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a b s t r a c t

In this note, we prove or re-prove several important results regarding one dimen-
sional time fractional ODEs following our previous work Feng et al. [15]. Here we
use the definition of Caputo derivative proposed in Li and Liu (2017) [5,7] based on
a convolution group. In particular, we establish generalized comparison principles
consistent with the new definition of Caputo derivatives. In addition, we establish
the full asymptotic behaviors of the solutions for Dγ

c u = Aup. Lastly, we provide
a simplified proof for the strict monotonicity and stability in initial values for the
time fractional differential equations with weak assumptions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The fractional calculus in time has been used widely in physics and engineering for memory effect,
viscoelasticity, porous media etc. [1–5]. There is a huge amount of literature discussing time fractional
differential equations. For instance, one can find some results in [3,6] using the classic Caputo derivatives.
In this paper, we study the following time fractional ODE:

Dγ
c u = f(t, u), u(0) = u0, (1.1)

for γ ∈ (0, 1) and f measurable. Here Dγ
c u is the generalized Caputo derivative introduced in [7,8]. As we

will see later, this generalized definition is theoretically more convenient, since it allows us to take advantage
of the underlying group structure.

As in [7], we use the following distributions {gβ} as convolution kernels for β ∈ (−1, 0):

gβ(t) = 1
Γ (1 + β)D

(
θ(t)tβ

)
.
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Here θ(t) is the standard Heaviside step function, Γ (·) is the gamma function, and D means the distributional
derivative on R. Indeed, gβ can be defined for β ∈ R (see [7]) so that {gβ : β ∈ R} forms a convolution
group. In particular, we have

gβ1 ∗ gβ2 = gβ1+β2 . (1.2)

Here since the support of gβi
(i = 1, 2) is bounded from left, the convolution is well-defined. Now we are

able to give the generalized definition of fractional derivatives:

Definition 1.1 ([7,8]). Let 0 < γ < 1. Consider u ∈ L1
loc[0, T ). Given u0 ∈ R, we define the γ-th order

generalized Caputo derivative of u, associated with initial value u0, to be a distribution in D ′(−∞, T ) with
support in [0, T ), given by

Dγ
c u = g−γ ∗

(
(u − u0)θ(t)

)
.

If limt→0+
1
t

∫ t

0 |u(s) − u0|ds = 0, we call Dγ
c u the Caputo derivative of u.

As in [7], if the function u is absolutely continuous, the generalized definition reduces to the classical
definition. However, the generalized definition is theoretically useful because it reveals the underlying group
structure (see Proposition 1.1).

Definition 1.2. Let T > 0. A function u ∈ L1
loc[0, T ) is a weak solution to (1.1) on [0, T ) with initial value

u0, if f(t, u(t)) ∈ D ′(−∞, T ) and the equality holds in the distributional sense. We call a weak solution u a
strong solution if (i). limt→0+

1
t

∫ t

0 |u(s) − u0|ds = 0; (ii). both Dγ
c u and f(t, u(t)) are locally integrable on

[0, T ).

By the group property (1.2), we have

Proposition 1.1 ([7]). Suppose f ∈ L∞
loc([0, ∞) × R;R). Fix T > 0. Then, u(t) ∈ L1

loc[0, T ) with initial
value u0 is a strong solution of (1.1) on (0, T ) if and only if limt→0+

1
t

∫ t

0 |u(s) − u0| ds = 0 and it solves
the following integral equation

u(t) = u0 + 1
Γ (γ)

∫ t

0
(t − s)γ−1f(s, u(s))ds, ∀t ∈ (0, T ). (1.3)

Using this integral formulation, the following has been shown in [7].

Proposition 1.2. Suppose f : [0, ∞) × (α, β) → R is continuous and locally Lipschitz continuous in u. For
any given initial value u0 ∈ (α, β), there is a unique strong solution, which either exists globally on [0, ∞)
or approaches the boundary of (α, β) in finite time. Moreover, this solution is continuous on the interval of
existence.

Below in Section 2, we will establish some generalized comparison principles consistent with the new
definition of Caputo derivatives. In Section 3, we establish the full asymptotic behaviors of the solutions for
Dγ

c u = Aup. In Section 4, we provide a new proof for the strict monotonicity and stability in initial values
with weak assumptions.
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2. Generalized comparison principles

The comparison principles are important in the analysis of time fractional PDEs (See [9]). There are
many versions of comparison principles proved in literature using various definitions of Caputo derivatives.
In [7], the authors assumed f(t, ·) to be non-decreasing. In [10, Lemma 2.6], f(t, ·) was assumed to be
non-increasing. In [11, Theorem 2.3], there is no assumption on the monotonicity of f(t, ·) , but the function
v is assumed to be C1 so that the pointwise value of Dγ

c v can be defined. Combining these ideas and
establishing a crucial lemma (Lemma 2.1), we prove some generalized comparison principles in this section.
Similar to [7], we define the inequality in the distributional sense:

Definition 2.1. Let U be an open interval. We say f ∈ D ′(U) is a nonpositive (nonnegative) distribution
if for any φ ∈ C∞

c (U) with φ ≥ 0, we have ⟨f, φ⟩ ≤ 0 (⟨f, φ⟩ ≥ 0). We say f1 ≤ f2 in the distributional
sense for f1, f2 ∈ D ′(U), if f1 − f2 is nonpositive. We say f1 ≥ f2 in the distributional sense if f1 − f2 is
nonnegative.

In order to prove the comparison principle, we first prove the following auxiliary lemma:

Lemma 2.1. Suppose u ∈ L1
loc[0, T ) and limt→0+

1
t

∫ t

0 |u(s) − u0| ds = 0. If there exists a function f ∈
L1

loc(0, T ) such that on interval (0, T ) we have in the distributional sense that Dγ
c u ≤ f , then for any given

A ∈ R, we have in the distributional sense

Dγ
c (u − A)+ ≤ χ(u ≥ A)f, on (0, T ).

Proof. First, recall the following result in [7, Proposition 3.11]: if u ∈ C[0, T ) ∩ C1(0, T ) and u ↦→ E(u) is
C1 and convex, we have

Dγ
c E(u) ≤ E′(u)Dγ

c u.

Now let us consider η ∈ C∞
c (−1, 0) with η ≥ 0 and

∫
η dt = 1. Define ηϵ(t) = 1

ϵ η( t
ϵ ) and uϵ = ηϵ ∗ u. As

showed in [7, Proposition 3.11], uϵ(0) → u0 and uϵ(t) → u(t) in L1
loc[0, T ).

Denote E(u) = (u−A)+ and define Eδ(u) = (E ∗ηδ)(u). Clearly, (Eδ)′(u) = ηδ ∗χ(u ≥ A) is nonnegative
and increasing, which implies that Eδ is a convex increasing function. Then, we have

Dγ
c Eδ(uϵ) ≤ (Eδ)′|uϵDγ

c uϵ. (2.1)

It is not hard to see lim supϵ→0(Eδ)′|uϵDγ
c uϵ ≤ (Eδ)′|uf(t). Since Eδ(uϵ) converges to Eδ(u) in L1

loc
and Eδ(uϵ(0)) converges to Eδ(u0), according to Definition 1.1, Dγ

c Eδ(uϵ) → Dγ
c Eδ(u) as distributions.

Moreover, notice that the inequality is preserved in the distributional sense (Definition 2.1). We have
Dγ

c Eδ(u) ≤ (Eδ)′|uf(t). Taking δ → 0, similarly we have Dγ
c Eδ(u) converges as distributions to Dγ

c (u−A)+.
Then the right hand side of (2.1) converges to χ(u ≥ A)f(t), and the inequality is preserved in the
distributional sense. □

As is well-known, if u ∈ H1(0, T ), D(u − A)+ = χ(u − A)Du. Since Caputo derivative is nonlocal, the
equality is no longer true in general. However, we have similar inequalities and Lemma 2.1 provides an
answer.

Corollary 2.1. Suppose u(t) is a locally integrable function with limt→0+
1
t

∫ t

0 |u(s) − u0| ds = 0. Let A ∈ R
and t1 ∈ (0, T ) is a Lebesgue point. If u ≤ A for a.e. t ≤ t1, and on the interval (t1, T ) we have Dγ

c u ≤ 0
in the distributional sense, then we have u ≤ A, a.e. (0, T ).
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Let uϵ be the mollification in the proof of Lemma 2.1. Consider vϵ = uϵ − C(ϵ)θ(t)
Γ(1+γ) tγ such that vϵ ≤ A

for t ∈ [0, t1 + ϵ]. C(ϵ) → 0 since t1 is a Lebesgue point. Applying Lemma 2.1, Dγ
c (vϵ − A)+ ≤ χ(t ≥

t1 + ϵ)(Dγ
c uϵ − C(ϵ)) ≤ χ(t ≥ t1 + ϵ)(Dγ

c uϵ − ηϵ ∗ Dγ
c u). Taking ϵ → 0 yields Dγ

c (u − A)+ ≤ 0. The details
are left to readers. Now several versions of comparison principles can be stated as follows:

Theorem 2.1.

(i) Suppose ui ∈ L1
loc[0, T ) with limt→0+

1
t

∫ t

0 |ui(s) − ui,0| ds = 0 ( i = 1, 2). Suppose u1(t) ≤ u2(t) on [0, t1]
for a Lebesgue point t1, and the γ-th Caputo derivatives of u1, u2 on [0, t1] are locally integrable. Define

hi(t) = ui,0 + 1
Γ (γ)

∫ t∧t1

0
(t − s)γ−1Dγ

c ui(s) ds, i = 1, 2.

Then, h1(t) ≤ h2(t) for all t ∈ [0, T ]. Moreover, assume there exists a measurable function f(t, u)
such that (i) f(·, ui(·)) (i = 1, 2) is locally integrable on [t1, T ); (ii) f(t, ·) is non-decreasing on [t1, T );
(iii) Dγ

c u1 ≤ f(t, u1) and Dγ
c u2 ≥ f(t, u2) in the distributional sense on (t1, T ), then u1 ≤ u2 a.e. on

[0, T ).
(ii) Suppose ui ∈ L1

loc[0, T ) with limt→0+
1
t

∫ t

0 |ui(s) − ui,0| ds = 0 ( i = 1, 2). If u1 ≤ u2 on [0, t1] for a
Lebesgue point t1 and Dγ

c (u1 − u2) ≤ f(t, u1) − f(t, u2) as distributions on (t1, T ), with f(t, ·) being
non-increasing on (t1, T ) and f(·, ui(·)) (i = 1, 2) being locally integrable on [t1, T ), then u1 ≤ u2 a.e
on [0, T ).

(iii) Suppose u(t) is a continuous function on [0, T ]. If u(t1) = sup0≤s≤t1u(s) for some t1 ∈ (0, T ] and
f(t) = Dγ

c u(t) is a continuous function, then f(t1) ≥ 0.

Proof. (i) Clearly, Dγ
c hi = Dγ

c ui for t ≤ t1 and Dγ
c hi = 0 for t > t1. Let u = h1 −h2, A = 0 in Corollary 2.1,

we find h1 ≤ h2. On [t1, T ), we have

u1(t) ≤ h1(t) + 1
Γ (γ)

∫ t

t1

(t − s)γ−1f(s, u1) ds, u2(t) ≥ h2(t) + 1
Γ (γ)

∫ t

t1

(t − s)γ−1f(s, u2) ds.

As h1(t) ≤ h2(t) and f(t, ·) is non-decreasing, one has u1(t) ≤ u2(t) (see [7, Theorem 4.10]).
(ii) Apply Lemma 2.1 for u1 − u2 and A = 0. (The proof is similar as in Corollary 2.1.)
(iii) Consider uϵ(t) = u(t) + ϵθ(t)

Γ(1+γ) tγ , where ϵ > 0. Then, t1 is the unique maximizer of uϵ on [0, t1]. Let
f ϵ = Dγ

c uϵ = f + ϵ. It suffices to show

f ϵ(t1) ≥ 0, ∀ϵ > 0. (2.2)

Otherwise, there is an ϵ0 > 0 such that f ϵ0(t1) < 0. Since f ϵ0 is continuous, we can find δ > 0 such that
on [t1 − δ, t1] f ϵ0 is negative and uϵ0(t) ≤ uϵ0(t1 − δ) for t ≤ t1 − δ. Applying Corollary 2.1, we have
uϵ0(t) ≤ uϵ0(t1 − δ) for t ∈ [t1 − δ, t1], which is a contradiction. Taking ϵ → 0 then gives the result. □

Remark 2.1. Though the conditions here are weaker under the new definition of Caputo derivative, (ii) is
essentially [10, Lemma 2.6] and (iii) is well-known for C1 functions (see, for example [11,12]).

Now, we establish a generalized Grönwall inequality (or another version of comparison principle), consis-
tent with the new definition of Caputo derivative. The main construction is inspired by [11].

Theorem 2.2. Suppose f(t, u) is continuous and locally Lipschitz in u. Let v(t) be a continuous function.
If Dγ

c v ≤ f(t, v) in the distributional sense, and Dγ
c u = f(t, u), with v0 ≤ u0. Then, v ≤ u on the common

interval. Similarly, if we have Dγ
c v ≥ f(t, v) as distributions and v0 ≥ u0, then v ≥ u on the common

interval.
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Proof. We only prove the first claim (the proof for the other is similar). By Proposition 1.2, Dγ
c u = f(t, u)

with initial value u(0) = u0 has a unique solution on the interval [0, Tb), where Tb is the largest time of
existence. Moreover, u is continuous on [0, Tb).

Fix T ∈ (0, Tb). Pick M large enough so that u(t) and v(t) fall into [0, T ] × [−M, M ]. Let L be the
Lipschitz constant of f(t, ·) for the region [0, T ] × [−2M, 2M ]. Consider

vϵ = v − ϵw.

Here w = Eγ(2Ltγ) is the solution to Dγ
c w = 2Lw with initial value 1, where Eγ(z) =

∑∞
n=0

zn

Γ(nγ+1) is the
Mittag-Leffler function [13,14]. Clearly, if ϵ is sufficiently small, vϵ falls into [0, T ] × [−2M, 2M ]. Then, we
find that in the distributional sense

Dγ
c vϵ = Dγ

c v − ϵ2Lw ≤ f(t, v) − ϵ2Lw ≤ f(t, vϵ) − ϵLw.

We claim that for all such small ϵ,

vϵ(t) ≤ u(t), ∀t ∈ [0, T ]. (2.3)

If not, define

t1 = sup{t ∈ (0, T ] : vϵ(s) ≤ u(s), ∀s ∈ [0, t]}.

Since vϵ(0) = v0 − ϵ < u0, by continuity we have t1 > 0. By assumption, (2.3) is not true, and we have
t1 < T . Consequently, there exists δ1 > 0, such that vϵ(t1) = u(t1) and vϵ(t) > u(t) for t ∈ (t1, t1 + δ1).
Moreover,

Dγ
c (vϵ − u) ≤ f(t, vϵ) − ϵLw − f(t, u).

By continuity, for some δ2 ∈ (0, δ1), Dγ
c (vϵ − u) is a nonpositive distribution on the interval (t1, t1 + δ2). By

Corollary 2.1, we have vϵ(t) ≤ u(t) for t ∈ (t1, t1 + δ2), which is a contradiction. Hence, (2.3) is true. Taking
ϵ → 0 in (2.3) yields the result on [0, T ]. Since T is arbitrary, the result is true. □

3. Asymptotic behaviors for a class of fractional ODEs

In this section, we study the solution curves to the following autonomous fractional ODEs:

Dγ
c u = Aup, u(0) = u0 > 0. (3.1)

The monotonicity of the solutions to (3.1) and some partial results for the asymptotic behaviors have been
established in our previous work [15]. The asymptotic behaviors of the solutions for the A < 0, p > 0 case
have also been discussed in [10, Theorem 7.1]. However, the discussion on all the range of A and p is not
complete. Here, we will give a complete description on asymptotic behaviors of the solution curves.

By Proposition 1.2, the strong solution u to (3.1) exists on [0, Tb) for Tb ∈ (0, ∞]. If Tb < ∞, either
lim

t→T −
b

u(t) = 0 or lim
t→T −

b
u(t) = ∞. We give a complete description regarding the solutions curves to

(3.1):

Theorem 3.1. Consider (3.1). If A = 0, then u(t) = u0. If A > 0, then all the solutions are strictly
increasing on (0, Tb). If A < 0, then all solutions are strictly decreasing before they touch 0.

(i) Suppose A > 0. If p > 1, then Tb < ∞ and u(t) ∼
[

Γ( pγ
p−1 )

AΓ( γ
p−1 )

] 1
p−1

(Tb−t)− γ
p−1 , as t → T −

b . If p = 1, then

u(t) = u0Eγ(Atγ). If p < 1, then there exist c1 > 0 and c2 > 0 such that c1t
γ

1−p ≤ u(t) ≤ c2t
γ

1−p , t ≥ 1.
(ii) Suppose A < 0. If p < 0, the solution curve touches u = 0 in finite time where the right hand side

blows up. If p = 0, then u = u0 + Ag1+γ . If p > 0, then Tb = ∞, and there exist c1 > 0, c2 > 0 such
that c1t− γ

p ≤ u(t) ≤ c2t− γ
p , t ≥ 1.
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Proof. The A = 0 or p = 0 cases are trivial. The monotonicity has been proved in [15]. The A > 0, p > 1
case has also been discussed there. Indeed, there is also an accurate estimate of Tb in [15]. The p = 1 case
is trivial. The A < 0, p > 0 case has been discussed in [10, Theorem 7.1]. In fact, they established a version
of comparison principle and used a subsolution and a supersolution to get c1t− γ

p ≤ u(t) ≤ c2t− γ
p , t ≥ 1.

For the case A < 0, p < 0, since the solution is decreasing, we have Dγ
c u ≤ Aup

0 < 0 before u touches zero.
Hence, the claim follows.

Now, we establish the results for A > 0, p < 1 case. First, let us construct the sub-solution as follows:

ω(t) =
{

u0, t ∈ [0, t0],
at

γ
1−p , t ≥ t0.

Here a > 0 is to be determined and t0 is determined by at
γ

1−p
0 = u0. Clearly, ω is absolutely continuous on

any finite interval. For t < t0, Dγ
c ω = 0 ≤ Aωp. For t ≥ t0, we have

Dγ
c ω = aγ

(1 − p)Γ (1 − γ)

∫ t

t0

τ
γ

1−p −1

(t − τ)γ
dτ <

aγB( γ
1−p , 1 − γ)

(1 − p)Γ (1 − γ) t
γp

1−p = aΓ (γ/(1 − p) + 1)
Γ (γp/(1 − p) + 1) t

pγ
1−p ,

where B(·, ·) is the Beta function. Clearly, if we choose a > 0 such that aΓ(γ/(1−p)+1)
Γ(γp/(1−p)+1) ≤ Aap, then Dγ

c ω ≤
Aωp. Such a exists because p < 1.

For the super-solution, let us consider

v(t) =

⎧⎨⎩u0 + B1
tγ

Γ (1 + γ) , t ∈ [0, 1],

B2t
γ

1−p , t ≥ 1.

B2 is determined by B2 = u0 + B1
Γ(1+γ) . This choice of B2 makes v absolutely continuous on any finite

interval. We now determine B1. On [0, 1], one has Dγ
c v = B1. For t > 1, we have

Dγ
c v = B1γ

B(1 + γ, 1 − γ)

∫ 1

0

τγ−1

(t − τ)γ
dτ + B2

Γ (1 − γ)
γ

1 − p

∫ t

1

τ
γ

1−p −1

(t − τ)γ
dτ.

On [1, 2], one has Dγ
c v > B1γ

B(1+γ,1−γ)
∫ 1

0
τγ−1

(2−τ)γ dτ = B1C1(γ). For t > 2, we have

Dγ
c v > B2

1
Γ (1 − γ)

γ

1 − p
t

γp
1−p

∫ 1

1
t

τ
γ

1−p −1

(1 − τ)γ
dτ ≥ B2t

γp
1−p C2(p, γ).

It is clear that there exists M1(A, p, γ) such that as long as B2 ≥ M1, Dγ
c v ≥ Avp for t ≥ 2 since p < 1. For

v to be a super-solution, one needs

u0 + B1
1

Γ (1 + γ) ≥ M1, B1 min(1, C1(γ)) ≥ A max
(

up
0,

(
u0 + B1

Γ (1 + γ)

)p

2
pγ

1−p

)
.

Such B1 exists since p < 1. Hence, applying comparison principle Theorem 2.2 yields the result. □

4. Strict monotonicity and stability in initial values

It is well-known that solution curves for well-behaved ODEs do not touch each other. However, for
fractional ODEs, similar results are not trivial since the dynamics is non-Markovian. By the comparison
principles (or generalized Grönwall inequality), if f(t, u) in (1.1) is continuous and locally Lipschitz in u,
u(0) < v(0) implies u(t) ≤ v(t) for t ≥ 0. However we do not have strict inequality. In [3, Theorem 6.12], the
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strict inequality has been established following a series of contraction techniques. Using our new definition
of Caputo derivative, we provide a new proof of that solutions are strict monotone in initial values, by
assuming f ∈ L∞

loc.
The following lemma (a variant of [15, Lemma 3.4] or [16, Theorem 1]), is important:

Lemma 4.1. Let rλ(t) = − d
dt Eγ(−λΓ (γ)tγ) be the resolvent for kernel λtγ−1 (in other words, rλ(t) +

λ
∫ t

0 (t − s)γ−1rλ(s)ds = λtγ−1). Let T > 0. Assume h ∈ L1[0, T ], h > 0 a.e., satisfying

h(t) −
∫ t

0
rλ(t − s)h(s)ds > 0, a.e., ∀λ > 0.

Suppose v ∈ L∞[0, T ], then the integral equation

y(t) +
∫ t

0
(t − s)γ−1v(s)y(s)ds = h(t) (4.1)

has a unique solution y(t) ∈ L1[0, T ]. Moreover, y(t) > 0, a.e.

The proof is exactly the same as [15, Lemma 3.4], though we only assume v ∈ L∞[0, T ] here. Next, we
provide a new proof for the strict monotonicity in initial value. We also prove the stability of solutions with
respect to initial values.

Theorem 4.1. Assume that f(·, ·) ∈ L∞
loc([0, ∞) ×R). Moreover, assume for every compact set K, there is

LK > 0 such that |f(t, u) − f(t, v)| ≤ LK |u − v| for a.e. (t, u), (t, v) ∈ K. Then, for a given initial value u0,
the solution in L∞

loc[0, Tb) is unique. Further, we have

• Any two solutions ui ∈ L∞
loc[0, T i

b ) (i = 1, 2) with initial values u1,0 < u2,0 satisfy u1(t) < u2(t) on
[0, min(T 1

b , T 2
b )).

• For any T > 0, M > 0, there exists C(M, T ) > 0 such that any two solutions with ∥ui∥L∞[0,T ] ≤ M

( i = 1, 2) and initial values u1,0, u2,0 satisfy

∥u1 − u2∥L∞[0,T ] ≤ C(M, T )|u1,0 − u2,0|.

Proof. Fix T ∈ (0, min(T 1
b , T 2

b )). There exists K compact such that for a.e t ∈ [0, T ], (t, ui(t)) ∈ K. By
Proposition 1.1, one has

ui(t) = ui,0 + 1
Γ (γ)

∫ t

0
(t − s)γ−1f(s, ui(s)) ds.

The boundedness of f(s, ui(s)) implies that ui(t) ∈ C[0, T ]. If u1,0 = u2,0, by taking the difference, |u1(t) −
u2(t)| ≤ C

∫ t

0 (t − s)γ−1|u1(s) − u2(s)| ds and the uniqueness therefore follows.
Now, assume u1,0 ̸= u2,0. Define y(t) = (u2(t) − u1(t))/(u2,0 − u1,0), we have

y(t) +
∫ t

0
(t − s)γ−1v(s)y(s) ds = 1, where v(s) = − 1

Γ (γ)
f(s, u2(s)) − f(s, u1(s))

u2(s) − u1(s) .

If u1(s) = u2(s), we define v(s) = 0. Note that |v| ≤ LK/Γ (γ) a.e. for t ∈ (0, T ). By setting h = 1 in
Lemma 4.1, one has

1 −
∫ t

0
rλ(t − s) ds = Eγ(−λΓ (γ)tγ) > 0.

By Lemma 4.1, y(t) > 0. Since y is continuous, satisfying

y(t) ≤ 1 +
∫ t

0
(t − s)γ−1∥v∥L∞[0,T ]y(s) ds,

we have y(t) ≤ C(∥v∥L∞ , T ) by [15, Proposition 5]. This verifies the last claim. □
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