDE admits a unique solution when both drift and diffusion coefficients are
super-linear w.r.t. the state [24].

As is well known, the first step to simulate the McKean–Vlasov SDEs is usually to approximate the true
measure ℒ(𝑋𝑡) by the empirical measure. That is, a particle system is adopted to simulate the McKean–Vlasov
SDE following the theory of propagation of chaos [34]. The state of the particle 𝑖 ∈ 1, . . . , 𝑁 in the symmetric
system of SDEs coupled in a mean field scaling is then given by

𝑋𝑖
𝑡 = 𝑋𝑖

0 +
∫︁ 𝑡

0

𝑎
(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀
𝑑𝑠 +

∫︁ 𝑡

0

𝑏
(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀
𝑑𝑊 𝑖

𝑠 , (1.3)

where

𝜇𝑋
𝑡 (·) :=

1
𝑁

𝑁∑︁
𝑖=1

𝛿𝑋𝑖
𝑡
(·).

Here, 𝛿𝑥 denotes the Dirac measure at point 𝑥, 𝑋𝑖
0 ∈ R𝑑 are the initial values of the SDEs and the processes 𝑊 𝑖

𝑠

(1 ≤ 𝑖 ≤ 𝑁) are 𝑁 independent copies of the 𝑚′-dimensional standard Wiener processes. We always assume
that 𝑋𝑖

0 are i.i.d. sampled from some initial law 𝜇0.
Assuming the coefficients of (1.1) satisfy global Lipschitz condition w.r.t. the state and measure, the conver-

gence of an Euler scheme applied to the particle system has been shown in [7]. In [15], multilevel and multi-index
Monte Carlo methods have been proposed for the Euler schemes applied to the McKean-Vlasov equation with
global Lipschitz conditions. Bao and Huang [2] studied propagation of chaos and convergence rate of the tamed
Euler–Maruyama scheme for McKean–Vlasov SDEs by using associated weakly interacting particle systems,
where the drift or diffusion term is Hlder continuous. Then the convergence of Milstein schemes, taming the
drift by a one-sided Lipschitz condition, for a time-discretized interacting particle system was discussed in [3].
Li et al. [25] proved strong convergence of the Euler–Maruyama schemes for approximating McKean–Vlasov
SDEs under local Lipschitz conditions w.r.t. the state variable. Under a Khasminskii-type monotonicity con-
dition, instead of imposing a one-sided and global Lipschitz condition on the drift and diffusion coefficient,
respectively, two explicit schemes were proposed in [24] for an interacting particle system and the propagation
of chaos property of associated McKean–Vlasov equation was also studied therein. Hoeksema et al. [17] proved a
large deviation principle for the empirical measure of a general system of mean-field interacting diffusions with
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a singular drift and show convergence to the associated McKean–Vlasov equation. Rached et al. introduced
in [32] a decoupling approach for McKean–Vlasov SDEs, which approximates the McKean–Vlasov law in the
coefficients.

Clearly, the computational cost for the numerical schemes is 𝒪(𝑁2) per time step if naively implemented,
which is expensive in applications. To save the computational cost, a projection-based particle method
was proposed in [5] for solving McKean–Vlasov stochastic differential equations. Recently, a random batch
method(RBM) has been introduced in [20] to simulate the interacting particle systems efficiently, which can
reduce the computational cost from 𝒪(𝑁2) per time step to 𝒪(𝑁) with additive noise.

In this paper, we first extend the theory of propagation of chaos for a highly nonlinear McKean–Vlasov
equation [24] to the case of 𝑝 ≥ 2. We then adopt the truncated Euler scheme, which is different from the tamed
scheme in [24], to numerically solve (1.3) for approximation of the McKean–Vlasov SDE. The main contribution
of this paper in the numerical analysis is twofold. Firstly, we provide a strong convergence analysis of a truncated
Euler scheme to numerically solve the McKean–Vlasov SDEs under a Khasminskii-type monotonicity condition
w.r.t. the state. Secondly, we extend the aforementioned random batch approximation to improve the efficiency
of the truncated method, and establish the error estimate for the approximation. Different from the results in
[20], the diffusion coefficient in the interacting particle systems considered in this paper could contain weakly
interacting terms so that the random batch approximation also takes place in the diffusion.

The remainder of this article is organized as follows: In Section 2, some assumptions are introduced and
the propagation of chaos property is obtained. In Section 3, we employ a truncated Euler method to solve the
interacting particle systems and prove that the convergence order is almost one-half. Then in Section 4, we
present the convergence and efficiency of the numerical method by integrating the RBM into the truncated
Euler scheme. In the last section (Sect. 5), a numerical experiment is given to verify the theoretical results.

2. Mathematical preliminaries

We first introduce some notations and basic definitions for later sections. The Euclidean norm of a 𝑑-
dimensional vector is denoted by | · | and the Hilbert-Schmidt norm of a 𝑑 × 𝑚-matrix is denoted by || · ||,
where we recall the Hilbert-Schmidt norm is given by ‖𝐴‖2 = tr(𝐴𝑇 𝐴) for a real matrix 𝐴. If 𝐺 is a set, its
indicator function ℐ𝐺 is given by

ℐ𝐺(𝑥) =

{︃
1, 𝑥 ∈ 𝐺,

0, otherwise.

Moreover, 𝑎∧ 𝑏 := min(𝑎, 𝑏) and 𝑎∨ 𝑏 := max(𝑎, 𝑏). The notation 𝑢⊗ 𝑣 for 𝑢 ∈ R𝑑 and 𝑣 ∈ R𝑑 means the tensor
product of 𝑢 and 𝑣, namely, (𝑢 ⊗ 𝑣)𝑖𝑗 = 𝑢𝑖𝑣𝑗 . Throughout this article, 𝐶 > 0 is a generic constant that might
change its value from line to line. We use the notation 𝐴 . 𝐵 to mean 𝐴 ≤ 𝐶𝐵 for some generic constant 𝐶
that is independent of the parameters been focused on.

Recall (1.2) for 𝒫𝑝. For 𝑝 ≥ 1 and any 𝜇, 𝜈 ∈ 𝒫𝑝(R𝑑), the 𝑝-Wasserstein distance is defined by

𝒲𝑝(𝜇, 𝜈) :=
(︂

inf
𝜋∈Π(𝜇,𝜈)

∫︁
R𝑑×R𝑑

|𝑥− 𝑦|𝑝𝜋(𝑑𝑥, 𝑑𝑦)
)︂1/𝑝

,

where Π(𝜇, 𝜈) is the set of couplings of 𝜇 and 𝜈 (i.e., joint distributions with marginals to be 𝜇 and 𝜈 respectively).
Clearly, 𝒫𝑝

(︀
R𝑑
)︀

is a Polish space under the 𝑝-Wasserstein metric.
Regarding the 𝒲𝑝 distance, we have the following simple observations.

Lemma 2.1. Let 𝑝 ≥ 1. For any probability measure 𝜇,

𝒲𝑝
𝑝 (𝜇, 𝛿0) =

∫︁
|𝑦|𝑝𝜇(𝑑𝑦).
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For two empirical measures 𝜇1 = 1
𝑁

∑︀𝑁
𝑖=1 𝛿𝑌 1,𝑖 and 𝜇2 = 1

𝑁

∑︀𝑁
𝑖=1 𝛿𝑌 2,𝑖 . Then,

𝒲𝑝
𝑝 (𝜇1, 𝜇2) ≤ 1

𝑁

𝑁∑︁
𝑖=1

|𝑌 1,𝑖 − 𝑌 2,𝑖|𝑝.

The proof for the first claim with 𝑝 = 2 can be found, for example, in Lemma 2.3 of [11], and the proof
for general 𝑝 ≥ 1 can be similarly performed. The second follows from constructing a simple transport plan
𝜋(𝑑𝑥, 𝑑𝑦) = 1

𝑁

∑︀𝑁
𝑖=1 𝛿𝑌 1𝑖(𝑑𝑥)⊗ 𝛿𝑌 2𝑖(𝑑𝑦).

We will make the following technical assumptions on the coefficients, which are essentially the continuity and
growth conditions.

Assumption 2.2. There exists a constant 𝛾 ≥ 0 such that

|𝑎(𝑥, 𝜇)− 𝑎(�̄�, �̄�)| ∨ ‖𝑏(𝑥, 𝜇)− 𝑏(�̄�, �̄�)‖ ≤ 𝐶[(1 + |𝑥|𝛾 + |�̄�|𝛾)|𝑥− �̄�|+𝒲2(𝜇, �̄�)], (2.1)

for all 𝑥, �̄� ∈ R𝑑 and 𝜇, �̄� ∈ 𝒫2(R𝑑).

Assumption 2.3. There exists a pair of constants 𝐿 > 0 and 𝑝0 > max(2𝛾, 4) such that the coefficients 𝑎(·, ·) :
R𝑑×𝒫2(R𝑑) → R𝑑 and 𝑏(·, ·) : R𝑑×𝒫2(R𝑑) → R𝑑×𝑚′ satisfy the initial condition |𝑎(0, 𝜇)|+|𝑏(0, 𝜇)| ≤ 𝐿𝒲2(𝜇, 𝛿0)
and

(𝑥− �̄�) · (𝑎(𝑥, 𝜇)− 𝑎(�̄�, �̄�)) +
1
2

(𝑝0 − 1) ‖𝑏(𝑥, 𝜇)− 𝑏(�̄�, �̄�)‖2 ≤ 𝐿
{︀
|𝑥− �̄�|2 +𝒲2

2 (𝜇, �̄�)
}︀

, (2.2)

for all x, �̄� ∈ R𝑑 and 𝜇, �̄� ∈ 𝒫2

(︀
R𝑑
)︀
.

The assumptions here also appeared in [24]. We note that the Lipschitz continuity for 𝜇 is uniform. A typical
example is 𝑎(𝑥, 𝜇) = 𝑓(𝑥) +

∫︀
𝑘(𝑥, 𝑦)𝜇(𝑑𝑦) where 𝑘 is globally Lipschitz. As another comment, for condition

(2.2) to hold, 𝑏 is not necessarily globally Lipschitz in 𝑥. In fact, as long as the growth can be controlled by the
confining effect in 𝑎, the condition still holds. One example is 𝑎 = 𝑥− 𝑥3 and 𝑏 = 𝑥2 for 𝑥 ∈ R.

The lower bound 2𝛾 for 𝑝0 in Assumption 2.3 is essential in our proof and is used in the proof of Theorem 3.4
where we need to bound 𝑝𝑞1𝛾 moment for some 𝑝 ≥ 2 and 𝑞1 > 1. The lower bound 4 for 𝑝0, however, is not
essential for the convergence. It only ensures the existence of 𝑝 ∈ [2, 𝑝0/2) so the error estimates given below in
Proposition 2.5 and Theorem 3.4 can be cleaner (otherwise, there would be a term like 𝑁−(𝑞−𝑝)/𝑞).

The assumptions made above clearly imply the following growth conditions of the coefficients:

– For any 𝑞 < 𝑝0 where 𝑝0 is the parameter in Assumption 2.3, there exists a constant 𝐿 > 0 such that

𝑥 · 𝑎(𝑥, 𝜇) +
1
2

(𝑞 − 1) ‖𝑏(𝑥, 𝜇)‖2 ≤ 𝐿
{︀

(1 + |𝑥|)2 +𝒲2
2 (𝜇, 𝛿0)

}︀
(2.3)

for all 𝑥 ∈ R𝑑 and 𝜇 ∈ 𝒫2

(︀
R𝑑
)︀
.

In fact, taking �̄� = 0 and �̄� = 𝛿0 in Assumption 2.3, one has

𝑥 · (𝑎(𝑥, 𝜇)− 𝑎(0, 𝛿0)) +
1
2

(𝑝0 − 1) ‖𝑏(𝑥, 𝜇)− 𝑏(0, 𝛿0)‖2 ≤ 𝐿(|𝑥|2 +𝒲2
2 (𝜇, 𝛿0)).

Moreover, since ‖𝑏(𝑥, 𝜇)‖2 ≤ ‖𝑏(𝑥, 𝜇)− 𝑏(0, 𝛿0)‖2 + 2 ‖𝑏(𝑥, 𝜇)− 𝑏(0, 𝛿0)‖ ‖𝑏(0, 𝛿0)‖ + ‖𝑏(0, 𝛿0)‖2 and 2𝑢𝑣 ≤
𝛿𝑢2 + 1

𝛿 𝑣2 for any 𝑢, 𝑣 ∈ R and 𝛿 > 0, one has

1
2

(𝑞 − 1) ‖𝑏(𝑥, 𝜇)‖2 ≤ 1
2

(𝑝0 − 1) ‖𝑏(𝑥, 𝜇)− 𝑏(0, 𝛿0)‖2 +
(𝑞 − 1)(𝑝0 − 1)

2(𝑝0 − 𝑞)
‖𝑏(0, 𝛿0)‖2 .

Combining these two simple estimates, the conclusion then follows.
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– For the same constant 𝛾 as in Assumption 2.2, it holds that

|𝑎(𝑥, 𝜇)| ∨ ‖𝑏(𝑥, 𝜇)‖ ≤ 𝐶[(1 + |𝑥|𝛾+1|) +𝒲2(𝜇, 𝛿0)], (2.4)

for all 𝑥 ∈ R𝑑 and 𝜇 ∈ 𝒫2(R𝑑).

Corresponding to (1.3), we consider �̄�𝑖
𝑡 which solves (1.1) but with �̄�𝑖

0 = 𝑋𝑖
0 and the same Brownian motions.

In other words, �̄�𝑖
𝑡 ’s satisfy the following

�̄�𝑖
𝑡 = 𝑋𝑖

0 +
∫︁ 𝑡

0

𝑎
(︀
�̄�𝑖

𝑠,ℒ
(︀
�̄�𝑖

𝑠

)︀)︀
𝑑𝑠 +

∫︁ 𝑡

0

𝑏
(︀
�̄�𝑖

𝑠,ℒ
(︀
�̄�𝑖

𝑠

)︀)︀
𝑑𝑊 𝑖

𝑠 (2.5)

almost surely for any 𝑡 ∈ [0, 𝑇 ] and 𝑖 ∈ 1, · · · , 𝑁 . Here, 𝑊 𝑖
𝑡 is the same process as in (1.3) and 𝑋𝑖

0 ∈ R𝑑 are the
initial values of the SDEs. Clearly, {�̄�𝑖

𝑡} are i.i.d. with the law being ℒ(𝑋𝑡) for the McKean–Vlasov SDE (1.1).
For the convenience of the discussion, we denote the moments of 𝜇 for 𝑞 ≥ 1 by

𝑀𝑞(𝜇) :=
∫︁

R𝑑

|𝑥|𝑞𝜇(𝑑𝑥).

Hence, 𝑀𝑞(𝜇𝑡) = E[|�̄�𝑖
𝑡 |𝑞] for any 𝑖.

By standard techniques, one may show the following bounds on the moments (see, for example, [9], Thm. 1).
For the convenience of the readers, we provide a short sketch in Appendix A.

Proposition 2.4. Let (2.3) hold for some 𝑞 ≥ 2 and 𝜇0 ∈ 𝒫𝑞. Then for any 𝑇 > 0, there exists 𝐶 depending
on 𝑇 and 𝑞 but independent of 𝑁 and 𝑖 such that

sup
0≤𝑡≤𝑇

E[|𝑋𝑖
𝑡 |𝑞 + |�̄�𝑖

𝑡 |𝑞] ≤ 𝐶
(︀
1 + E[|𝑋𝑖

0|𝑞]
)︀
. (2.6)

The following result claims that the trajectories of �̄�𝑖
𝑡 and 𝑋𝑖

𝑡 become identical as 𝑁 → ∞ almost surely.
This implies the propagation of chaos for the interacting particle system so that the mean field limit to the
McKean SDE holds.

Proposition 2.5 (Propagation of Chaos). Let Assumption 2.3 be satisfied. If for some 𝑝 ∈ [2, 𝑝0/2) the initial
law has finite 𝑝-moment (i.e., 𝜇0 ∈ 𝒫𝑝 ⊂ 𝒫2), then it holds that

sup
𝑖∈{1,...,𝑁}

sup
𝑡∈[0,𝑇 ]

E[
⃒⃒
𝑋𝑖

𝑡 − �̄�𝑖
𝑡

⃒⃒𝑝
] ≤ 𝐶

⎧⎨⎩𝑁−1/2, if 𝑝 > 𝑑/2,
𝑁−1/2 log(1 + 𝑁), if 𝑝 = 𝑑/2,
𝑁−𝑝/𝑑, if 𝑝 ∈ [2, 𝑑/2),

(2.7)

where the constant 𝐶 > 0 depends on 𝑇 , 𝑝 and 𝑝0 but does not depend on N.

Proof. From equations (1.3), (2.5), we have

�̄�𝑖
𝑡 −𝑋𝑖

𝑡 =
∫︁ 𝑡

0

𝑎
(︀
�̄�𝑖

𝑠,ℒ
(︀
�̄�𝑖

𝑠

)︀)︀
− 𝑎

(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀
𝑑𝑠 +

∫︁ 𝑡

0

𝑏
(︀
�̄�𝑖

𝑠,ℒ
(︀
�̄�𝑖

𝑠

)︀)︀
− 𝑏

(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀
𝑑𝑊 𝑖

𝑠 . (2.8)

Using Itô’s formula,

E[|�̄�𝑖
𝑡 −𝑋𝑖

𝑡 |𝑝] ≤ 𝑝E
[︂∫︁ 𝑡

0

|�̄�𝑖
𝑠 −𝑋𝑖

𝑠|𝑝−2
(︀
�̄�𝑖

𝑠 −𝑋𝑖
𝑠

)︀
·
(︀
𝑎
(︀
�̄�𝑖

𝑠,ℒ
(︀
�̄�𝑖

𝑠

)︀)︀
− 𝑎

(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀)︀
𝑑𝑠

]︂
+

𝑝(𝑝− 1)
2

E
[︂∫︁ 𝑡

0

|�̄�𝑖
𝑠 −𝑋𝑖

𝑠|𝑝−2‖𝑏
(︀
�̄�𝑖

𝑠,ℒ
(︀
�̄�𝑖

𝑠

)︀)︀
− 𝑏

(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀
‖2𝑑𝑠

]︂
.
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Due to Assumption 2.3, one has

E[|�̄�𝑖
𝑡 −𝑋𝑖

𝑡 |]𝑝 ≤ 𝐿E
[︂∫︁ 𝑡

0

|
(︀
�̄�𝑖

𝑠 −𝑋𝑖
𝑠

)︀
|𝑝−2[𝒲2

2

(︀
ℒ
(︀
�̄�𝑖

𝑠

)︀
, 𝜇𝑋

𝑠

)︀
+ |�̄�𝑖

𝑠 −𝑋𝑖
𝑠|2]𝑑𝑠

]︂
≤ 𝐿E

[︂∫︁ 𝑡

0

|
(︀
�̄�𝑖

𝑠 −𝑋𝑖
𝑠

)︀
|𝑝𝑑𝑠

]︂
+ 𝐿E

[︂∫︁ 𝑡

0

|
(︀
�̄�𝑖

𝑠 −𝑋𝑖
𝑠

)︀
|𝑝−2𝒲2

2

(︀
ℒ
(︀
�̄�𝑖

𝑠

)︀
, 𝜇𝑋

𝑠

)︀
𝑑𝑠

]︂
≤ 𝐶E

[︂∫︁ 𝑡

0

⃒⃒(︀
�̄�𝑖

𝑠 −𝑋𝑖
𝑠

)︀⃒⃒𝑝
𝑑𝑠

]︂
+ 𝐶E

[︂∫︁ 𝑡

0

𝒲𝑝
2

(︀
ℒ
(︀
�̄�𝑖

𝑠

)︀
, 𝜇𝑋

𝑠

)︀
𝑑𝑠

]︂
,

for any 𝑡 ∈ [0, 𝑇 ]. The last inequality is due to the Young’s inequality.
Denote 𝜇�̄�

𝑠 := 1
𝑁

∑︀𝑁
𝑗=1 𝛿�̄�𝑗

𝑡
. By Lemma 2.1, one has

𝒲𝑝
2

(︀
ℒ
(︀
�̄�𝑖

𝑠

)︀
, 𝜇𝑋

𝑠

)︀
=
[︀
𝒲2

2

(︀
ℒ
(︀
�̄�𝑖

𝑠

)︀
, 𝜇𝑋

𝑠

)︀]︀𝑝/2

≤
[︁
2𝒲2(𝜇�̄�

𝑠 , 𝜇𝑋
𝑠 )2 + 2𝒲2

2 (𝜇�̄�
𝑠 ,ℒ(�̄�1

𝑠 ))
]︁𝑝/2

≤ 𝐶

⎡⎣ 1
𝑁

𝑁∑︁
𝑗=1

⃒⃒
�̄�𝑗

𝑠 −𝑋𝑗
𝑠

⃒⃒2⎤⎦𝑝/2

+ 𝐶𝒲𝑝
2

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

𝛿�̄�𝑗
𝑡
,ℒ
(︀
�̄�1

𝑠

)︀⎞⎠ .

Consequently, one obtains

E[
⃒⃒
�̄�𝑖

𝑡 −𝑋𝑖
𝑡

⃒⃒𝑝
] ≤ 𝐶

∫︁ 𝑡

0

E[
⃒⃒(︀

�̄�𝑖
𝑠 −𝑋𝑖

𝑠

)︀⃒⃒𝑝
]𝑑𝑠 + 𝐶

∫︁ 𝑡

0

E

⎡⎣ 1
𝑁

𝑁∑︁
𝑗=1

⃒⃒
�̄�𝑗

𝑠 −𝑋𝑗
𝑠

⃒⃒2⎤⎦𝑝/2

𝑑𝑠

+ 𝐶

∫︁ 𝑡

0

E

⎡⎣𝒲𝑝
2

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

𝛿�̄�𝑗
𝑡
,ℒ
(︀
�̄�1

𝑠

)︀⎞⎠⎤⎦ 𝑑𝑠

≤ 𝐶

∫︁ 𝑡

0

E[
⃒⃒
�̄�𝑖

𝑠 −𝑋𝑖
𝑠

⃒⃒𝑝
]𝑑𝑠 + 𝐶

∫︁ 𝑡

0

E

⎡⎣𝒲𝑝
𝑝

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

𝛿�̄�𝑗
𝑡
,ℒ
(︀
�̄�1

𝑠

)︀⎞⎠⎤⎦ 𝑑𝑠.

In the last inequality, we have applied 𝒲2(𝜇, 𝜈) ≤ 𝒲𝑝(𝜇, 𝜈). Then, by the Minkowski inequality,

E

⎡⎣ 1
𝑁

𝑁∑︁
𝑗=1

⃒⃒
�̄�𝑗

𝑠 −𝑋𝑗
𝑠

⃒⃒2⎤⎦𝑝/2

≤

⎡⎣ 1
𝑁

𝑁∑︁
𝑗=1

‖
⃒⃒
�̄�𝑗

𝑠 −𝑋𝑗
𝑠

⃒⃒2 ‖𝐿𝑝/2

⎤⎦𝑝/2

=

⎡⎣ 1
𝑁

𝑁∑︁
𝑗=1

(E[
⃒⃒
�̄�𝑗

𝑠 −𝑋𝑗
𝑠

⃒⃒𝑝
])2/𝑝

⎤⎦𝑝/2

= E[
⃒⃒
�̄�𝑖

𝑠 −𝑋𝑖
𝑠

⃒⃒𝑝
].

The last equality here holds due to the symmetry.
The term E[𝒲𝑝

𝑝 ( 1
𝑁

∑︀𝑁
𝑗=1 𝛿�̄�𝑗

𝑡
,ℒ
(︀
�̄�1

𝑠

)︀
)] is controlled by the Wasserstein distance estimate for the empirical

measures with i.i.d. samples in Theorem 1 of [13]. Here, since 𝑝0 > 2𝑝, one can choose the moment 𝑞 such that
𝑞 > 2𝑝 and the terms 𝑁−(𝑞−𝑝)/𝑞 in Theorem 1 of [13] can be removed for simplicity. Then, applying Grönwall’s
inequality completes the proof. �

We remark that the requirement 𝑝 < 𝑝0/2 is only used such that the term 𝑁−(𝑞−𝑝)/𝑞 is absent for simplicity.
Clearly, if 𝑝 ∈ [𝑝0/2, 𝑝0), there is still convergence. Another remark is that the rate of the propagation of chaos
here is like 𝑁−1/(2𝑝) under 𝐿𝑝 norm when 𝑝 is large. This low rate is due to the usage of Wasserstein distances
to gauge the continuity on the distribution dependence in the coefficients. If the dependence on the distribution
is through some statistics, the rate may be improved to 𝑁−1/2 due to the central limit theorem. Note that
though the particles are dependent for finite 𝑁 , the rate of central limit theorem is expected to hold in the
large 𝑁 regime due to propagation of chaos, though rigorous proof needs careful estimates (see, for example,
[35] regarding the rate of convergence for statistics).
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3. A truncated Euler scheme

The drift and diffusion coefficients can be unbounded. To overcome this difficulty, we make use of the trun-
cation techniques [14,27,28]. For this purpose, we choose a strictly increasing continuous function 𝜙 such that

sup
|𝑥|≤𝑢

(|𝑎(𝑥)| ∨ ‖𝑏(𝑥)‖) ≤ 𝜙(𝑢).

The inverse function 𝜙−1 is strictly increasing continuous function from [𝜙(0), +∞) to R+. Firstly, define a
uniform time discretization grid 𝑇𝑁𝑇

: 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁𝑇
= 𝑇 , where 𝑡𝑚 = 𝑚∆ with the step size

∆ = 𝑇/𝑁𝑇 and 𝑁𝑇 ∈ N is the number of subintervals. Take ∆* ∈ (0, 1], which is meant to be the largest step
size, and a strictly decreasing function ℎ : (0, ∆*] −→ (0, +∞) such that

ℎ (∆*) ≥ 𝜙(1), lim
Δ→0

ℎ(∆) = ∞ and sup
Δ∈(0,Δ*]

∆1/4ℎ(∆) < ∞.

One possible example is ℎ(∆) = ∆− 𝜀
2 and 𝜖 is any value in (0, 1/4]. Another possible example is ℎ(∆) = | log ∆|.

For a given step size ∆ ∈ (0, 1], define the truncated functions by

𝑎Δ(𝑥, 𝜇) = 𝑎

(︂(︀
|𝑥| ∧ 𝜙−1(ℎ(∆))

)︀ 𝑥

|𝑥|
, 𝜇

)︂
, 𝑏Δ(𝑥, 𝜇) = 𝑏

(︂(︀
|𝑥| ∧ 𝜙−1(ℎ(∆))

)︀ 𝑥

|𝑥|
, 𝜇

)︂
.

Similar to that in [27], the truncated coefficients satisfy the following properties.

Lemma 3.1. It holds that

|𝑎Δ(𝑥, 𝜇)| ∨ ‖𝑏Δ(𝑥, 𝜇)‖ ≤ 𝜙(𝜙−1(ℎ(∆))) = ℎ(∆), (3.1)

and for any 𝑞 ∈ [2, 𝑝0) where 𝑝0 is parameter in Assumption 2.3, there exists a constant 𝐿 > 0 such that

𝑥 · 𝑎Δ(𝑥, 𝜇) +
1
2

(𝑞 − 1)
⃦⃦
𝑏Δ(𝑥, 𝜇)

⃦⃦2 ≤ 𝐿
{︀

(1 + |𝑥|)2 +𝒲2
2 (𝜇, 𝛿0)

}︀
, ∀𝑥 ∈ R𝑑, 𝜇 ∈ 𝒫2

(︀
R𝑑
)︀
. (3.2)

Proof. Here, we only need to verify the Khasminskii-type condition (3.2).
When |𝑥| ≤ 𝜙−1(ℎ(∆)), it is simply (2.3). For |𝑥| > 𝜙−1(ℎ(∆)), due to the dependence on 𝜇, unlike the

argument in [27], we start by (2.2) with

𝑥 · 𝑎(𝑥, 𝜇) +
1
2

(𝑝0 − 1) ‖𝑏(𝑥, 𝜇)− 𝑏(0, 𝜇)‖2 ≤ 𝑥 · 𝑎(0, 𝜇) + 𝐿|𝑥|2.

Denote
�̄� = 𝜙−1(ℎ(∆))

𝑥

|𝑥|
·

Then, it follows that

𝑥 · 𝑎Δ(𝑥, 𝜇) +
1
2

(𝑝0 − 1)
⃦⃦
𝑏Δ(𝑥, 𝜇)− 𝑏Δ(0, 𝜇)

⃦⃦2
= 𝑥 · 𝑎(�̄�, 𝜇) +

1
2

(𝑝0 − 1) ‖𝑏(�̄�, 𝜇)− 𝑏(0, 𝜇)‖2

≤ |𝑥|
𝜙−1(ℎ(∆))

[︂
�̄� · 𝑎(�̄�, 𝜇) +

1
2

(𝑝0 − 1) ‖𝑏(�̄�, 𝜇)− 𝑏(0, 𝜇)‖2
]︂

≤ |𝑥|
𝜙−1(ℎ(∆))

(︀
�̄� · 𝑎(0, 𝜇) + 𝐿(𝜙−1(ℎ(∆)))2

)︀
= 𝑥 · 𝑎(0, 𝜇) + 𝐿|𝑥|𝜙−1(ℎ(∆))
≤ 𝑥 · 𝑎(0, 𝜇) + 𝐿|𝑥|2.

Then a similar argument as in deriving (2.3) gives the desired result. �
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3.1. The truncated scheme

The numerical approximation of 𝑋𝑖
𝑡 at 𝑡𝑚 is denoted by 𝑋𝑖,Δ

𝑡𝑚
. With the truncated coefficients, the numerical

solutions 𝑋𝑖,Δ
𝑡𝑚

are then generated by the basic Euler-Maruyama scheme

𝑋𝑖,Δ
𝑡𝑚+1

= 𝑋𝑖,Δ
𝑡𝑚

+ 𝑎Δ
(︁
𝑋𝑖,Δ

𝑡𝑚
, 𝜇𝑋,Δ

𝑡𝑚

)︁
∆ + 𝑏Δ

(︁
𝑋𝑖,Δ

𝑡𝑚
, 𝜇𝑋,Δ

𝑡𝑚

)︁
∆𝑊 𝑖

𝑡𝑚
, (3.3)

where ∆𝑊 𝑖
𝑡𝑚

= 𝑊 𝑖
𝑡𝑚+1

−𝑊 𝑖
𝑡𝑚

, the initial value 𝑋𝑖,Δ
0 = 𝑋𝑖

0 and

𝜇𝑋,Δ
𝑡𝑚

(·) :=
1
𝑁

∑︁
𝑖

𝛿𝑋𝑖,Δ
𝑡𝑚

(·).

The scheme (3.3) is the basic truncated scheme studied in this work.
We introduce two versions of extension of the numerical solution at the discrete time points to 𝑡 ∈ [0,∞).

The first is the piecewise constant extension given by

𝑋𝑡
𝑖,Δ

= 𝑋𝑖,Δ
𝑡𝑚

, 𝑡𝑚 ≤ 𝑡 < 𝑡𝑚+1,

and the second is the continuous extension of the truncated Euler-Maruyama method defined by

𝑋𝑖,Δ
𝑡 = 𝑋𝑖,Δ

𝑡𝑚
+
∫︁ 𝑡

𝑡𝑚

𝑎Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁
𝑑𝑠 +

∫︁ 𝑡

𝑡𝑚

𝑏Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁
𝑑𝑊 𝑖

𝑠 . (3.4)

Here, the initial value �̂�𝑖,Δ
0 = 𝑋𝑖

0 and

�̂�𝑋,Δ
𝑡 (·) :=

1
𝑁

𝑁∑︁
𝑖=1

𝛿�̂�𝑖,Δ
𝑡

(·).

3.2. Analysis of the truncated scheme

We present some preliminary properties of the numerical solutions. We first give some moments estimates of
the numerical solution to ensure certain stability. The first lemma below is to control the difference between the
two versions of extension.

Lemma 3.2. For any ∆ ∈ (0, ∆*], any 𝑡 ≥ 0 and any 𝑝 ≥ 2,

E[|𝑋𝑖,Δ
𝑡 − �̂�𝑖,Δ

𝑡 |𝑝] ≤ 𝐶∆𝑝/2ℎ𝑝(∆), (3.5)

where C is a positive constant independent of ∆.

Proof. By the definitions (3.4) , one has

𝑋𝑖,Δ
𝑡 − �̂�𝑖,Δ

𝑡 =
∫︁ 𝑡

𝑡𝑚

𝑎Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁
𝑑𝑠 +

∫︁ 𝑡

𝑡𝑚

𝑏Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁
𝑑𝑊 𝑖

𝑠 .

Using Hölder’s inequality, Burkholder-Davis-Gundy inequality and (3.1), we have

E[|𝑋𝑖,Δ
𝑡 − �̂�𝑖,Δ

𝑡 |𝑝] ≤ 𝐶E

[︃⃒⃒⃒⃒∫︁ 𝑡

𝑡𝑚

𝑎Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁
𝑑𝑠

⃒⃒⃒⃒𝑝
+
⃒⃒⃒⃒∫︁ 𝑡

𝑡𝑚

𝑏Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁
𝑑𝑊 𝑖

𝑠

⃒⃒⃒⃒𝑝]︃

≤ 𝐶∆𝑝−1E
[︂∫︁ 𝑡

𝑡𝑚

⃒⃒⃒
𝑎Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁⃒⃒⃒𝑝
𝑑𝑠

]︂
+ 𝐶∆(𝑝−2)/2E

[︂∫︁ 𝑡

𝑡𝑚

⃦⃦⃦
𝑏Δ
(︁
�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠

)︁⃦⃦⃦𝑝

𝑑𝑠

]︂
≤ 𝐶∆𝑝−1E

[︂∫︁ 𝑡

𝑡𝑚

ℎ𝑝(∆)𝑑𝑠

]︂
+ 𝐶∆(𝑝−2)/2E

[︂∫︁ 𝑡

𝑡𝑚

ℎ𝑝(∆)𝑑𝑠

]︂
≤ 𝐶∆𝑝/2ℎ𝑝(∆).

�
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Proposition 3.3. Suppose (3.2) holds and 𝜇0 ∈ 𝒫𝑞 ⊂ 𝒫2. Then for any ∆ ∈ (0, ∆*], any 𝑇 > 0, it holds that

sup
0≤𝑡≤𝑇

E[|𝑋𝑖,Δ
𝑡 |𝑞] ≤ 𝐶

(︀
1 + E[|𝑋𝑖

0|𝑞]
)︀
, (3.6)

where C is a positive constant dependent on T and 𝑞 but independent of ∆.

Proof. Recall (3.4):
𝑑𝑋𝑖,Δ

𝑡 = 𝑎Δ
(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁
𝑑𝑡 + 𝑏Δ

(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁
𝑑𝑊 𝑖

𝑡 .

By the Itô’s formula, one has

𝑑

𝑑𝑡
E[|𝑋𝑖,Δ

𝑡 |𝑞] ≤ 𝑞E
[︁
|𝑋𝑖,Δ

𝑡 |𝑞−2
(︁
𝑋𝑖,Δ

𝑡 · 𝑎Δ
(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁)︁]︁
+ 𝑞E

[︂
𝑞 − 1

2
|𝑋𝑖,Δ

𝑡 |𝑞−2
⃦⃦⃦
𝑏Δ
(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁⃦⃦⃦2
]︂

.

Writing 𝑋𝑖,Δ
𝑡 = (𝑋𝑖,Δ

𝑡 − �̂�𝑖,Δ
𝑡 ) + �̂�𝑖,Δ

𝑡 , one has according to (3.2) that

(︁
𝑋𝑖,Δ

𝑡 · 𝑎Δ
(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁)︁
+

𝑞 − 1
2

⃦⃦⃦
𝑏Δ
(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁⃦⃦⃦2

≤
(︁
𝑋𝑖,Δ

𝑡 − �̂�𝑖,Δ
𝑡

)︁
· 𝑎Δ

(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁
+ 𝐿

[︁
(1 + |�̂�𝑖,Δ

𝑡 |)2 +𝒲2
2 (�̂�𝑋,Δ

𝑡 , 𝛿0)
]︁
.

Hence,

𝑑

𝑑𝑡
E[|𝑋𝑖,Δ

𝑡 |𝑞] ≤ 𝐶E
[︁
|𝑋𝑖,Δ

𝑡 |𝑞−2((1 + |�̂�𝑖,Δ
𝑡 |)2 +𝒲2

2 (�̂�𝑋,Δ
𝑡 , 𝛿0))

]︁
+ E

[︂
|𝑋𝑖,Δ

𝑡 − �̂�𝑖,Δ
𝑡 |𝑞/2

⃒⃒⃒
𝑎Δ
(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁⃒⃒⃒𝑞/2
]︂

≤ 𝐶(1 + E[|𝑋𝑖,Δ
𝑡 |𝑞]) + 𝐶E

[︁
|𝑋𝑖,Δ

𝑡 − �̂�𝑖,Δ
𝑡 |𝑞/2|𝑎Δ

(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁
|𝑞/2
]︁

+ E

⎡⎢⎣
⎛⎝ 1

𝑁

𝑁∑︁
𝑗=1

|�̂�𝑗,Δ
𝑡 |2

⎞⎠𝑞/2
⎤⎥⎦ ,

where we applied Lemma 2.1.
By Lemma 3.2, it is clear that

E
[︁
|𝑋𝑖,Δ

𝑡 − �̂�𝑖,Δ
𝑡 |𝑞/2|𝑎Δ

(︁
�̂�𝑖,Δ

𝑡 , �̂�𝑋,Δ
𝑡

)︁
|𝑞/2
]︁
. ℎ𝑞/2E

[︁
|𝑋𝑖,Δ

𝑡 − �̂�𝑖,Δ
𝑡 |𝑞/2

]︁
. ∆𝑞/4ℎ𝑞(∆).

By the Minkowski inequality and the symmetry

E

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

|�̂�𝑖,Δ
𝑡 |2

⎞⎠𝑞/2

≤

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

(E[|�̂�𝑗,Δ
𝑡 |𝑞])2/𝑞

⎞⎠𝑞/2

= E[|�̂�𝑖,Δ
𝑡 |𝑞], ∀𝑖.

It follows from the fact |�̂�𝑡| ≤ sup𝑠≤𝑡 |𝑋𝑖,Δ
𝑠 | by definition that

E[|𝑋𝑖,Δ
𝑡 |𝑞] ≤ (E[|𝑋𝑖

0|𝑞] + 𝐶𝑇 ) + 𝐶

∫︁ 𝑡

0

sup
0≤𝑢≤𝑠

E[|𝑋𝑖,Δ
𝑢 |𝑞]𝑑𝑠.

By the monotonticy of the bound on the right hand side, one has

sup
0≤𝑠≤𝑡

E[|𝑋𝑖,Δ
𝑠 |𝑞] ≤ (E[|𝑋𝑖

0|𝑞] + 𝐶𝑇 ) + 𝐶

∫︁ 𝑡

0

sup
0≤𝑢≤𝑠

E[|𝑋𝑖,Δ
𝑢 |𝑞]𝑑𝑠.

Application of Grönwall’s inequality then completes the proof. �
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Below, we prove the convergence of the truncated scheme. Define two stopping times for particle 𝑖

𝜏𝑖 := inf{𝑡 ≥ 0, |�̄�𝑖
𝑡 | ≥ 𝜙−1(ℎ(∆))}

and
𝜌𝑖 := inf{𝑡 ≥ 0, |𝑋𝑖,Δ

𝑡 | ≥ 𝜙−1(ℎ(∆))}.

Let 𝜃𝑖 = 𝜏𝑖 ∧ 𝜌𝑖. The estimates in Propostion 3.3 ensures that 𝜃𝑖 → +∞ a.s. as ∆ → 0. Clearly, before 𝜃𝑖, the
truncated method reduces to the usual Euler–Maruyama scheme.

Below, we make use of these stopping times to obtain the convergence of the truncated scheme, and the
following is our first main result.

Theorem 3.4 (Rate of Convergence). Suppose Assumptions 2.2 and 2.3 hold and 𝜇0 ∈ 𝒫𝑝0 . Let {𝑋𝑖
𝑡} be

the solution to the 𝑁 -particle system (1.3) and 𝑋𝑖,Δ
𝑡 be the solution to the truncated scheme (3.4). Denote

𝜂(∆) := 1/(𝜙−1 ∘ ℎ(∆)). Then, for 𝑝 ∈ [2, 𝑝0/2) with 𝑝𝛾 < 𝑝0, it holds for every 𝑞 < 𝑝0 that

sup
0≤𝑡≤𝑇

E[|𝑋𝑖
𝑡 −𝑋𝑖,Δ

𝑡 |𝑝] ≤ 𝐶𝑇 ∆𝑝/2ℎ𝑝(∆) + 𝐶𝑇 𝜂(∆)𝑞−𝑝, (3.7)

where 𝐶𝑇 is a positive constant dependent on 𝑝, 𝑞, 𝑇 but independent of 𝑁 and ∆. Consequently, one has for
𝑞 < 𝑝0,

sup
𝑡≤𝑇

E[|�̄�𝑖
𝑡 −𝑋𝑖,Δ

𝑡 |𝑝] ≤ 𝐶

⎧⎨⎩𝑁−1/2 + ∆𝑝/2ℎ(∆)𝑝 + 𝜂(∆)𝑞−𝑝, if 𝑝 > 𝑑/2,
𝑁−1/2 log(1 + 𝑁) + ∆𝑝/2ℎ(∆)𝑝 + 𝜂(∆)𝑞−𝑝, if 𝑝 = 𝑑/2,
𝑁−𝑝/𝑑 + ∆𝑝/2ℎ(∆)𝑝 + 𝜂(∆)𝑞−𝑝, if 𝑝 ∈ [2, 𝑑/2),

(3.8)

where 𝐶 depends on 𝑝, 𝑞, 𝑇 but is independent of 𝑁 and ∆. Hence, it holds that

lim
𝑁→∞,Δ→0

sup
𝑡≤𝑇

(︁
E[|�̄�𝑖

𝑡 −𝑋𝑖,Δ
𝑡 |𝑝]

)︁1/𝑝

= 0.

Proof. For 0 ≤ 𝑠 ≤ 𝑡∧ 𝜃𝑖, the coefficients 𝑎 and 𝑏 that particle 𝑖 sees agree with the truncated ones, 𝑎Δ and 𝑏Δ.
Hence, by the Itô’s formula,

E[|𝑋𝑖
𝑡∧𝜃𝑖

−𝑋𝑖,Δ
𝑡∧𝜃𝑖

|𝑝] ≤ 𝑝E

[︃∫︁ 𝑡∧𝜃𝑖

0

|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝−2
(︀
𝑋𝑖

𝑠 −𝑋𝑖,Δ
𝑠

)︀
·
(︁
𝑎(𝑋𝑖

𝑠, 𝜇
𝑋
𝑠 )− 𝑎(�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠 )

)︁
𝑑𝑠

]︃

+
𝑝(𝑝− 1)

2
E

[︃∫︁ 𝑡∧𝜃𝑖

0

|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝−2‖𝑏(𝑋𝑖
𝑠, 𝜇

𝑋
𝑠 )− 𝑏(�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠 )‖2𝑑𝑠

]︃
,

By simple splitting,(︀
𝑋𝑖

𝑠 −𝑋𝑖,Δ
𝑠

)︀
·
(︁
𝑎(𝑋𝑖

𝑠, 𝜇
𝑋
𝑠 )− 𝑎(�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠 )

)︁
+

𝑝− 1
2

‖𝑏(𝑋𝑖
𝑠, 𝜇

𝑋
𝑠 )− 𝑏(�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠 )‖2 ≤ 𝐴1 + 𝐴2,

with

𝐴1 =
(︀
𝑋𝑖

𝑠 −𝑋𝑖,Δ
𝑠

)︀
·
(︀
𝑎(𝑋𝑖

𝑠, 𝜇
𝑋
𝑠 )− 𝑎(𝑋𝑖,Δ

𝑠 , 𝜇𝑋,Δ
𝑠 )

)︀
+

𝑝′ − 1
2

‖𝑏(𝑋𝑖
𝑠, 𝜇

𝑋
𝑠 )− 𝑏(𝑋𝑖,Δ

𝑠 , 𝜇𝑋,Δ
𝑠 )‖2

and

𝐴2 =
(︀
𝑋𝑖

𝑠 −𝑋𝑖,Δ
𝑠

)︀
·
(︁
𝑎(𝑋𝑖,Δ

𝑠 , 𝜇𝑋,Δ
𝑠 )− 𝑎(�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠 )

)︁
+ 𝐶(𝑝′, 𝑝)‖𝑏(𝑋𝑖,Δ

𝑠 , 𝜇𝑋,Δ
𝑠 )− 𝑏(�̂�𝑖,Δ

𝑠 , �̂�𝑋,Δ
𝑠 )‖2.

Here, we can take any 𝑝′ ∈ (𝑝, 𝑝0).
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According to Assumption 2.3.

𝐴1 ≤ 𝐶
(︀
|𝑋𝑖

𝑠 −𝑋𝑖,Δ
𝑠 |2 +𝒲2

2 (𝜇𝑋
𝑠 , 𝜇𝑋,Δ

𝑠 )
)︀
.

The terms in 𝐴2 can be controlled using Assumption 2.2:

𝐴2 . |𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |2 + (1 + |𝑋𝑖,Δ
𝑠 |𝛾 + |�̂�𝑖,Δ

𝑠 |𝛾)2|𝑋𝑖,Δ
𝑠 − �̂�𝑖,Δ

𝑠 |2 +𝒲2
2 (𝜇𝑋,Δ

𝑠 , �̂�𝑋,Δ
𝑠 ).

Applying Young’s inequality, one has

E[|𝑋𝑖
𝑡∧𝜃𝑖

−𝑋𝑖,Δ
𝑡∧𝜃𝑖

|𝑝] .

{︃
E

[︃∫︁ 𝑡∧𝜃𝑖

0

|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝𝑑𝑠

]︃
+ E

[︃∫︁ 𝑡∧𝜃𝑖

0

𝒲𝑝
2 (𝜇𝑋

𝑠 , 𝜇𝑋,Δ
𝑠 )𝑑𝑠

]︃}︃

+ E

[︃∫︁ 𝑡∧𝜃𝑖

0

(1 + |𝑋𝑖,Δ
𝑠 |𝛾 + |�̂�𝑖,Δ

𝑠 |𝛾)𝑝|𝑋𝑖,Δ
𝑠 − �̂�𝑖,Δ

𝑠 |𝑝𝑑𝑠

]︃

+ E

[︃∫︁ 𝑡∧𝜃𝑖

0

𝒲𝑝
2 (𝜇𝑋,Δ

𝑠 , �̂�𝑋,Δ
𝑠 )𝑑𝑠

]︃
=: 𝐽1 + 𝐽2 + 𝐽3.

By Lemma 2.1, the Minkowski inequality, and Lemma 3.2

𝐽3 ≤ E

⎡⎢⎣∫︁ 𝑡

0

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

⃒⃒⃒
𝑋𝑗,Δ

𝑠 − �̂�𝑗,Δ
𝑠

⃒⃒⃒2⎞⎠𝑝/2

𝑑𝑠

⎤⎥⎦ ≤ ∫︁ 𝑡

0

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

(E[|𝑋𝑗,Δ
𝑠 − �̂�𝑗,Δ

𝑠 |𝑝])2/𝑝

⎞⎠𝑝/2

𝑑𝑠 . ∆𝑝/2ℎ𝑝(∆).

For 𝐽2, by the Hölder inequality and Lemma 3.2 and Proposition 3.3, one has

𝐽2 ≤ E
[︂∫︁ 𝑡

0

(1 + |�̂�𝑖,Δ
𝑠 |𝛾 + |𝑋𝑖,Δ

𝑠 |𝛾)𝑝|𝑋𝑖,Δ
𝑠 − �̂�𝑖,Δ

𝑠 |𝑝𝑑𝑠

]︂
.
∫︁ 𝑡

0

(︁
E
[︁
(1 + |�̂�𝑖,Δ

𝑠 |𝛾 + |𝑋𝑖,Δ
𝑠 |𝛾)𝑝𝑞1

]︁)︁1/𝑞1
(︁
E[|𝑋𝑖,Δ

𝑠 − �̂�𝑖,Δ
𝑠 |𝑝1𝑝]

)︁1/𝑝1

≤ 𝐶𝑇 ∆𝑝/2ℎ𝑝(∆).

(3.9)

Here, 1/𝑝1 + 1/𝑞1 = 1. Note that Lemma 3.2 holds for any 𝑝1𝑝 ≥ 2 so we can choose 𝑝1 large enough such that
𝑝𝑞1𝛾 < 𝑝0. Such 𝑞1 exists because 𝑝𝛾 < 𝑝0.

For 𝐽1, we first note that

𝐽1 ≤ E
[︂∫︁ 𝑡

0

|𝑋𝑖
𝑠∧𝜃𝑖

−𝑋𝑖,Δ
𝑠∧𝜃𝑖

|𝑝𝑑𝑠

]︂
+ E

[︃∫︁ 𝑡∧𝜃𝑖

0

𝒲𝑝
2 (𝜇𝑋

𝑠 , 𝜇𝑋,Δ
𝑠 )𝑑𝑠

]︃
,

because for 𝑠 > 𝜃𝑖, the integrand is nonnegative. Then again, by Lemma 2.1, the Minkowski inequality and the
symmetry of the particles,

E

[︃∫︁ 𝑡∧𝜃𝑖

0

𝒲𝑝
2 (𝜇𝑋

𝑠 , 𝜇𝑋,Δ
𝑠 )𝑑𝑠

]︃
≤ E

[︂∫︁ 𝑡

0

𝒲𝑝
2 (𝜇𝑋

𝑠 , 𝜇𝑋,Δ
𝑠 )𝑑𝑠

]︂

≤
∫︁ 𝑡

0

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

(E[|𝑋𝑗
𝑠 −𝑋𝑗,Δ

𝑠 |𝑝])2/𝑝

⎞⎠𝑝/2

𝑑𝑠

=
∫︁ 𝑡

0

E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝]𝑑𝑠.
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Here, 𝜃𝑖 has been thrown away because it is not suitable for stopping other particles 𝑋𝑗
𝑠 .

Therefore,

E[|𝑋𝑖
𝑡∧𝜃𝑖

−𝑋𝑖,Δ
𝑡∧𝜃𝑖

|𝑝] .
∫︁ 𝑡

0

E[|𝑋𝑖
𝑠∧𝜃𝑖

−𝑋𝑖,Δ
𝑠∧𝜃𝑖

|𝑝]𝑑𝑠 +
∫︁ 𝑡

0

E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝]𝑑𝑠 + ∆𝑝/2ℎ𝑝(∆).

Note that for all 𝑠 ∈ [0, 𝑡],

E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝] = E[|𝑋𝑖
𝑠∧𝜃𝑖

−𝑋𝑖,Δ
𝑠∧𝜃𝑖

|𝑝ℐ{𝜃𝑖>𝑇}] + E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝ℐ{𝜏𝑖≤𝑇 or 𝜌𝑖≤𝑇}].

≤ E[|𝑋𝑖
𝑠∧𝜃𝑖

−𝑋𝑖,Δ
𝑠∧𝜃𝑖

|𝑝] + E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝ℐ{𝜏𝑖≤𝑇 or 𝜌𝑖≤𝑇}].
(3.10)

Here, recall that ℐ𝐺 is the indicator function of the set 𝐺. By Young’s inequality:

E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝ℐ{𝜏𝑖≤𝑇 or 𝜌𝑖≤𝑇}] ≤
𝛿

𝑝2
E[|𝑋𝑖

𝑠 −𝑋𝑖,Δ
𝑠 |𝑝𝑝2 ] +

1
𝑞2𝛿1/(𝑝2−1)

P(𝜏𝑖 ≤ 𝑇 or 𝜌𝑖 ≤ 𝑇 ).

Where 𝑝2 > 1 is some positive constant such that 𝑝𝑝2 < 𝑝0. The expectation in the first term is then bounded.
By the moment estimation of �̄�𝑖

𝑡 and 𝑋𝑖,Δ
𝑡 and the Markov inequality

P(𝜏𝑖 ≤ 𝑇 or 𝜌𝑖 ≤ 𝑇 ) ≤ E[|�̄�𝑖
𝑡 |𝑞] + E[|𝑋𝑖,Δ

𝑡 |𝑞]
(𝜙−1 ∘ ℎ(∆))𝑞

,

for 𝑞 < 𝑝0. Denote 𝜂(∆) = (𝜙−1∘ℎ(∆))−1. Balancing the terms, we may choose 𝑝𝑝2 = 𝑞 and 𝛿 ∼ 𝛿−1/(𝑝2−1)𝜂(∆)𝑞.
Consequently,

𝛿 ∼ 𝜂(∆)𝑞−𝑝.

Therefore,

E[|𝑋𝑖
𝑡 −𝑋𝑖,Δ

𝑡 |𝑝] .
∫︁ 𝑡

0

E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝]𝑑𝑠 + ∆𝑝/2ℎ𝑝(∆) + 𝜂(∆)𝑞−𝑝.

Hence ∀𝑡 ∈ [0, 𝑇 ],

sup
0≤𝑠≤𝑡

E[|𝑋𝑖
𝑠 −𝑋𝑖,Δ

𝑠 |𝑝] ≤
∫︁ 𝑡

0

sup
0≤𝑢≤𝑠

E[|𝑋𝑖
𝑢 −𝑋𝑖,Δ

𝑢 |𝑝]𝑑𝑠 + 𝐶𝑇 ∆𝑝/2ℎ𝑝(∆) + 𝐶𝑇 𝜂(∆)𝑞−𝑝.

Applying the Grönwall inequality yields

sup
0≤𝑡≤𝑇

E[|𝑋𝑖
𝑡 −𝑋𝑖,Δ

𝑡 |𝑝] ≤ 𝐶𝑇 ∆𝑝/2ℎ𝑝(∆) + 𝐶𝑇 𝜂(∆)𝑞−𝑝.

Combining with the propagation of chaos results (Prop. 2.5), one therefore obtains the eventual estimate as
listed in the statement. �

Now, we perform some discussions. First of all, we note that if 𝑏 is globally Lipschitz and 𝑎 is one-sided
Lipschitz, then 𝑝0 can be arbitrarily large. Then, 𝜂(∆) can be chosen as polynomial of ∆. For large enough 𝑞,
the last term can be dropped. Hence, one has

Corollary 3.5. If 𝑏 is globally Lipschitz and 𝑎 is one-sided Lipschitz, then

sup
𝑡≤𝑇

E[|�̄�𝑖
𝑡 −𝑋𝑖,Δ

𝑡 |𝑝] ≤ 𝐶

⎧⎨⎩𝑁−1/2 + ∆𝑝/2ℎ(∆)𝑝, if 𝑝 > 𝑑/2,
𝑁−1/2 log(1 + 𝑁) + ∆𝑝/2ℎ(∆)𝑝, if 𝑝 = 𝑑/2,
𝑁−𝑝/𝑑 + ∆𝑝/2ℎ(∆)𝑝, if 𝑝 ∈ [2, 𝑑/2).

(3.11)

In this case, one may choose ℎ(∆) that grows slowly as ∆ → 0 like ℎ(∆) ∼ ∆−𝜖 for very small 𝜖. This indicates
that the order of the strong error can be arbitrarily close to one half.

However, if 𝑝0 has an upper bound, choosing ℎ(∆) ∼ ∆−𝜖 with small 𝜖 leads to big bound for the last term
𝜂(∆)𝑞/𝑝−1. In this case, one needs to choose suitable ℎ to optimize the rate.
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4. The random batch approximation for the interacting particle systems and
its error analysis

The computational cost for the simulation of the particle systems in (1.3) and (3.4) is high due to the 𝒪(𝑁2)
complexity per time step. In this section, we extend the recently proposed RBM [18–21] to our particle systems
and establish the approximation error estimate.

The RBM is based on the so-called “random mini-batch” idea, which is famous for its application in the
stochastic gradient descent (SGD) [33] algorithm for optimization in machine learning. The key methodology
of “mini-batch” is to find a cheap and unbiased random estimator using small subset of data/particles for the
original quantity. How to design the random batch estimator clearly depend on the applications. In the RBM
for particle systems, a random grouping strategy was proposed in [19–21], while an importance sampling in
the Fourier space was proposed for the Random Batch Ewald method for molecular dynamics in [19, 22]. Note
that for each single step, the random estimator has 𝒪(1) error for the quantity. The key reason for the method
to converge is the error cancelation in time. It is this type of Law of Large Numbers (in time) that ensures
convergence. A difference of the RBM method from SGD is that the method is designed to dynamical properties
of the systems, not just for equilibrium distribution.

In the original work [20],

𝑎(𝑥, 𝜇) = 𝑓(𝑥) +
∫︁

R𝑑

𝑘(𝑥, 𝑦)𝜇(𝑑𝑦), 𝑏(𝑥, 𝜇) ≡ const.

Under this setting, the interacting particle systems becomes

𝑑𝑋𝑖
𝑡 = 𝑓(𝑋𝑖

𝑡) 𝑑𝑡 +
1

𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )𝑑𝑡 + 𝑏 𝑑𝑊 𝑖

𝑡 . (4.1)

The initial values 𝑋𝑖
0 are i.i.d. sampled from 𝜇0. Here, we have used 1

𝑁−1

∑︀
𝑗 ̸=𝑖 𝛿𝑋𝑖

𝑡
to approximate 𝜇, and there

is no significance difference regarding the propagation of chaos.
Suppose we aim to do simulation until time 𝑇 > 0. RBM does the following. Choose a batch size 𝑃 ≪ 𝑁, 𝑃 ≥ 2

that divides 𝑁 . For the time step ∆ and 𝑡𝑚 := 𝑚∆, on each time subinterval [𝑡𝑚, 𝑡𝑚+1), there are two steps: (1)
at time grid 𝑡𝑚, we divide the 𝑁 particles into 𝑛 := 𝑁/𝑃 groups (batches) randomly; (2) the particles evolve
with interaction inside the batches only.

Algorithm 1 (RBM).

1: for 𝑚 in 1 : [𝑇/∆] do
2: Divide {1, 2, . . . , 𝑁} into 𝑛 = 𝑁/𝑃 batches randomly.
3: for each batch 𝒞𝑞 do
4: Update �̃�𝑖

𝑡 ’s (𝑖 ∈ 𝒞𝑞) by solving the following modified system with 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1).

𝑑�̃�𝑖
𝑡 = 𝑓(�̃�𝑖

𝑡) 𝑑𝑡 +
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞,𝑗 ̸=𝑖

𝑘(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )𝑑𝑡 + 𝑏 𝑑𝑊 𝑖

𝑡 . (4.2)

5: end for
6: end for

In the case above, the dependence in 𝜇 is linear in the drift. As proved in [20], for a fixed configuration, the
random batch approximation in the drift is unbiased and there is no restriction on batch size 𝑃 .

Below we extend the random batch approximation to general coefficients where the diffusion coefficient could
also depend on 𝜇 and they could be nonlinear in 𝜇. In general, if there is dependence of 𝜇 in 𝑏, the quadratic
variation in the Itô’s formula would cause a contributing term of the order 1/𝑃 to the mean square error (or
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1/𝑃 to the error). Moreover, if the dependence on 𝜇 is nonlinear, the random approximation will no longer

be unbiased for a fixed configuration. Consequently, it would also contribute an error that does not vanish as
∆ → 0. All these would put restrictions on the batch size 𝑃 . For example, 𝑃 ∼ ∆−1/2 to achieve half order
for the mean square error. However, since the selection of batch size does not grow as the number of particles
𝑁 →∞, the random batch approximation could still be beneficial.

We first consider a special case where the dependence on 𝜇 is linear to investigate how the random batch
approximation in diffusion coefficient contributes to the error:

𝑎(𝑥, 𝜇) = 𝑓(𝑥) +
∫︁

R𝑑

𝑘(𝑥, 𝑦)𝜇(𝑑𝑦), 𝑏(𝑥, 𝜇) =
∫︁

R𝑑

𝜎(𝑥, 𝑦)𝜇(𝑑𝑦). (4.3)

In particular, we investigate the bias introduced by the distribution dependence in the diffusion coefficient,
which as we shall see, is already very different from [20] regarding the application of RBM.

Secondly, we would consider drifts where the dependence on 𝜇 is nonlinear to investigate the error introduced
by the random batch approximation:

𝑎(𝑥, 𝜇) = 𝑓(𝑥) + 𝐴

(︂∫︁
𝑘(𝑥, 𝑦)𝜇(𝑑𝑦)

)︂
, 𝑏(𝑥, 𝜇) ≡ 𝜎(𝑥). (4.4)

Here, 𝐴 : R𝑟 → R𝑑 for some 𝑟 ≥ 1 is a nonlinear field.
Lastly, we perform discussion on general cases. In principle, the analysis would be similar to the cases

discussed. In this section, all the discussion on the random batch system will be performed by keeping the time
continuous. Combining with the truncated scheme in the previous section, one will obtain the eventual method
for numerical simulation.

4.1. The particle system and the random batch approximation

The interacting particle system (1.3) for (4.3) is given by

𝑑𝑋𝑖
𝑡 = 𝑓(𝑋𝑖

𝑡) 𝑑𝑡 +
1
𝑁

𝑁∑︁
𝑖=1

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )𝑑𝑡 +

1
𝑁

𝑁∑︁
𝑖=1

𝜎(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )𝑑𝑊 𝑖

𝑡 ,

or
𝑑𝑋𝑖

𝑡 = 𝑓(𝑋𝑖
𝑡) 𝑑𝑡 +

1
𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 ) 𝑑𝑡 +

1
𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝜎(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )𝑑𝑊 𝑖

𝑡 . (4.5)

The initial values 𝑋𝑖
0 ∈ R𝑑 are the same as (1.3). The difference is whether we use 1

𝑁

∑︀
𝑗 𝛿𝑋𝑗

𝑡
or 1

𝑁−1

∑︀
𝑗 ̸=𝑖 𝛿𝑋𝑗

𝑡

for the approximation. Note that there is no big difference regarding the propagation of chaos while 1/(𝑁 − 1)
is more convenient in notation for the random batch system. We will focus on (4.5) then. Similarly, for the
case (4.4), the interacting particle system is then given by

𝑑𝑋𝑖
𝑡 = 𝑓(𝑋𝑖

𝑡) 𝑑𝑡 + 𝐴

⎛⎝ 1
𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )

⎞⎠ 𝑑𝑡 + 𝜎(𝑋𝑖
𝑡)𝑑𝑊 𝑖

𝑡 . (4.6)

Recall that for the random batch approximation, we divide the 𝑁 = 𝑛𝑃 particles into 𝑛 small batches with
size 𝑃 ≥ 2 randomly. Let the random batches be 𝒞𝑞(𝑖), 𝑞 = 1, . . . , 𝑛. We will use

𝒞 := {𝒞1, · · · , 𝒞𝑛}

to represent the division of random batches. Let 𝑞(𝑖) be the index 𝑞 such that 𝑖 ∈ 𝒞𝑞. For the random batch
approximation of (4.5), we generate two random batches 𝒞 and ℬ at 𝑡𝑚 and run the following equation

𝑑�̃�𝑖
𝑡 = 𝑓(�̃�𝑖

𝑡) 𝑑𝑡 +
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞1(𝑖),𝑗 ̸=𝑖

𝑘(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )𝑑𝑡 +

1
𝑃 − 1

∑︁
𝑗∈ℬ𝑞2(𝑖),𝑗 ̸=𝑖

𝜎(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )𝑑𝑊 𝑖

𝑡 , 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1), (4.7)
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where 𝑞1 (𝑖) and 𝑞2 (𝑖) are used to distinguish the batchmates in the two different batches ℬ and 𝒞. And the
initial values are �̃�𝑖

0 = 𝑋𝑖
0, the same as the particle system (1.3).

Correspondingly, the random batch approximation for (4.6)

𝑑�̃�𝑖
𝑡 = 𝑓(�̃�𝑖

𝑡) 𝑑𝑡 + 𝐴

⎛⎝ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑘(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )

⎞⎠ 𝑑𝑡 + 𝜎(�̃�𝑖
𝑡)𝑑𝑊 𝑖

𝑡 , (4.8)

The initial values are �̃�𝑖
0 = 𝑋𝑖

0, the same as the particle system (1.3).
Our experience tells us that if 𝑁 is not so small, there would be no significant difference if 𝒞 and ℬ are

independent or the same. Hence, for the convenience of the notations and analysis, we will always assume from
here on that

𝒞 = ℬ.

Namely, the random batches used for the drift and the diffusion are the same. To distinguish the batches at
different time intervals, we denote the random division of batches at 𝑡𝑚 by

𝒞(𝑚) := {𝒞(𝑚)
1 , · · · , 𝒞(𝑚)

𝑛 }.

Define the filtration {ℱ𝑚}𝑚≥0 by

ℱ𝑚 = 𝜎
(︁
𝒞(𝑗) : 𝑗 ≤ 𝑚

)︁
.

This contains the information for the batches up to 𝑡𝑚. Also,

ℱ := 𝜎(∪𝑚ℱ𝑚)

is the 𝜎-algebra for how batches are generated at all time points.

4.2. The linear dependence case

In this section, we consider the special cases where the dependence on the distribution is linear and analyze the
random batch approximation (4.7). For this purpose, we need stronger assumptions imposed on the coefficients
than the one in Assumption 2.3. These conditions are still non-globally Lipschitz but the essential part is
Lipschitz. Specifically, we will investigate the problem with the following assumptions.

Assumption 4.1. 𝑓 : R𝑑 → R𝑑 is one-sided Lipschitz in the sense that

(𝑥− 𝑦) · (𝑓(𝑥)− 𝑓(𝑦)) ≤ 𝐿|𝑥− 𝑦|2, ∀𝑥, 𝑦, (4.9)

and the derivatives have polynomial growth. 𝑘 : R𝑑 × R𝑑 → R𝑑 and 𝜎 : R𝑑 × R𝑑 → R𝑑×𝑚′ are all Lipschitz
continuous.

Remark 4.2. The coefficient 𝑏(𝑥, 𝜇) =
∫︀

𝜎(𝑥, 𝑦)𝜇(𝑑𝑦) could also have a single term depending on 𝑥, like
𝜎(𝑥, 𝑦) = 𝑔(𝑥) + 𝜎1(𝑥, 𝑦). In principle, 𝑔(𝑥) does not have to be globally Lipschitz. We assume the Lipschitz
continuity of 𝜎 simply for the convenience of discussion.

Proposition 4.3. Let Assumption 4.1 hold and 𝜇0 ∈ 𝒫𝑞 with 𝑞 ≥ 2. Let 𝑋𝑗
𝑡 be the solution to (4.5) and �̃�𝑗

𝑡 be
the solution to (4.7) for 𝑗 = 1, · · · , 𝑁 . Then conditioning on the sequence of random batches, one has

sup
0≤𝑡≤𝑇

max
1≤𝑗≤𝑁

E[|�̃�𝑗
𝑡 |𝑞|ℱ ] ≤ 𝐶𝑞. (4.10)

Similarly,
sup

0≤𝑡≤𝑇

(︁
E[
⃒⃒
𝑋𝑖

𝑡

⃒⃒𝑞
] + E[|�̃�𝑖

𝑡 |𝑞]
)︁

= sup
0≤𝑡≤𝑇

(︁
E[
⃒⃒
𝑋1

𝑡

⃒⃒𝑞
] + E[|�̃�1

𝑡 |𝑞]
)︁
≤ 𝐶𝑞,𝑇 ,∀𝑖. (4.11)

In both estimates, the constant 𝐶𝑞,𝑇 is independent of 𝑁 and the sequence of batches.
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Proof. We only show the moment control for �̃�𝑖
𝑡 because the moment control for 𝑋𝑖

𝑡 is similar. The proof is
essentially the same as Lemma 3.4 of [18]. Our approach is to show the boundedness of the moments for any
given sequences of the batches, to avoid the interplay between randomness of the batches and the process �̃�𝑡.

For 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1), by Itô’s formula one has

𝑑

𝑑𝑡
E[|�̃�𝑖

𝑡 |𝑞|ℱ ] = 𝑞E

⎡⎣|�̃�𝑖
𝑡 |𝑞−2�̃�𝑖

𝑡 ·
(︁
𝑓(�̃�𝑖

𝑡) +
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑘(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )
)︁⃒⃒⃒⃒⃒ℱ

⎤⎦
+

1
2
𝑞E

⎡⎣|�̃�𝑖
𝑡 |𝑞−2

(︁
𝐼 + (𝑞 − 2)

�̃�𝑖
𝑡 ⊗ �̃�𝑖

𝑡

|�̃�𝑖
𝑡 |2

)︁
:
(︁ 1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝜎(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )
)︁(︁ 1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝜎(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )
)︁𝑇
⃒⃒⃒⃒
⃒ℱ
⎤⎦

=: 𝑀1 + 𝑀2.

By Assumption 4.1,

�̃�𝑖
𝑡 · 𝑓(�̃�𝑖

𝑡) ≤ 𝐿|�̃�𝑖
𝑡 |2 + |𝑓(0)||�̃�𝑖

𝑡 |,
|�̃�𝑖

𝑡 |𝑞−2�̃�𝑖
𝑡 · 𝑘(�̃�𝑖

𝑡 , �̃�
𝑗
𝑡 )) ≤ 𝐿((2− 𝑞−1)|�̃�𝑖

𝑡 |𝑞 + 𝑞−1|�̃�𝑗
𝑡 |𝑞) + 𝐶|�̃�𝑖

𝑡 |𝑞−1.

One thus has

𝑀1 . 1 + E[|�̃�𝑖
𝑡 |𝑞|ℱ ] +

1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

E(|�̃�𝑗
𝑡 |𝑞|ℱ) . 1 + max

1≤𝑗≤𝑁
E(|�̃�𝑗

𝑡 |𝑞|ℱ).

Similarly,

𝑀2 ≤ 𝑞(𝑞 − 1)
1

(𝑃 − 1)2
∑︁

𝑗∈𝒞𝑞𝑚(𝑖),𝑗′∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖,𝑗′ ̸=𝑖

E(|�̃�𝑖
𝑡 |𝑞−2‖𝜎(�̃�𝑖

𝑡 , �̃�
𝑗
𝑡 )𝜎(�̃�𝑖

𝑡 , �̃�
𝑗′

𝑡 )𝑇 ‖|ℱ).

Again, using the Lipschitz continuity of 𝜎 and the Young’s inequality like

|�̃�𝑖
𝑡 |𝑞−2|�̃�𝑗

𝑡 ||�̃�
𝑗′

𝑡 | ≤
𝑞 − 2

𝑞
|�̃�𝑖

𝑡 |𝑞 +
1
𝑞
|�̃�𝑗

𝑡 |𝑞 +
1
𝑞
|�̃�𝑗′

𝑡 |𝑞,

one will get the same bound as in 𝑀1. Consequently, by gluing together all the estimates on different subintervals
of the form [𝑡𝑚, 𝑡𝑚+1), one has

E[|�̃�𝑖
𝑡 |𝑞|ℱ ] ≤ E[|�̃�𝑖

0|𝑞|ℱ ] + 𝐶

∫︁ 𝑡

0

(1 + max
1≤𝑗≤𝑁

E[|�̃�𝑗
𝑠 |𝑞|ℱ ]) 𝑑𝑠,

for any 𝑖. Hence, defining
𝑎(𝑡) := max

1≤𝑗≤𝑁
E[|�̃�𝑗

𝑡 |𝑞|ℱ ],

one has the inequality

𝑎(𝑡) ≤ 𝑎(0) + 𝐶

∫︁ 𝑡

0

𝑎(𝑠) 𝑑𝑠.

Applying Grönwall’s inequality yields the result for E[|�̃�𝑗
𝑡 |𝑞|ℱ ]. Then, taking expectation over the random

batches, the result for the moments also follows. �

Below, for a given configuration, x := (𝑥1, 𝑥2, · · · , 𝑥𝑁 ) ∈ R𝑁𝑑. Define the random deviation in a random
batch approximation, with interaction kernel 𝑘:

𝜒𝑖(x; 𝑘) :=
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑘(𝑥𝑖, 𝑥𝑗)− 1
𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝑘(𝑥𝑖, 𝑥𝑗). (4.12)
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The following lemma, shown in Lemma 3.1 of [20], gives the basic consistency and stability features of the
RBM.

Lemma 4.4. The random deviation satisfies

E[𝜒𝑖(x; 𝑘)] = 0

and

var 𝜒𝑖(x; 𝑘) = E[‖𝜒𝑖(x; 𝑘)‖2] =
(︂

1
𝑃 − 1

− 1
𝑁 − 1

)︂
Λ𝑖(x; 𝑘), (4.13)

where
Λ𝑖(x; 𝑘) :=

1
𝑁 − 2

∑︁
𝑗:𝑗 ̸=𝑖

⃦⃦⃦
𝑘(𝑥𝑖, 𝑥𝑗)− 1

𝑁 − 1

∑︁
𝑗′:𝑗′ ̸=𝑖

𝑘(𝑥𝑖, 𝑥𝑗′)
⃦⃦⃦2

.

We remark that if 𝑘 is a matrix-valued function, the norm in this lemma is the Hilbert-Schmidt norm. Let
us briefly understand how the random batch approximation in the diffusion coefficient affects the error. If we
define

𝑍𝑖
𝑡 := �̃�𝑖

𝑡 −𝑋𝑖
𝑡 . (4.14)

Then, one finds that

𝑑𝑍𝑖
𝑡 = (𝑓(�̃�𝑖

𝑡)− 𝑓(𝑋𝑖
𝑡)) 𝑑𝑡 +

⎛⎝ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑘(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )− 1

𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )

⎞⎠ 𝑑𝑡

+

⎛⎝ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝜎(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )− 1

𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝜎(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )

⎞⎠ 𝑑𝑊 𝑖
𝑡 .

Intuitively, if 𝑋𝑖
𝑡 is close to �̃�𝑖

𝑡 , then the leading error would be

𝑑𝑍𝑖
𝑡 ∼ 𝜒𝑖(X; 𝑘)𝑑𝑡 + 𝜒𝑖(X; 𝜎)𝑑𝑊 𝑖

𝑡 ,

where X := (𝑋1, 𝑋2, · · · , 𝑋𝑁 ) ∈ R𝑁𝑑. Then, by Itô’s formula,

𝑑E[|𝑍𝑖
𝑡 |2] ∼ 2E[𝑍𝑖

𝑡 · 𝜒𝑖(X; 𝑘)] 𝑑𝑡 + E[|𝜒𝑖(X; 𝜎)|2] 𝑑𝑡.

The batch at 𝑡𝑚 is independent of 𝑍𝑖
𝑡𝑚

so conditioning on 𝑍𝑖
𝑡𝑚

, the expectation of 𝜒𝑖 is zero, then the term
𝑍𝑖

𝑡 ·𝜒𝑖 would contribute a term that vanishes as ∆ → 0. The second term, however, is of order 1/𝑃 . This would
not vanish as ∆ → 0 if we fix 𝑃 . This term is the quadratic variation due to the Brownian motion. Clearly,
when there is the distribution dependence in the diffusion coefficient, the effect of random batch would be very
different from the ones discussed in [20].

The following result gives the basic estimate for the approximation error.

Theorem 4.5. Let Assumption 4.1 hold. X(𝑡) := (𝑋1
𝑡 , · · · , 𝑋𝑁

𝑡 ) are the solution of (4.5) and X̃(𝑡) :=
(�̃�1

𝑡 , · · · , �̃�𝑁
𝑡 ) are the solution of (4.7). Then, the error process defined in (4.14) satisfies

sup
0≤𝑡≤𝑇

max
𝑖

E[|𝑍𝑖
𝑡 |2] ≤ 𝐶

(︂
∆2 +

Λ(𝑘)∆
𝑃

+
Λ(𝜎)
𝑃

)︂
, (4.15)

where Λ(𝑘) := sup
0≤𝑡≤𝑇

E[Λ𝑖(X(𝑡); 𝑘)] < ∞ and Λ(𝜎) := sup
0≤𝑡≤𝑇

E[Λ𝑖(X(𝑡); 𝜎)] < ∞ are independent of 𝑖 and can

be bounded independent of 𝑁 . In particular,

sup
0≤𝑡≤𝑇

E[|𝑍𝑖
𝑡 |2] ≤

{︃
𝐶𝑇 (Δ

𝑃 + ∆2), 𝜎(𝑥, 𝑦) ≡ 𝜎(𝑥),
𝐶𝑇 ( 1

𝑃 + ∆2), otherwise.
(4.16)
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Clearly, when 𝜎(𝑥, 𝑦) ≡ 𝜎(𝑥), the result (4.16) is the same as in [20], though they assumed boundedness of
the kernel 𝑘(𝑥, 𝑦). For general 𝜎 that may depend on 𝑦, a fixed batch size 𝑃 clearly would not give convergence.
Instead, we need to take 𝑃 large to get convergence.

Corollary 4.6. If one takes 𝑃 = min(∆−𝛽 , 𝑁) with 𝛽 ≤ 1, which stays finite as 𝑁 →∞, the error is controlled
as √︁

E[|𝑍𝑖
𝑡 |2] ≤

{︃
𝐶∆(𝛽+1)/2, 𝜎(𝑥, 𝑦) ≡ 𝜎(𝑥),
𝐶∆𝛽/2, otherwise.

(4.17)

To prove Theorem 4.5, we need the following symmetry fact.

Lemma 4.7. Let 𝑍𝑖
𝑡 be given in (4.14), with 𝑋𝑖

0 being i.i.d. sampled. Let 𝜙(·) be a test function that has at
most polynomial growth. Then, for [𝑡𝑚, 𝑡𝑚+1), one has

E

⎡⎣E
[︁ 1
𝑃

∑︁
𝑗∈𝒞𝑞𝑚(𝑖)

𝜙(𝑍𝑗
𝑡 )|ℱ𝑚

]︁⎤⎦ =
1
𝑁

𝑁∑︁
𝑗′=1

E[𝜙(𝑍𝑗′

𝑡 )] = E[𝜙(𝑍𝑗
𝑡 )], ∀𝑗 ∈ {1, · · · , 𝑁}.

Similarly, for any particle 𝑖,

E

⎡⎣E
[︁ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝜙(𝑍𝑗
𝑡 )|ℱ𝑚

]︁⎤⎦ =
1

𝑁 − 1

∑︁
𝑗′:𝑗′ ̸=𝑖

E[𝜙(𝑍𝑗′

𝑡 )] = E[𝜙(𝑍𝑗
𝑡 )], ∀𝑗 ∈ {1, · · · , 𝑁}.

Proof. Note that E[E[·|ℱ𝑚]] = E[E[·|𝜎(𝒞(𝑚))]]. Then, by definition,

E

⎡⎣E

⎡⎣ 1
𝑃

∑︁
𝑖∈𝒞𝑞𝑚(𝑖)

𝜙(𝑍𝑖
𝑡)|𝜎(𝒞(𝑚))

⎤⎦⎤⎦
=

∑︁
𝐶1,··· ,𝐶𝑛

P(𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛)
1
𝑃

𝑁∑︁
𝑗′=1

𝐼𝑗′∈𝒞𝑞𝑚(𝑖)E[𝜙(𝑍𝑗′

𝑡 )|𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛]

=
1
𝑃

𝑁∑︁
𝑗′=1

∑︁
𝐶1,··· ,𝐶𝑛

P(𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛)𝐼𝑗′∈𝒞𝑞𝑚(𝑖)E[𝜙(𝑍𝑗′

𝑡 )|𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛].

Here, we make of the symmetry. The point is that E[𝜙(𝑍𝑗′(𝑡))|𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛] does not depend on the
batch (the values 𝐶1, · · · , 𝐶𝑛). In other words, no matter what its batchmates are, this conditional expectation
would be the same because the joint distribution of the particles is symmetric at 𝑡𝑚. Hence,∑︁

𝐶1,··· ,𝐶𝑛

P(𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛)𝐼𝑗′∈𝐶𝑞
E[𝜙(𝑍𝑗′

𝑡 )|𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛]

= P(𝑗′ ∈ 𝒞𝑞𝑚(𝑖))E[𝜙(𝑍𝑗′

𝑡 )] =
𝑃

𝑁
E[𝜙(𝑍𝑗′

𝑡 )].

The second claim is nearly the same. The only difference is that the batch 𝒞𝑞𝑚(𝑖) used will vary. Let 1𝑖𝑗′ be the
indicator that particles 𝑖 and 𝑗′ are in the same batch. Then,∑︁

𝐶1,··· ,𝐶𝑛

P(𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛)
1

𝑃 − 1

𝑁∑︁
𝑗′=1

1𝑖𝑗′E[𝜙(𝑍𝑗′

𝑡 )|𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛]

=
1

𝑃 − 1

𝑁∑︁
𝑗′=1

P(1𝑖𝑗′ = 1)
∑︁

𝐶1,··· ,𝐶𝑛

P(𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛)E[𝜙(𝑍𝑗′

𝑡 )|𝒞1 = 𝐶1, · · · , 𝒞𝑛 = 𝐶𝑛].

Applying Lemma 3.2 of [21] gives the result. �
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Remark 4.8. This lemma is different from Lemma 3.4 of [21], where the summands are required to be indepen-
dent from the random batches. Here, we do not require the independence, but use the symmetry. Nevertheless
the goal is the same: to deal with the random sum.

We rearrange the terms in 𝑑𝑍𝑖
𝑡 as

𝑑𝑍𝑖
𝑡 =

(︂∫︁ 1

0

∇𝑓
(︁
𝑋𝑖

𝑡 + 𝜏
(︁
�̃�𝑖

𝑡 −𝑋𝑖
𝑡

)︁)︁
𝑑𝜏

)︂
· 𝑍𝑖

𝑡

+
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

(︁
𝑘
(︁
�̃�𝑖

𝑡 , �̃�
𝑗
𝑡

)︁
− 𝑘

(︁
𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡

)︁)︁
𝑑𝑡 + 𝜒𝑖 (X(𝑡); 𝑘) 𝑑𝑡

+
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

(︁
𝜎
(︁
�̃�𝑖

𝑡 , �̃�
𝑗
𝑡

)︁
− 𝜎

(︁
𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡

)︁)︁
𝑑𝑊 𝑖

𝑡 + 𝜒𝑖 (X(𝑡); 𝜎) 𝑑𝑊 𝑖
𝑡 .

Now, we can prove the main result.

Proof of Theorem 4.5. For 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1), by Itô’s formula, one has

𝑑

𝑑𝑡
E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2 |ℱ𝑚

]︁
=

(︃
2E
[︂
𝑍𝑖

𝑡 ·
(︁
𝑓
(︀
𝑋𝑖

𝑡

)︀
− 𝑓(�̃�𝑖

𝑡)
)︁ ⃒⃒⃒⃒
ℱ𝑚

]︂
+ 2E

[︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑍𝑖
𝑡 ·
(︁
𝑘
(︁
�̃�𝑖

𝑡 , �̃�
𝑗
𝑡

)︁
− 𝑘

(︁
𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡

)︁)︁ ⃒⃒⃒⃒
ℱ𝑚

]︂)︃
+ 2E

[︀
𝑍𝑖

𝑡 · 𝜒𝑖 (X(𝑡); 𝑘) |ℱ𝑚

]︀
+ E [ΣΣ𝑇 |ℱ𝑚]

= 𝑆1 + 𝑆2 + 𝑆3,

where

Σ =
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝜎(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )− 1

𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝜎(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 ).

For 𝑆1 term, using the one-sided Lipschitz condition of 𝑓 and the Lipschitz continuity of 𝑘, one has

𝑆1 . E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2 |ℱ𝑚

]︁
+ E

[︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

|𝑍𝑖
𝑡 |
(︁
|𝑍𝑖

𝑡 |+ |𝑍𝑗
𝑡 |
)︁ ⃒⃒⃒
ℱ𝑚

]︂

. E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2 |ℱ𝑚

]︁
+ E

[︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒⃒
𝑍𝑗

𝑡

⃒⃒⃒2 ⃒⃒⃒
ℱ𝑚

]︂
.

The 𝑆3 term can be estimated similarly:

𝑆3 ≤ E
[︁
‖Σ‖2 |ℱ𝑚

]︁
≤ 2E

[︂⃦⃦⃦ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝜎(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )− 1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝜎
(︁
𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡

)︁ ⃦⃦⃦2 ⃒⃒⃒
ℱ𝑚

]︂
+ 2E

[︀
‖𝜒𝑖 (X(𝑡); 𝜎) ‖2|ℱ𝑚

]︀
=: 𝑆31 + 𝑆32.
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Here, 𝑆32 is the main local error term arising from 𝑆3, which will not vanish as ∆ → 0. The 𝑆31 term can be
estimated using the Lipschitz continuity of 𝜎 so that

𝑆31 . E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2 |ℱ𝑚

]︁
+ E

[︂⃒⃒⃒ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒⃒
𝑍𝑗

𝑡

⃒⃒⃒ ⃒⃒⃒2 ⃒⃒⃒
ℱ𝑚

]︂

≤ E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2 |ℱ𝑚

]︁
+ E

[︂
1

(𝑃 − 1)2
∑︁

𝑗∈𝒞𝑞𝑚(𝑖),𝑗′∈𝒞𝑞𝑚(𝑖),𝑗,𝑗′ ̸=𝑖

1
2

(︂⃒⃒⃒
𝑍𝑗

𝑡

⃒⃒⃒2
+
⃒⃒⃒
𝑍𝑗′

𝑡

⃒⃒⃒2)︂ ⃒⃒⃒
ℱ𝑚

]︂

= E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2 |ℱ𝑚

]︁
+ E

[︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒⃒
𝑍𝑗

𝑡

⃒⃒⃒2 ⃒⃒⃒
ℱ𝑚

]︂
.

Now, for 𝑆2, due to Lemma 4.4 and the Lipschitz continuity of 𝑘, we break this term into the following.

𝑆2 .
{︁

E
[︁
𝑍𝑖

𝑡𝑚
· 𝜒𝑖 (X(𝑡); 𝑘)

⃒⃒⃒
ℱ𝑚

]︁}︁
+
{︂

E
[︂
|𝜒𝑖 (X(𝑡); 𝑘)|

∫︁ 𝑡

𝑡𝑚

(︁
1 +

⃒⃒⃒
�̃�𝑖

𝑠

⃒⃒⃒𝛾
+
⃒⃒
𝑋𝑖

𝑠

⃒⃒𝛾)︁ ⃒⃒
𝑍𝑖

𝑠

⃒⃒
𝑑𝑠
⃒⃒⃒
ℱ𝑚

]︂

+E
[︂
|𝜒𝑖 (X(𝑡); 𝑘)|

∫︁ 𝑡

𝑡𝑚

(︂ ⃒⃒
𝑍𝑖

𝑠

⃒⃒
+

1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

|𝑍𝑗
𝑠 |
)︂

𝑑𝑠
⃒⃒⃒
ℱ𝑚

]︂⎫⎬⎭
+

⎧⎨⎩E
[︂
𝜒𝑖 (X(𝑡); 𝑘)

∫︁ 𝑡

𝑡𝑚

1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

(︁
𝜎
(︁
�̃�𝑖

𝑠, �̃�
𝑗
𝑠

)︁
− 𝜎

(︀
𝑋𝑖

𝑠, 𝑋
𝑗
𝑠

)︀)︁
𝑑𝑊 𝑖

𝑠

⃒⃒⃒
ℱ𝑚

]︂⎫⎬⎭
+
{︂∫︁ 𝑡

𝑡𝑚

E
[︁
𝜒𝑖 (X(𝑠); 𝑘) · 𝜒𝑖 (X(𝑡); 𝑘) |ℱ𝑚

]︁
𝑑𝑠 + E

[︂
𝜒𝑖 (X(𝑡); 𝑘)

∫︁ 𝑡

𝑡𝑚

𝜒𝑖 (X(𝑠); 𝜎) 𝑑𝑊 𝑖
𝑠

⃒⃒⃒
ℱ𝑚

]︂}︂
=: 𝑆20 + 𝑆21 + 𝑆22 + 𝑆23.

The terms around the brackets on the right side are called 𝑆2,𝑖, 𝑖 = 0, 1, 2, 3 respectively for the convenience
of notations. We will leave 𝑆20 as it is. Consider 𝑆21 first. The first term in 𝑆21 can be controlled using
Proposition 4.3 by ∫︁ 𝑡

𝑡𝑚

(︁
E
[︁
𝜒𝑖 (X(𝑡); 𝑘)4 |ℱ𝑚

]︁ )︁1/4
(︂

E
[︂(︁

1 +
⃒⃒⃒
�̃�𝑖

𝑠

⃒⃒⃒𝛾
+
⃒⃒
𝑋𝑖

𝑠

⃒⃒𝛾)︁4

|ℱ𝑚

]︂)︂1/4

×
(︂

E
[︁⃒⃒

𝑍𝑖
𝑠

⃒⃒2 |ℱ𝑚

]︁)︂1/2

𝑑𝑠 ≤ 𝐶

∫︁ 𝑡

𝑡𝑚

(︂
E
[︁⃒⃒

𝑍𝑖
𝑠

⃒⃒2 |ℱ𝑚

]︁)︂1/2

𝑑𝑠.

The second term in 𝑆21 can be estimated similarly by∫︁ 𝑡

𝑡𝑚

(︂
E
[︁⃒⃒

𝑍𝑖
𝑠

⃒⃒2 |ℱ𝑚

]︁)︂1/2

𝑑𝑠 +
∫︁ 𝑡

𝑡𝑚

(︂
E
[︂

1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒
𝑍𝑗

𝑠

⃒⃒2 ⃒⃒⃒ℱ𝑚

]︂)︂1/2

𝑑𝑠.

The 𝑆22 term can be estimated using the Lipschitz continuity of 𝜎, Proposition 4.3 and the Itô’s isometry by

∫︁ 𝑡

𝑡𝑚

E

[︃(︂ ⃒⃒
𝑍𝑖

𝑠

⃒⃒
+

1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒
𝑍𝑗

𝑠

⃒⃒ )︂2 ⃒⃒⃒
ℱ𝑚

]︃1/2

𝑑𝑠

≤
∫︁ 𝑡

𝑡𝑚

(︁
E
[︀
|𝑍𝑖

𝑠|2|ℱ𝑚

]︀ )︁1/2

𝑑𝑠 +
∫︁ 𝑡

𝑡𝑚

(︂
E
[︂

1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒
𝑍𝑗

𝑠

⃒⃒2 ⃒⃒⃒ℱ𝑚

]︂)︂1/2

𝑑𝑠.
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Here, 𝑆23 term contains essentially the local error term for random batch approximation arising from 𝑆2. We
may expect that this tends to zero as ∆ → 0. This term can be simply estimated by

𝑆23 ≤
1
2

E
[︁
|𝜒𝑖 (X(𝑡); 𝑘)|2 |ℱ𝑚

]︁
∆ +

1
2

∫︁ 𝑡

𝑡𝑚

E
[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2 |ℱ𝑚

]︁
𝑑𝑠

+ E
[︁
|𝜒𝑖 (X(𝑡); 𝑘)|2 |ℱ𝑚

]︁1/2
(︂∫︁ 𝑡

𝑡𝑚

E
[︁
‖𝜒𝑖 (X(𝑠); 𝜎)‖2 |ℱ𝑚

]︁
𝑑𝑠

)︂1/2

.

Combining all these estimates together, we find

E
[︂⃒⃒⃒

𝑍𝑖
𝑡

⃒⃒⃒2
|ℱ𝑚

]︂
≤ E

[︂⃒⃒⃒
𝑍𝑖

𝑡𝑚

⃒⃒⃒2
|ℱ𝑚

]︂
+ 𝐶

∫︁ 𝑡

𝑡𝑚

E
[︂⃒⃒⃒

𝑍𝑖
𝑠

⃒⃒⃒2
|ℱ𝑚

]︂
𝑑𝑠 + 𝐶

∫︁ 𝑡

𝑡𝑚

E
[︂

1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒⃒
𝑍𝑗

𝑠

⃒⃒⃒2 ⃒⃒⃒
ℱ𝑚

]︂
𝑑𝑠

+ 𝐶

∫︁ 𝑡

𝑡𝑚

∫︁ 𝑠

𝑡𝑚

(︂
E
[︂⃒⃒⃒

𝑍𝑖
𝜏

⃒⃒⃒2
|ℱ𝑚

]︂)︂1/2

𝑑𝜏𝑑𝑠 +

∫︁ 𝑡

𝑡𝑚

∫︁ 𝑠

𝑡𝑚

(︂
E
[︂

1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒⃒
𝑍𝑗

𝜏

⃒⃒⃒2 ⃒⃒⃒
ℱ𝑚

]︂)︂1/2

𝑑𝜏𝑑𝑠

+

∫︁ 𝑡

𝑡𝑚

E
[︁
𝑍𝑖

𝑡𝑚
· 𝜒𝑖 (X(𝑠); 𝑘) |ℱ𝑚

]︁
𝑑𝑠 +

Δ

2

∫︁ 𝑡

𝑡𝑚

E
[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2 |ℱ𝑚

]︁
𝑑𝑠 +

1

2

∫︁ 𝑡

𝑡𝑚

∫︁ 𝑠

𝑡𝑚

E
[︁
|𝜒𝑖(X(𝜏); 𝑘)|2 |ℱ𝑚

]︁
𝑑𝜏𝑑𝑠

+

∫︁ 𝑡

𝑡𝑚

E
[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2 |ℱ𝑚

]︁1/2(︁∫︁ 𝑠

𝑡𝑚

E
[︁
‖𝜒𝑖 (X(𝜏); 𝜎)‖2 |ℱ𝑚

]︁
𝑑𝜏
)︁1/2

𝑑𝑠 + 2

∫︁ 𝑡

𝑡𝑚

E
[︁
‖𝜒𝑖 (X(𝑠); 𝜎)‖2

⃒⃒⃒
ℱ𝑚

]︁
𝑑𝑠.

The double integrals can be estimated, for example, by∫︁ 𝑡

𝑡𝑚

∫︁ 𝑠

𝑡𝑚

(︁
E
[︁⃒⃒

𝑍𝑖
𝜏

⃒⃒2 |ℱ𝑚

]︁)︁1/2

𝑑𝜏𝑑𝑠 =
∫︁ 𝑡

𝑡𝑚

(𝑡− 𝜏)
(︁
E
[︁⃒⃒

𝑍𝑖
𝜏

⃒⃒2 |ℱ𝑚

]︁)︁1/2

𝑑𝜏 ≤ ∆3

6
+

1
2

∫︁ 𝑡

𝑡𝑚

E
[︁⃒⃒

𝑍𝑖
𝜏

⃒⃒2 |ℱ𝑚

]︁
𝑑𝜏,

and ∫︁ 𝑡

𝑡𝑚

E
[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2 |ℱ𝑚

]︁1/2
(︂∫︁ 𝑠

𝑡𝑚

E
[︁
‖𝜒𝑖 (X(𝜏); 𝜎)‖2 |ℱ𝑚

]︁
𝑑𝜏

)︂1/2

𝑑𝑠

≤ ∆
2

∫︁ 𝑡

𝑡𝑚

E
[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2 |ℱ𝑚

]︁
𝑑𝑠 +

1
2∆

∫︁ 𝑡

𝑡𝑚

(𝑡− 𝜏)E
[︁
‖𝜒𝑖 (X(𝜏); 𝜎)‖2 |ℱ𝑚

]︁
𝑑𝜏.

One actually has

E
[︂⃒⃒⃒

𝑍𝑖
𝑡

⃒⃒⃒2
|ℱ𝑚

]︂
≤ E

[︂⃒⃒⃒
𝑍𝑖

𝑡𝑚

⃒⃒⃒2
|ℱ𝑚

]︂
+ 𝐶

∫︁ 𝑡

𝑡𝑚

E
[︂⃒⃒⃒

𝑍𝑖
𝑠

⃒⃒⃒2
|ℱ𝑚

]︂
𝑑𝑠 + 𝐶

∫︁ 𝑡

𝑡𝑚

E
[︂

1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒⃒
𝑍𝑗

𝑠

⃒⃒⃒2 ⃒⃒⃒⃒
ℱ𝑚

]︂
𝑑𝑠

+

∫︁ 𝑡

𝑡𝑚

E
[︁
𝑍𝑖

𝑡𝑚
· 𝜒𝑖 (X(𝑠); 𝑘) |ℱ𝑚

]︁
𝑑𝑠 + 𝐶Δ3 +

3Δ

2

∫︁ 𝑡

𝑡𝑚

E
[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2 |ℱ𝑚

]︁
𝑑𝑠 +

5

2

∫︁ 𝑡

𝑡𝑚

E
[︁
‖𝜒𝑖 (X(𝑠); 𝜎)‖2

⃒⃒⃒
ℱ𝑚

]︁
𝑑𝑠.

Due to Lemma 4.4,
∫︀ 𝑡

𝑡𝑚
E(𝑍𝑖

𝑡𝑚
· 𝜒𝑖(X(𝑠); 𝑘)|ℱ𝑚)𝑑𝑠 = 0. Regarding the term

∫︁ 𝑡

𝑡𝑚

E

⎡⎣ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒
𝑍𝑗

𝑠

⃒⃒2 ⃒⃒⃒⃒ℱ𝑚

⎤⎦ 𝑑𝑠
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we note that the batch 𝒞(𝑚) is not independent of |𝑍𝑗
𝑡 |. To treat this, [20,21] considered the difference |𝑍𝑗

𝑡 |−|𝑍
𝑗
𝑡𝑚
|.

Here, we make use of the symmetry. By Lemma 4.7, taking expectation on both sides, one has

E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2]︁ ≤ E
[︁⃒⃒

𝑍𝑖
𝑡𝑚

⃒⃒2]︁
+ 𝐶

∫︁ 𝑡

𝑡𝑚

E
[︁⃒⃒

𝑍𝑖
𝑠

⃒⃒2]︁
𝑑𝑠 + 𝐶∆3 +

3∆
2𝑃

∫︁ 𝑡

𝑡𝑚

E[Λ𝑖 (X(𝑠); 𝑘)]𝑑𝑠 +
5

2𝑃

∫︁ 𝑡

𝑡𝑚

E[Λ𝑖 (X(𝑠); 𝜎)]𝑑𝑠.

Here, note that X(𝑡) is independent of the random batches at 𝑡𝑚 so that

E
[︁
E
[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2 |ℱ𝑚

]︁]︁
= E

[︁
|𝜒𝑖 (X(𝑠); 𝑘)|2

]︁
≤ 1

𝑃
E[Λ𝑖 (X(𝑠); 𝑘)].

Finally, by iteration, one has

E
[︁⃒⃒

𝑍𝑖
𝑡

⃒⃒2]︁ ≤ 𝐶

∫︁ 𝑡

0

E
[︁⃒⃒

𝑍𝑖
𝑠

⃒⃒2]︁
𝑑𝑠 + 𝐶(𝑚 + 1)∆3 +

3∆
2𝑃

∫︁ 𝑡

0

E[Λ𝑖 (X(𝑠); 𝑘)]𝑑𝑠 +
5

2𝑃

∫︁ 𝑡

0

E[Λ𝑖 (X(𝑠); 𝜎)]𝑑𝑠.

Applying Grönwall’s inequality (Thm. 1 in [12]) yields the result as (𝑚 + 1)∆3 ≤ 𝑇∆2. �

4.3. The nonlinear case

In this subsection, we consider the analysis of the random batch approximation (4.8) for the nonlinear
dependence case.

We will establish the approximation error estimate with the following assumption.

Assumption 4.9. 𝑓 is one-sided Lipschitz. 𝐴(·) : R𝑟 → R𝑑, 𝑘 : R𝑑 × R𝑑 → R𝑟 and 𝜎 : R𝑑 → R𝑑×𝑚′ are all
Lipschitz continuous and ∇2𝐴 is bounded.

Following similar argument as Proposition 4.3, one can show that

Proposition 4.10. Let Assumption 4.9 hold and 𝜇0 ∈ 𝒫𝑞 with 𝑞 ≥ 2. The process {𝑋𝑖
𝑡} satisfies that

sup
0≤𝑡≤𝑇

E[
⃒⃒
𝑋𝑖

𝑡

⃒⃒𝑞
] = sup

0≤𝑡≤𝑇
E[
⃒⃒
𝑋1

𝑡

⃒⃒𝑞
] ≤ 𝐶𝑞,𝑇 , ∀𝑖. (4.18)

For the process �̃�𝑖
𝑡 , conditioning on the sequence of random batches, one has

sup
0≤𝑡≤𝑇

max
1≤𝑗≤𝑁

E[|�̃�𝑗
𝑡 |𝑞|ℱ ] ≤ 𝐶𝑞,𝑇 , (4.19)

where 𝐶𝑞,𝑇 is independent of 𝑁 and the sequence of batches.

The proof is essentially the same and we omit. Moreover, the symmetry Lemma 4.7 also holds for this case.
Below, let us focus on the error process 𝑍𝑖

𝑡 = �̃�𝑖
𝑡 −𝑋𝑖

𝑡 . We find that

𝑑𝑍𝑖
𝑡 = (𝑓(�̃�𝑖

𝑡)− 𝑓(𝑋𝑖
𝑡)) 𝑑𝑡 +

⎛⎝𝐴

(︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑘(�̃�𝑖
𝑡 , �̃�

𝑗
𝑡 )
)︂
−𝐴

(︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )
)︂⎞⎠ 𝑑𝑡

+

⎛⎝𝐴

(︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )
)︂
−𝐴

(︂
1

𝑁 − 1

∑︁
𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 )
)︂⎞⎠ 𝑑𝑡 + (𝜎(�̃�𝑖

𝑡)− 𝜎(𝑋𝑖
𝑡)) 𝑑𝑊 𝑖

𝑡 .

Denote 𝐹𝑖(X(𝑡)) := 1
𝑁−1

∑︀
𝑗 ̸=𝑖

𝑘(𝑋𝑖
𝑡 , 𝑋

𝑗
𝑡 ). The main term that brings the difference is thus

𝐴
(︁
𝜒𝑖(X(𝑡); 𝑘) + 𝐹𝑖(X(𝑡))

)︁
−𝐴(𝐹𝑖(X(𝑡))) = 𝜒𝑖(X(𝑡); 𝑘) · ∇𝐴(𝐹𝑖(X(𝑡)))

+
1
2
𝜒𝑖(X(𝑡); 𝑘)⊗ 𝜒𝑖(X(𝑡); 𝑘) : ∇2𝐴(𝐹𝑖(X(𝑡)) + 𝜉𝜒𝑖).
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where 𝜉 is a constant in (0, 1).
As one may expect, the linear term is fine and can be estimated similarly as in [20, 21]. The main difference

is the quadratic term. In fact, this term will be of the order of the variance so that it contributes a term with
order 1/𝑃 2 to the mean square error (thus 𝑂(1/𝑃 ) to the error).

We first consider the fourth moments of the random deviation:

Lemma 4.11. There is a universal constant 𝐶 such that for 𝑁 ≥ 5 that

E[|𝜒𝑖(x¯
; 𝑘)|4] ≤ 𝐶

𝑄(𝑥; 𝑘)
𝑃 2

,

where
𝑄(𝑥; 𝑘) = [𝑀1(𝑥; 𝑘)4 + 𝑀2(𝑥; 𝑘)𝑀1(𝑥; 𝑘)2 + 𝑀2(𝑥; 𝑘)2 + 𝑀3(𝑥; 𝑘)𝑀1(𝑥; 𝑘) + 𝑀4(𝑥; 𝑘)],

𝑀𝑞(𝑥; 𝑘) =
1
𝑁

∑︁
𝑗

|𝑘(𝑥𝑖, 𝑥𝑗)|𝑞, 𝑞 = 1, 2, 3, 4.

The proof of this lemma is tedious, and we provide its sketch in Appendix B.

Theorem 4.12. Consider the nonlinear model (4.6) and recall 𝑍𝑖
𝑡 = �̃�𝑖

𝑡 −𝑋𝑖
𝑡 . Let Assumption 4.9 hold. Then,

sup
0≤𝑡≤𝑇

max
𝑖

E[|𝑍𝑖
𝑡 |2] ≤ 𝐶

(︂
∆2 +

∆
𝑃

Λ(𝑘)
)︂

+ 𝐶(‖∇2𝐴‖)𝑄(𝑘)
𝑃 2

, (4.20)

where 𝑄(𝑘) = sup
0≤𝑡≤𝑇

E[𝑄(X(𝑡); 𝑘)] < +∞.

Proof. By Itô’s formula, one has for 𝑡 ∈ [𝑡𝑚, 𝑡𝑚+1) that

𝑑

𝑑𝑡
E
[︀
|𝑍𝑖

𝑡 |2|ℱ𝑚

]︀
≤

{︃
2E
[︁
𝑍𝑖

𝑡 ·
(︁
𝑓(�̃�𝑖

𝑡)− 𝑓(𝑋𝑖
𝑡)
)︁ ⃒⃒⃒
ℱ𝑚

]︁
+ 2 ‖∇𝐴‖∞ E

[︂
|𝑍𝑖

𝑡 |
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

⃒⃒⃒
𝑘
(︁
�̃�𝑖

𝑡 , �̃�
𝑗
𝑡

)︁
− 𝑘

(︁
𝑋𝑖

𝑡 , 𝑋
𝑗
𝑡

)︁⃒⃒⃒ ⃒⃒⃒
ℱ𝑚

]︂}︃

+

{︃
2E
[︁
𝜒𝑖 (X(𝑡); 𝑘) · ∇𝐴 (𝐹𝑖(X(𝑡))) · 𝑍𝑖

𝑡 |ℱ𝑚

]︁
+ 2E

(︀
𝜒𝑖 ⊗ 𝜒𝑖 : ∇2𝐴 (𝐹𝑖(X(𝑡)) + 𝜉𝜒𝑖) · 𝑍𝑖

𝑡 |ℱ𝑚

)︀}︃

+
{︂

E
[︂

tr
(︁(︁

𝜎(�̃�𝑖
𝑡)− 𝜎(𝑋𝑖

𝑡)
)︁(︁

𝜎(�̃�𝑖
𝑡)− 𝜎(𝑋𝑖

𝑡)
)︁𝑇)︁ ⃒⃒⃒

ℱ𝑚

]︂}︂
=: 𝑆1 + 𝑆2 + 𝑆3,

By Assumption 4.9, 𝑆1 + 𝑆3 can be simply controlled by

E[|𝑍𝑖
𝑡 |2|ℱ𝑚] + E

[︂
1

𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

|𝑍𝑗
𝑡 |2|ℱ𝑚

]︂

Consider the 𝑆2 term. The second term in 𝑆2 will be bounded simply by

E[|𝑍𝑖
𝑡 |2|ℱ𝑚] + E[|𝜒𝑖(X(𝑡))|4|ℱ𝑚].

For the first term in 𝑆2, noticing that

E
[︁
𝜒𝑖(X(𝑡); 𝑘) · ∇𝐴(𝐹𝑖(X(𝑡))) · 𝑍𝑖

𝑡𝑚

]︁
= 0,
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one may again break 𝑍𝑖
𝑡 = 𝑍𝑖

𝑡𝑚
+ (𝑍𝑖

𝑡 − 𝑍𝑖
𝑡𝑚

). The treatment for 𝑍𝑖
𝑡 − 𝑍𝑖

𝑡𝑚
is tedious but is similar to the proof

of Theorem 4.5. We omit the details. Eventually, one has

E
[︀
|𝑍𝑖

𝑡 |2|ℱ𝑚

]︀
≤ E

[︀
|𝑍𝑖

𝑡𝑚
|2|ℱ𝑚

]︀
+ 𝐶

∫︁ 𝑡

𝑡𝑚

E
[︀
|𝑍𝑖

𝑠|2|ℱ𝑚

]︀
𝑑𝑠 + 𝐶

∫︁ 𝑡

𝑡𝑚

E

⎡⎣ 1
𝑃 − 1

∑︁
𝑗∈𝒞𝑞𝑚(𝑖),𝑗 ̸=𝑖

|𝑍𝑗
𝑠 |2|ℱ𝑚

⎤⎦ 𝑑𝑠

+
∫︁ 𝑡

𝑡𝑚

𝜒𝑖 (X(𝑠); 𝑘) · ∇𝐴 (𝐹𝑖 (X(𝑠))) · 𝑍𝑖
𝑡𝑚

𝑑𝑠 + 𝐶∆3

+ 𝐶
∆
2

∫︁ 𝑡

𝑡𝑚

E
[︀
|𝜒𝑖 (X(𝑠); 𝑘) |2|ℱ𝑚

]︀
𝑑𝑠 + 𝐶(1 + ∆)

∫︁ 𝑡

𝑡𝑚

E
[︁
|𝜒𝑖 (X(𝑠); 𝜎)|4

⃒⃒⃒
ℱ𝑚

]︁
𝑑𝑠.

Taking expectation, using Lemma 4.4, the symmetry (Lem. 4.7 also holds for this case and the proof is the
same) and Lemma 4.11, one has

E[|𝑍𝑖
𝑡 |2] ≤ E[|𝑍𝑖

𝑡𝑚
|2] + 𝐶

∫︁ 𝑡

𝑡𝑚

E[|𝑍𝑖
𝑠|2]𝑑𝑠 + 𝐶∆3 + 𝐶

∫︁ 𝑡

𝑡𝑚

Λ(𝑘)∆
𝑃

𝑑𝑠 + 𝐶

∫︁ 𝑡

𝑡𝑚

(︀⃦⃦
∇2𝐴

⃦⃦)︀ 𝑄(𝑘)
𝑃 2

𝑑𝑠.

Then, similar as in the proof of Theorem 4.5, one can do iteration first and apply the Grönwall’s inequality to
obtain the final estimate. �

Clearly, this error introduced by the nonlinearity is smaller compared to the one introduced by the random
batch approximation in the noise term.

4.4. Discussion on more general cases

In this section, we discuss more general cases. In fact, the distribution dependence in the previous section
does not include the cases when several statistical quantities are involved in the coefficients. For example, if the
coefficient depends on the variance, then both the first and second moments will be involved. These cases could
be given by

𝑎(𝑥, 𝜇) = 𝑓(𝑥) + 𝐴

(︂∫︁
𝑘1(𝑥, 𝑦)𝜇(𝑑𝑦), · · · ,

∫︁
𝑘𝑝(𝑥, 𝑦)𝜇(𝑑𝑦)

)︂
and

𝑏(𝑥, 𝜇) = 𝐵

(︂∫︁
𝜎1(𝑥, 𝑦)𝜇(𝑑𝑦), · · · ,

∫︁
𝜎𝑞(𝑥, 𝑦)𝜇(𝑑𝑦)

)︂
.

Here, 𝐴, 𝐵, 𝑘𝑖, 𝜎𝑗 are all assumed to be Lipschitz and have bounded derivatives. 𝑓 is allowed to be one-sided
Lipschitz.

The random approximation for such systems can be similarly performed. There is no big difference for the
error estimate, while the details could be tedious. One can find that the strong error is again like

E[|𝑍𝑖
𝑡 |2] ≤ 𝐶(𝜎)

𝑃
+

𝐶(𝑘)
𝑃 2

+
𝐶∆
𝑃

.

In other words, if there is law dependence in the coefficient of the noise, the mean square error would be like
𝒪(1/𝑃 ). The mean error arising from the nonlinearity in the drift is like 𝒪(1/𝑃 2). These do not vanish as the
step size tends to zero. However, the estimates are independent of 𝑁 so they could also save time if the required
𝑁 is large. In the special case when the diffusion coefficient 𝑏 is independent of 𝜇 and the drift linearly depends
on 𝜇, the RBM approximation has an error that vanishes in the ∆ → 0 limit, which is exactly the one studied
in [20].
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5. Numerical example

In this section, we perform some numerical experiments to verify the theoretical analysis above. In many
applications of McKean–Vlasov SDEs, the dependence on the distribution in the coefficients are simply through
the expected value of some kernel with respect to the law, which is a simple example of the cooperative
interaction. This might be due to the fact that many systems have a tendency to relax toward the center of
gravity of the ensemble. See for example the model in [8]. Due to this reason, we will mainly consider examples
of this form in this section.

Example 5.1. For linear cases, we consider the following one-dimensional SDE

𝑑𝑋(𝑡) =
(︂

𝜆1𝑋(𝑡) (𝜆2 − |𝑋(𝑡)|) +
∫︁

R
(𝑋(𝑡)− 𝑦) 𝜇(𝑑𝑦)

)︂
𝑑𝑡 +

(︂
𝜆3 |𝑋(𝑡)|3/2 +

∫︁
R

(𝑋(𝑡)− 𝑦) 𝜇(𝑑𝑦)
)︂

𝑑𝑊 (𝑡) (5.1)

where 𝜆1, 𝜆2 and 𝜆3 are positive constants.

The corresponding system of interacting particles is given by

𝑑𝑋𝑖,𝑁
𝑡 =

⎛⎝𝜆1𝑋
𝑖,𝑁
𝑡

(︁
𝜆2 − |𝑋𝑖,𝑁

𝑡 |
)︁

+
1

𝑁 − 1

𝑁∑︁
𝑗 ̸=𝑖

(𝑋𝑖,𝑁
𝑡 −𝑋𝑗,𝑁

𝑡 )

⎞⎠ 𝑑𝑡+
(︂

𝜆3|𝑋𝑖,𝑁
𝑡 |3/2+

1
𝑁 − 1

𝑁∑︁
𝑗 ̸=𝑖

(𝑋𝑖,𝑁
𝑡 −𝑋𝑗,𝑁

𝑡 )
)︂

𝑑𝑊 𝑖
𝑡 .

(5.2)
In the subsequent analysis, we fix the following parameters: 𝑋𝑖

0 = 1, 𝜆1 = 2.5, 𝜆2 = 1, 𝜆3 = 1, for all 𝑖 ∈
{1, . . . , 𝑁}. We select a particle number of 𝑁 = 212 and generate a total of 1000 sample paths (i.e., conducting
the simulation 1000 times) to evaluate the mean square error at 𝑇 = 1. This evaluation is performed using

four different step sizes: ∆ = 2𝑝 for −10 ≤ 𝑝 ≤ −7. The mean square error, denoted by
√︁

E[|𝑋𝑖,𝑁
𝑡 −𝑋𝑖,Δ

𝑡 |2],
is calculated by approximating the expectation via Monte Carlo simulations, utilizing all the particles for all
the sample paths. Additionally, we calculate 95% confidence intervals for each figure. We utilize the bootstrap
method to estimate these confidence intervals for a given dataset. For each error plot, the process involve
iterating over datasets generated by the errors of the numerical scheme with different step sizes. Each dataset
is resampled 100 times to create new samples. Subsequently, the mean of each resampled dataset is computed,
and the 95% confidence interval is determined based on these resampled means. These confidence intervals will
be visually represented as error bars, positioned at the corresponding mean error values.

Figure 1 displays the resulting log-log error plot along with a reference line for slope one-half. The slopes of
the two curves seem to line up nicely, which confirms the theoretical result in Theorem 3.4 when the truncated
EM method applied to the interacting particle system corresponding to (5.1) directly. Here we choose the tamed
Euler scheme with time step size ∆ = 2−12 and the same number of particles 𝑁 = 212 for producing a reference
solution.

To validate Theorem 4.5, we also employ truncated type methods together with the random batch technique
to do a simulation. From Corollary 4.6, we note that the order of convergence of our approach to approximating
the interacting particle system related to the McKean–Vlasov SDE (5.1) is at least 𝛽/2.

Now we generate the reference solution using the truncated Euler method (3.4) with a step size of ∆ = 2−12.
Subsequently, with three different values of 𝛽 chosen, we obtain three distinct batch sizes denoted by 𝑃 = 1/∆𝛽 .
The numerical errors associated with these batch sizes are plotted in Figure 2. Hence, our findings align with
the expected strong order of convergence stated in Corollary 4.6.

Considering that the main advantage of RBM is to save the computational cost, we compare the computation
time of the truncated Euler method using a random batch technique and the counterpart without using the
random batch technique. In Table 1, we denote the former by the notation ‘TEMwRBM’, and the notation
‘TEM’ represents the latter. Let us consider SDE (5.1) where there is a dependence in the diffusion coefficient.
It is easy to find that the execution time significantly enlarges when increasing the number of particles. Here we
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Figure 1. The convergence order of the truncated EM method applied to the interacting
particle system related to (5.1) without using the random batch technique. The error bars
indicate the 95% confidence interval.

Figure 2. Convergence order of truncated EM method applied to the interacting particle
system related to (5.1) with random batch technique for 𝛽 = 1, 1/2, 1/3. The error bars indicate
the 95% confidence interval.

fix the time step size ∆ = 2−7. The ‘TEM’ and the ‘TEMwRBM’ run 1000 sample paths to obtain the average
time consumption respectively.

Upon implementing the random batch technique, we can approximate the error, as stated in (4.16), using√︀
1/𝑃 ∼ 𝜖 for a given tolerance 𝜖. In this scenario, 𝑃 = 𝑂(1/𝜖2) remains fixed, resulting in a cost per iteration

of 𝑂(𝑁𝑃 ). However, when 𝑃 = 1/∆𝛽 is also required, the cost per iteration increases as the value of 𝛽 grows.
On the other hand, the computational cost presented in Table 1 corresponds to a fixed terminal time. Notably,
adjusting 𝛽 is equivalent to modifying ∆ such that ∆ = 𝑂(𝜖2/𝛽). Increasing the value of 𝛽 results in a larger step
size, consequently reducing the number of iterations. Thus, an optimal value of 𝛽 exists in terms of the overall
computational cost. However, we have yet to fully comprehend this phenomenon, and further investigation
would be both intriguing and worthwhile.

Example 5.2. When there is no interaction in the diffusion part, (5.1) degenerates to

𝑑𝑋(𝑡) =
(︂

𝜆1𝑋(𝑡) (𝜆2 − |𝑋(𝑡)|) +
∫︁

R
(𝑋(𝑡)− 𝑦) 𝜇(𝑑𝑦)

)︂
𝑑𝑡 + 𝜆3 |𝑋(𝑡)|3/2

𝑑𝑊 (𝑡). (5.3)
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Table 1. Average execution time.

N TEM
TEMwRBM

𝑃 = 1/Δ 𝑃 = 1/
√

Δ 𝑃 = 1/ 3
√

Δ

212 4.8672s 1.3771s 0.9657s 0.9559s

214 84.1268s 5.6311s 3.9629s 4.1012s

216 1143.8016s 21.7272s 14.9615s 15.4843s

Figure 3. The convergence order of truncated Milstein method with a random batch size
𝑃 = 1/∆𝛽 with 𝛽 = 1, 1/2, 1/3 and 𝑃 = 2 applied to the interactive particle system (5.4). The
error bars indicate the 95% confidence interval.

The corresponding system of interacting particles is given by

𝑑𝑋𝑖,𝑁
𝑡 =

⎛⎝𝜆1𝑋
𝑖,𝑁
𝑡

(︁
𝜆2 − |𝑋𝑖,𝑁

𝑡 |
)︁

+
1

𝑁 − 1

𝑁∑︁
𝑗 ̸=𝑖

(𝑋𝑖,𝑁
𝑡 −𝑋𝑗,𝑁

𝑡 )

⎞⎠ 𝑑𝑡 + 𝜆3|𝑋𝑖,𝑁
𝑡 |3/2𝑑𝑊 𝑖

𝑡 . (5.4)

In what follows, we set parameters 𝑋𝑖
0 = 1, 𝜆1 = 2.5, 𝜆2 = 1, 𝜆3 = 1, for all 𝑖 ∈ {1, . . . , 𝑁}. We choose particle

number 𝑁 = 212 and obtain 1000 sample paths (i.e., repeat the simulation for 1000 times) to calculate the
mean square error at 𝑇 = 1 with four different step sizes: ∆ = 2𝑝 for −10 ≤ 𝑝 ≤ −7.

The conclusion (4.16) implies that we can obtain the first-order convergence when approximating the inter-
acting particle system associated to (5.3) by a random batch technique with 𝛽 = 1 (the batch size 𝑃 = 1/∆).
At the same time strong convergence order of a numerical method should be one. Therefore we employ the
truncated Milstein scheme [14] to verify the first result of the Corollary 4.6. The numerical results illustrated
in Figure 3 confirm our theoretical result, where a dashed red line with a slope of one is provided for reference.
Moreover, we conducted a comparison of the results with varying batch sizes. When considering 𝑃 = 1/∆𝛽 with
𝛽 = 1, 1/2, 1/3, as well as 𝑃 = 2, as shown in Figure 3 and agrees with the theory in Corollary 4.6.

Example 5.3. For nonlinear cases, we consider the following SDE

𝑑𝑋(𝑡) =
(︂

𝜆1𝑋(𝑡) (𝜆2 − |𝑋(𝑡)|) + sin
(︂∫︁

R
(𝑋(𝑡)− 𝑦) 𝜇(𝑑𝑦)

)︂)︂
𝑑𝑡 + 𝜆3 |𝑋(𝑡)|3/2

𝑑𝑊 (𝑡)

where 𝜆1, 𝜆2 and 𝜆3 are positive constants.
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Figure 4. The convergence order of the truncated Milstein method and random batch tech-
nique with 𝛽 = 1, 1/2, 1/3 in nonlinear cases. The error bars indicate the 95% confidence
interval.

The corresponding system of interacting particles is given by

𝑑𝑋𝑖,𝑁
𝑡 =

⎛⎝𝜆1𝑋
𝑖,𝑁
𝑡

(︁
𝜆2 − |𝑋𝑖,𝑁

𝑡 |
)︁

+ sin

⎛⎝ 1
𝑁 − 1

𝑁∑︁
𝑗 ̸=𝑖

(𝑋𝑖,𝑁
𝑡 −𝑋𝑗,𝑁

𝑡 )

⎞⎠⎞⎠ 𝑑𝑡 + 𝜆3|𝑋𝑖,𝑁
𝑡 |3/2𝑑𝑊 𝑖

𝑡 .

We set parameters 𝑋𝑖
0 = 1, 𝜆1 = 2.5, 𝜆2 = 1, 𝜆3 = 1, for all 𝑖 ∈ {1, . . . , 𝑁}, and choose particle number

𝑁 = 212 and obtain 1000 sample paths to calculate the mean square error at 𝑇 = 1 with four different step
sizes: ∆ = 2𝑝 for −10 ≤ 𝑝 ≤ −7. Then we examine three distinct batch sizes represented by 𝑃 = 1/∆𝛽 . The
numerical errors are illustrated in Figure 4, where three dashed red lines with slopes of 1/2, 1/4, and 1/6 are
provided as reference. These results align with the expected strong order of convergence stated in Theorem 4.12.

Example 5.4. In this example, we consider a three-dimensional McKean–Vlasov SDE model, which is employed
to describe neuron activity [1, 10], given as follows.

𝑑𝑋(𝑡) =
∫︁ 𝑡

0

𝑏(𝑋(𝑠), 𝜇)𝑑𝑠 +
∫︁ 𝑡

0

𝜎(𝑋(𝑠), 𝜇)𝑑𝑊 (𝑠) (5.5)

where

𝑏(𝑥, 𝜇) :=

⎛⎝𝑥1 − (𝑥1)3 /3− 𝑥2 + 𝐼 −
∫︀

R3 𝐽 (𝑥1 − 𝑉𝑟𝑒𝑣) 𝑧3 d𝜇(𝑧)
𝑐 (𝑥1 + 𝑎− 𝑏𝑥2)

𝑎𝑟
𝑇max(1−𝑥3)

1+exp(−𝜆(𝑥1−𝑉𝑇 )) − 𝑎𝑑𝑥3

⎞⎠ ,

𝜎(𝑥, 𝜇) :=

⎛⎝𝜎ext 0 −
∫︀

R3 𝜎𝐽 (𝑥1 − 𝑉rev ) 𝑧3 d𝜇(𝑧)
0 0 0
0 1 0

⎞⎠
for 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑧 = (𝑧1, 𝑧2, 𝑧3). This is a stochastic model describing the firing dynamics of a network of
spiking neurons. The integral terms in the functions 𝑏 and 𝜎 capture the influence of the network’s collective
behavior, commonly referred to as the mean-field limit. This model is important for understanding how neurons
interact and communicate with each other in the brain. The stochastic nature of the model accounts for the
inherent randomness observed in the behavior of individual neurons, as discussed in [1].
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Figure 5. Convergence order of truncated EM method applied to the interacting particle
system associated to (5.5) with random batch technique for 𝛽 = 1, 1/2, 1/3. The error bars
indicate the 95% confidence interval.

In our simulation, the initial value is chosen as

𝑋0 ∼ N

⎛⎝⎛⎝ 𝑉0

𝑤0

𝑦0

⎞⎠ ,

⎛⎝𝜎𝑉0 0 0
0 𝜎𝑤0 0
0 0 𝜎𝑦0

⎞⎠⎞⎠
and the parameters are set as follows

𝑉0 = 0 𝜎𝑉0 = 0.4 𝑎 = 0.7 𝑏 = 0.8 𝑐 = 0.08 𝐼 = 0.5 𝜎ext = 0.5
𝑤0 = 0.5 𝜎𝑤0 = 0.4 𝑉rev = 1 𝑎𝑟 = 1 𝑎𝑑 = 1 𝑇max = 1 𝜆 = 0.2
𝑦0 = 0.3 𝜎𝑦0 = 0.05 𝐽 = 1 𝜎𝐽 = 0.2 𝑉𝑇 = 2.

We choose particle number 𝑁 = 28 and obtain 1000 sample paths to calculate the mean square error at 𝑇 = 1
with four different step sizes: ∆ = 2𝑝 for −8 ≤ 𝑝 ≤ −5. Here we choose the tamed Euler scheme with time step
size ∆ = 2−13 and the same number of particles 𝑁 = 28 for producing a reference solution.

In Figure 5, we examine three distinct batch sizes represented by 𝑃 = 1/∆𝛽 , where three dashed red lines
with slopes of 1/2, 1/4, and 1/6 are provided as reference. The numerical results roughly agree with the theory,
and have slightly larger convergence rate compared to theory in the range observed. The error bars in the
aforementioned figures indicate that the variance of the error data calculated by our method is small.

Appendix A. Proof of Proposition 2.4

Proof. Here, we only illustrate the moments control for 𝑋𝑖
𝑡 . The one for �̄�𝑖

𝑡 is similar and simpler.
For (2.5), using Itô’s formula,

E[|𝑋𝑖
𝑡 |𝑞] ≤ E[|𝑋𝑖

0|𝑞] + 𝑞E
∫︁ 𝑡

0

|𝑋𝑖
𝑠|𝑞−2⟨𝑋𝑖

𝑠, 𝑎
(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀
⟩𝑑𝑠 +

𝑞(𝑞 − 1)
2

E
∫︁ 𝑡

0

|𝑋𝑖
𝑠|𝑞−2‖𝑏

(︀
𝑋𝑖

𝑠, 𝜇
𝑋
𝑠

)︀
‖2𝑑𝑠.

By (2.3), we get

E[|𝑋𝑖
𝑡 |𝑞] ≤ E[|𝑋𝑖

0|𝑞] + 𝑞𝐿E
∫︁ 𝑡

0

|𝑋𝑖
𝑠|𝑞−2[(1 + |𝑋𝑖

𝑠|)2 +𝒲2
2

(︀
𝜇𝑋

𝑠 , 𝛿0

)︀
]𝑑𝑠.
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Apply the Young’s inequality and Lemma 2.1,

E[|𝑋𝑖
𝑡 |𝑞] ≤ 𝐶(1 + E[|𝑋𝑖

0|𝑞]) + 𝐶

∫︁ 𝑡

0

E[|𝑋𝑖
𝑠|𝑞]𝑑𝑠 + 𝐶

∫︁ 𝑡

0

E

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

|𝑋𝑗
𝑠 |2
⎞⎠𝑞/2

𝑑𝑠.

For the last term, we apply the Minkowski inequality and the symmetry consecutively,

E

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

⃒⃒
𝑋𝑗

𝑠

⃒⃒2⎞⎠𝑞/2

≤

⎛⎝ 1
𝑁

𝑁∑︁
𝑗=1

‖
⃒⃒
𝑋𝑗

𝑠

⃒⃒2 ‖𝐿𝑞/2

⎞⎠𝑞/2

= E[
⃒⃒
𝑋𝑖

𝑠

⃒⃒𝑞
].

Hence,

E[|𝑋𝑖
𝑡 |𝑞] ≤ 𝐶

∫︁ 𝑡

0

E[|𝑋𝑖
𝑠|𝑞]𝑑𝑠 + 𝐶(1 + E[|𝑋𝑖

0|𝑞]),

and applying the Grönwall’s inequality finishes the estimate. �

Appendix B. Proof of the auxilliary Lemma 4.11

Recall that 𝑞(𝑖) means the index of the batch that particle 𝑖 falls into. Introduce the indicator function

𝐼𝑖𝑗 =

{︃
1 𝑞(𝑖) = 𝑞(𝑗),
0 otherwise.

Then, we have the simple lemma:

Lemma B.1. Let 𝑞 < 𝑁 . Let 𝑖, 𝑗𝑗′ , 1 ≤ 𝑗′ ≤ 𝑞 be all distinct. Then,

E
𝑞∏︁

𝑗′=1

𝐼𝑖𝑗𝑗′ =
𝑞∏︁

𝑗′=1

𝑃 − 𝑗′

𝑁 − 𝑗′
·

Proof. If 𝑃 ≤ 𝑞, clearly both sides are zero so the inequality holds. Now, assume 𝑃 > 𝑞.

The event for which
𝑞∏︀

𝑗′=1

𝐼𝑖𝑗𝑗′ = 1 is when all the particles are in the same batch. The proof would be similar

to the argument in Lemma 3.1 of [20]. There are

𝑀(𝑛) :=
(𝑛𝑃 )!

(𝑃 !)𝑛𝑛!

ways to divide 𝑁 = 𝑛𝑃 particles into 𝑛 batches, without consideration of the order of batches. Then, the
probability that 𝑖, 𝑗1, · · · , 𝑗𝑞 are in the same batch is given by(︀

𝑛𝑃−𝑞−1
𝑃−𝑞−1

)︀
𝑀(𝑛− 1)

𝑀(𝑛)
=

𝑞∏︁
𝑗′=1

𝑃 − 𝑗′

𝑁 − 𝑗′
·

�

Proof of Lemma 4.11. Clearly,

𝜒𝑖(x¯
; 𝑘) =

𝑁∑︁
𝑗=1,𝑗 ̸=𝑖

(︂
1

𝑃 − 1
𝐼𝑖𝑗 −

1
𝑁 − 1

)︂
𝑘(𝑥𝑖, 𝑥𝑗).
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It follows that

|𝜒𝑖(x¯
; 𝑘)|4 =

∑︁
𝑗1𝑗2𝑗3𝑗4 ,̸=𝑖

𝜁(𝑗1, 𝑗2, 𝑗3, 𝑗4)𝑘(𝑥𝑖, 𝑥𝑗1) · 𝑘(𝑥𝑖, 𝑥𝑗2)𝑘(𝑥𝑖, 𝑥𝑗3) · 𝑘(𝑥𝑖, 𝑥𝑗4).

Here, for matrices, 𝑘(𝑥𝑖, 𝑥𝑗1) · 𝑘(𝑥𝑖, 𝑥𝑗2) means tr(𝑘(𝑥𝑖, 𝑥𝑗1)𝑘(𝑥𝑖, 𝑥𝑗2)𝑇 ). The random variable 𝜁 is given by

𝜁(𝑗1, 𝑗2, 𝑗3, 𝑗4) =
1

(𝑃 − 1)4
∏︁
𝑗′

𝐼𝑖,𝑗𝑗′ −
1

(𝑃 − 1)3(𝑁 − 1)
(𝐼𝑖𝑗1𝐼𝑖𝑗2𝐼𝑖𝑗3 + 𝐼𝑖𝑗1𝐼𝑖𝑗2𝐼𝑖𝑗4 + 𝐼𝑖𝑗1𝐼𝑖𝑗3𝐼𝑖𝑗4 + 𝐼𝑖𝑗2𝐼𝑖𝑗3𝐼𝑖𝑗4)

+
1

(𝑃 − 1)2(𝑁 − 1)2
(𝐼𝑖𝑗1𝐼𝑖𝑗2 + 𝐼𝑖𝑗1𝐼𝑖𝑗3 + 𝐼𝑖𝑗1𝐼𝑖𝑗4 + 𝐼𝑖𝑗2𝐼𝑖𝑗3 + 𝐼𝑖𝑗2𝐼𝑖𝑗4 + 𝐼𝑖𝑗3𝐼𝑖𝑗4)

− 1
(𝑃 − 1)(𝑁 − 1)3

(𝐼𝑖𝑗1 + 𝐼𝑖𝑗2 + 𝐼𝑖𝑗3 + 𝐼𝑖𝑗4) +
1

(𝑁 − 1)4
·

Here, we consider several cases.

Case 1. 𝑗1, 𝑗2, 𝑗3, 𝑗4 are all distinct. There are (𝑁 − 1)(𝑁 − 2)(𝑁 − 3)(𝑁 − 4) such terms. By Lemma B.1, one
has

E𝜁(𝑗1, 𝑗2, 𝑗3, 𝑗4) =
(𝑃 − 2)(𝑃 − 3)(𝑃 − 4)
(𝑃 − 1)3

∏︀4
𝑗′=1(𝑁 − 𝑗′)

− 4(𝑃 − 2)(𝑃 − 3)
(𝑃 − 1)2(𝑁 − 1)2(𝑁 − 2)(𝑁 − 3)

+
6(𝑃 − 2)

(𝑃 − 1)(𝑁 − 1)3(𝑁 − 2)
− 3

(𝑁 − 1)4
·

Adding these up, one has 𝑁𝑢𝑚/[(𝑃 − 1)3(𝑁 − 1)4(𝑁 − 2)(𝑁 − 3)(𝑁 − 4)]. We need to check the
coefficients of 𝑃 3𝑁3, 𝑃 2𝑁3 and 𝑃 3𝑁2 in the numerator 𝑁𝑢𝑚. After some calculation, one finds that
these are all zero. Hence,

E𝜁(𝑗1, 𝑗2, 𝑗3, 𝑗4) ≤ 𝐶
𝑃𝑁3 + 𝑃 2𝑁2 + 𝑃 3𝑁

𝑃 3𝑁7
≤ 𝐶

1
𝑃 2𝑁4

·

It is then easy to see that these terms are controlled by 𝐶 1
𝑃 2 𝑀1(𝑥; 𝑘)4.

Case 2. There are two indices that are the same. There are 6(𝑁 − 1)(𝑁 − 2)(𝑁 − 3) such terms.

E𝜁(𝑗1, 𝑗2, 𝑗3, 𝑗4) =
1

(𝑃 − 1)4
(𝑃 − 1)(𝑃 − 2)(𝑃 − 3)
(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

− 1
(𝑃 − 1)3(𝑁 − 1)

(︂
2

(𝑃 − 1)(𝑃 − 2)
(𝑁 − 1)(𝑁 − 2)

+ 2
(𝑃 − 1)(𝑃 − 2)(𝑃 − 3)
(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

)︂
+

1
(𝑃 − 1)2(𝑁 − 1)2

(︂
𝑃 − 1
𝑁 − 1

+ 5
(𝑃 − 1)(𝑃 − 2)
(𝑁 − 1)(𝑁 − 2)

)︂
− 3

(𝑁 − 1)4
·

Similarly, by combining terms and checking the corresponding coefficients for some big terms, one can
find that this is controlled by

𝐶
𝑃𝑁2 + 𝑃 2𝑁

𝑃 3𝑁5
+ 𝐶

𝑃 + 1
𝑃 2𝑁4

≤ 𝐶
1

𝑃 2𝑁3
·

Hence, this case is controlled by 𝐶 1
𝑃 2 𝑀2

1 𝑀2.
Case 3. Two indices are the same while the other two are the same. There are 3(𝑁 − 1)(𝑁 − 2) such terms.

E𝜁(𝑗1, 𝑗2, 𝑗3, 𝑗4) =
1

(𝑃 − 1)4
(𝑃 − 1)(𝑃 − 2)
(𝑁 − 1)(𝑁 − 2)

− 4
(𝑃 − 1)3(𝑁 − 1)

(𝑃 − 1)(𝑃 − 2)
(𝑁 − 1)(𝑁 − 2)

+ 𝑂

(︂
1

(𝑃 − 1)2(𝑁 − 1)2
+

1
(𝑃 − 1)(𝑁 − 1)3

)︂
·

This is clearly controlled by 𝐶/𝑃 2, and thus the sum of such terms is controlled by 𝑀2
2 /𝑃 2.
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Case 4. Three indices are the same. There are 4(𝑁 − 1)(𝑁 − 2) such terms.
This situation can be treated similarly as Case 3. This is controlled by 𝑀3𝑀1/𝑃 2.

Case 5. All indices are the same. There are 𝑁 − 1 such terms. This is controlled by 𝑀4/𝑃 3.
These then add up to the estimate in the lemma.

�
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