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Abstract. In this paper, we present a dispersive regularization approach to construct a global
N -peakon weak solution to the modified Camassa–Holm equation (mCH) in one dimension. In
particular, we perform a double mollification for the system of ODEs describing trajectories of N -
peakon solutions and obtain N smoothed peakons without collisions. Though the smoothed peakons
do not give a solution to the mCH equation, the weak consistency allows us to take the smoothing
parameter to zero and the limiting function is a global N -peakon weak solution. The trajectories
of the peakons in the constructed solution are globally Lipschitz continuous and do not cross each
other. When N = 2, the solution is a sticky peakon weak solution. At last, using the N -peakon
solutions and through a mean field limit process, we obtain global weak solutions for general initial
data m0 in Radon measure space.
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1. Introduction. This work is devoted to investigate the N -peakon solutions
to the following modified Camassa–Holm (mCH) equation with cubic nonlinearity:

mt + [(u2 − u2
x)m]x = 0, m = u− uxx, x ∈ R, t > 0,(1.1)

subject to the initial condition

m(x, 0) = m0(x), x ∈ R.(1.2)

From the fundamental solution G(x) = 1
2e
−|x| to the Helmholtz operator 1 − ∂xx,

function u can be written as a convolution of m with the kernel G:

u(x, t) =

∫
R
G(x− y)m(y, t)dy.

In the mCH equation, the shape of function G is referred to as a peakon at x = 0 and
the mCH equation has weak solutions (see Definition 2.2) with N peakons, which are
of the form [12, 14]

uN (x, t) =

N∑
i=1

piG(x− xi(t)), mN (x, t) =

N∑
i=1

piδ(x− xi(t)),(1.3)
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2808 YU GAO, LEI LI, AND JIAN-GUO LIU

where pi (1 ≤ i ≤ N) are constant amplitudes of peakons. We call this kind of weak
solutions N -peakon solutions. When x1(t) < x2(t) < · · · < xN (t), trajectories xi(t)
of N -peakon solutions in (1.3) satisfy [12, 14]

(1.4)
d

dt
xi =

1

6
p2
i +

1

2

∑
j<i

pipje
xj−xi +

1

2

∑
j>i

pipje
xi−xj +

∑
1≤m<i<n≤N

pmpne
xm−xn .

In general, solutions {xi(t)}Ni=1 to (1.4) will collide with each other in finite time
(see Remark 2.3). By the standard ODE theories, we know that (1.4) has global
solutions {xi(t)}Ni=1 subject to any initial data {xi(0)}Ni=1. However, uN (x, t) con-
structed by (1.3) with global solutions {xi(t)}Ni=1 to (1.4) is not a weak solution to
the mCH equation after the first collision time (see Remark 2.4). There are some
nature questions:

(i) What will be a weak solution to the mCH equation after collisions? Is it
unique? If not unique, what is the selection principle?

(ii) If there is a weak solution to the mCH equation after collisions, is it still in
the form of N -peakon solutions?

(iii) If a weak solution is still an N -peakon solution after collision, how do peakons
evolve? In other words, do they stick together, cross each other, or scatter?

Gao and Liu [12] showed the global existence and nonuniqueness of weak solutions
when initial data m0 ∈M(R) (Radon measure space), which partially answered ques-
tion (i). In subsection 2.2, we prove the global existence of N -peakon solutions, which
gives an answer to question (ii). After collision, all the situations mentioned in the
above question (iii) can happen (see Remark 2.3).

In this paper, we will study these questions through a dispersive regularization for
the following reasons (see (5.7) for the dispersive effects of our mollification method):

(i) This dispersive regularization could be a candidate for the selection principle.
(ii) As described below, if initial datum is of N -peakon form, then the regularized

solution uN,ε is also of N -peakon form, and so is the limiting N -peakon
solution.

The main purpose of this paper is to study the behavior of ε → 0 limit for the
dispersive regularization. First, we introduce the dispersive regularization for the
mCH equation.

To illustrate the dispersive regularization method clearly, we start with one peakon
solution pG(x−x(t)) (solitary wave solution). We know that pG(x−x(t)) is a weak so-
lution if and only if the traveling speed is d

dtx(t) = 1
6p

2 [12, Proposition 4.3]. Because
the characteristics equation for (1.1) is given by

d

dt
x(t) = u2(x(t), t)− u2

x(x(t), t),(1.5)

for solution pG(x− x(t)) we obtain

d

dt
x(t) = p2G2(0)− p2(G2

x)(0) =
1

6
p2.(1.6)

Equation (1.6) implies that to obtain solitary wave solutions, the correct definition of
G2
x at 0 is given by

(G2
x)(0) = G2(0)− 1

6
=

1

12
.(1.7)

D
ow

nl
oa

de
d 

06
/0

7/
18

 to
 1

52
.3

.3
4.

82
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2809

However, G2
x is a BV function which has a removable discontinuity at 0 and

(G2
x)(0−) = (G2

x)(0+) =
1

4
,(1.8)

which is different with (1.7). To understand the discrepancy between (1.7) and (1.8),
our strategy is to use the dispersive regularization and the limit of the regularization.
Mollify G(x) as

Gε(x) := (ρε ∗G)(x),

where ρε is a mollifier that is even (see Definition 2.1). Then, we can obtain (1.7) in
the limiting process (Lemma 2.1):

lim
ε→0

(ρε ∗ (Gεx)2)(0) =
1

12
.(1.9)

The above limiting process is independent of the mollifier ρε.
Naturally, we generalize this dispersive regularization method to N -peakon so-

lutions uN (x, t) =
∑N
i=1 piG(x − xi(t)). From the characteristic equation (1.5), we

formally obtain the system of ODEs for xi(t)

d

dt
xi(t) =

[
uN (xi(t), t)

]2 − [uNx (xi(t), t)
]2
, i = 1, . . . , N.(1.10)

[
uNx (x, t)

]2
=
(∑N

j=1 pjGx(x−xj(t))
)2

is a BV function and it has a discontinuity at
xi(t). By using similar regularization method in (1.9), we regularize the vector field
in (1.10). For {xk}Nk=1, denote

uN,ε(x; {xk}) :=

N∑
i=1

piG
ε(x− xi) and UNε (x; {xk}) :=

[
uN,ε

]2 − [uN,εx

]2
.(1.11)

The dispersive regularization for N peakons is given by

d

dt
xεi(t) = UN,ε(xεi(t); {xεk(t)}) := (ρε ∗ UNε )(xεi(t); {xεk(t)}), i = 1, . . . , N.(1.12)

The above regularization method is subtle. We emphasize that if we use UNε given
by (1.11) as a vector field (which is already globally Lipschitz continuous) instead of
UN,ε, then comparing with (1.9) we have

lim
ε→0

(Gεx)2(0) = 0.

In this case, the traveling speed of the soliton (one peakon) is given by

d

dt
x(t) = p2G2(0)− p2(G2

x)(0) =
1

4
p2,

which is different with the correct speed 1
6p

2 for one peakon solution.
By solutions to (1.12), we construct approximate N -peakon solutions to (1.1) as

uN,ε(x, t) :=

N∑
i=1

piG
ε(x− xεi(t)).
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2810 YU GAO, LEI LI, AND JIAN-GUO LIU

Let ε→ 0 in uN,ε(x, t) and we can obtain an N -peakon solution

uN (x, t) =

N∑
i=1

piG(x− xi(t))(1.13)

to the mCH equation, where xi(t) are Lipschitz functions (see Theorem 2.1).
If we fix N and let ε go to 0 in the regularized system of ODEs (1.12), we can

obtain a limiting (ε → 0 in the sense described in Proposition 2.2) system of ODEs
to describe N -peakon solutions, i = 1, 2, . . . , N ,

d

dt
xi(t) =

(
N∑
j=1

pjG(xi(t)− xj(t))
)2

−
( ∑
j∈Ni1(t)

pjGx(xi(t)− xj(t))
)2

(1.14)

− 1

12

( ∑
k∈Ni2(t)

pk

)2

.

Here Ni1(t) and Ni2(t), i = 1, 2, . . . , N, are defined by (2.24). The vector field of the
above system is not Lipschitz continuous. Solutions for this equation are not unique,
which implies peakon solutions to (1.1) are not unique (see Remark 2.3). Indeed, the
nonuniqueness of peakon solutions was also obtained in [12]. When x1(t) < x2(t) <
· · · < xN (t), the system of ODEs (1.14) is equivalent to (1.4).

We also prove that trajectories xεi(t) given by (1.12) never collide with each other
(see Theorem 3.1), which means if xε1(0) < xε2(0) < · · · < xεN (0), then xε1(t) < xε2(t) <
· · · < xεN (t) for any t > 0. For the limiting N -peakon solutions (1.13), we have
x1(t) ≤ x2(t) ≤ · · · ≤ xN (t). Notice that the sticky N -peakon solutions obtained
in [12] also have this property and in the sticky N -peakon solutions, {xi(t)}Ni=1 stick
together whenever they collide. When N = 2, we prove that peakon solutions given
by the dispersive regularization are exactly the sticky peakon solutions (see Theorem
3.2). However, the situation when N ≥ 3 can be more complicated. Some of the
peakon solutions given by the dispersive regularization are sticky peakon solutions
(see Figure 1) and some are not (see Figure 2).

For general initial data m0 ∈ M(R), we use a mean field limit method to prove
global existence of weak solutions to (1.1) (see section 4).

There are also some other interesting properties about the mCH equation, which
we list below.

The mCH equation was introduced as a new integrable system by several different
researchers [8, 10, 22, 23]. The mCH equation has a bi-Hamiltonian structure [14, 22]
with Hamiltonian functionals

H0(m) =

∫
R
mudx, H1(m) =

1

4

∫
R

(
u4 + 2u2u2

x −
1

3
u4
x

)
dx.(1.15)

Equation (1.1) can be written in the bi-Hamiltonian form [14, 22],

mt = −((u2 − u2
x)m)x = J

δH0

δm
= K

δH1

δm
,

where
J = −∂x

(
m∂−1

x (m∂x)
)
, K = ∂3

x − ∂x
are compatible Hamiltonian operators. Here H0 and H1 are conserved quantities for
smooth solutions. H0 is also a conserved quantity for W 2,1(R) weak solutions [12]. N -
peakon solutions are not in the solution class W 2,1(R) and H0, H1 are not conserved
for N -peakon solutions in the case N ≥ 2; see Remark 2.3 for the case N = 2. This
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2811

is different with the Camassa–Holm equation [3]:

mt + (um)x +mux = 0, m = u− uxx, x ∈ R, t > 0,

which also has N -peakon solutions of the form

uN (x, t) =

N∑
i=1

pi(t)e
−|x−xi(t)|.

The amplitude pi(t) evolves with time which is different with the N -peakon solutions
to the mCH equation (1.1), where pi are constants. pi(t) and xi(t) satisfy the following
Hamiltonian system of ODEs:

d

dt
xi(t) =

N∑
j=1

pj(t)e
−|xi(t)−xj(t)|, i = 1, . . . , N,

d

dt
pi(t) =

N∑
j=1

pi(t)pj(t)sgn
(
xi(t)− xj(t)

)
e−|xi(t)−xj(t)|, i = 1, . . . , N,

(1.16)

and the Hamiltonian function is given by

H0(t) =
1

2

N∑
i,j=1

pi(t)pj(t)e
−|xi(t)−xj(t)|,

which is a conserved quantity for N -peakon solutions and the corresponding functional
H0 given by (1.15) is conserved for smooth solutions for the Camassa–Holm equation.
When pi(0) > 0, there is no collision between xi(t) [4, 6, 18]. Hence, solutions to
system (1.16) exist globally. However, collisions may occur if pi(0)’s have opposite
signs. In [16], Holden and Raynaud studied this case and they constructed a new set
of ordinary differential equations which is well-posed even when collisions occur. They
obtained global N -peakon solutions to the Camassa–Holm equation, which conserve
the Hamiltonian H0. For more details about peakon solutions to the Camassa–Holm
equation, one can also refer to [1, 2, 7, 13, 17].

In comparison, system (1.4) is a nonautonomous Hamiltonian system as described
below. Let x̃i(t) := xi(t)− 1

6p
2
i t. Denote

X(t) := (x̃1(t), x̃2(t), . . . , x̃N (t))T ,

and

H(X, t) :=
∑

1≤i<j≤N
pipje

xi(t)−xj(t) =
∑

1≤i<j≤N
pipje

1
6 (p2j−p2i )t+x̃i(t)−x̃j(t).

Then, (1.4) can be rewritten as a Hamiltonian system:

dX

dt
= A

δH
δX

,(1.17)

where

A = (aij)N×N , aij =


− 1

2 , i < j;

0, i = j;
1
2 , i > j.

, and
δH
δX

:=
( ∂H
∂x̃1

, . . . ,
∂H
∂x̃N

)
.(1.18)

Notice that H depends on t and it is not a conservative quantity.
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2812 YU GAO, LEI LI, AND JIAN-GUO LIU

For more results about local well-posedness and blow up behavior of the strong
solutions to (1.1) one can refer to [5, 9, 14, 15, 21]. In [24], Zhang used the method
of dissipative approximation to prove the existence and uniqueness of global entropy
weak solutions u in W 2,1(R) for the mCH equation (1.1).

The rest of this article is organized as follows. In section 2, we introduce the
dispersive regularization in detail and prove global existence of N -peakon solutions.
By a limiting process, we obtain a system of ODEs to describe N -peakon solutions.
In section 3, we prove that trajectories of N -peakon solutions given by dispersive
regularization will never cross each other. When N = 2, the limiting peakon solutions
are exactly the sticky peakon solutions. When N = 3, we present two figures to
show two different situations. In section 4, we use a mean field limit method to prove
global existence of weak solutions to (1.1) for general initial data m0 ∈ M(R). Last,
we use the same double mollification method to mollify the mCH equation directly. By
linearizing the modified equation, we show that this regularization has the dispersive
effects.

2. Dispersive regularization and N-peakon solutions. In this section, we
introduce the dispersive regularization in detail and use the regularized ODE system
to give approximate solutions. Then, by some compactness arguments we prove global
existence of N -peakon solutions.

2.1. Dispersive regularization and weak consistency. First, we use smooth
functions in the Schwartz class S(R) to define mollifiers. f ∈ S(R) if and only if
f ∈ C∞(R) and for all positive integers m and n

sup
x∈R
|xmf (n)(x)| <∞.

Definition 2.1.
(i) Define the mollifier 0 ≤ ρ ∈ S(R) satisfying∫

R
ρ(x)dx = 1, ρ(x) = ρ(|x|) for x ∈ R.

(ii) For each ε > 0, set

ρε(x) :=
1

ε
ρ
(x
ε

)
.

Fix an integer N > 0. Give an initial data

mN
0 (x) =

N∑
i=1

piδ(x− ci), c1 < c2 < · · · < cN and

N∑
i=1

|pi| ≤M0(2.1)

for some constants pi, ci (1 ≤ i ≤ N) and M0.
As stated in the introduction, we set Gε(x) = (G ∗ ρε)(x). For any N particles

{xk}Nk=1 ⊂ R, define (pk is the same as in (2.1))

uN,ε(x; {xk}Nk=1) :=

N∑
k=1

pkG
ε(x− xk),

UNε (x; {xk}Nk=1) :=
[
(uN,ε)2 − (∂xu

N,ε)2
]

(x; {xk}Nk=1),

and
UN,ε(x; {xk}Nk=1) := (ρε ∗ UNε )(x; {xk}Nk=1).
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2813

The system of ODEs for dispersive regularization is given by

d

dt
xεi(t) = UN,ε(xεi(t); {xεk(t)}Nk=1), i = 1, . . . , N,(2.2)

with initial data xεi(0) = ci given in (2.1). This system is equivalent to (1.12) men-
tioned in the introduction. Because UN,ε is Lipschitz continuous and bounded, the
existence and uniqueness of a global solution {xεi(t)}Ni=1 to this system of ODEs follow
from standard ODE theories. By using the solution {xεi(t)}Ni=1, we set

uN,ε(x, t) := uN,ε(x; {xεk(t)}Nk=1),(2.3)

and

mN,ε(x, t) :=

N∑
i=1

piρε(x− xεi(t)), mN
ε (x, t) :=

N∑
i=1

piδ(x− xεi(t)).(2.4)

Due to (1− ∂xx)Gε = ρε, we have

mN,ε(x, t) = (ρε ∗mN
ε )(x, t) and (1− ∂xx)uN,ε(x, t) = mN,ε(x, t).(2.5)

Set

UNε (x, t) := UNε (x; {xεk(t)}Nk=1), UN,ε(x, t) := UN,ε(x; {xεk(t)}Nk=1).(2.6)

Therefore, UN,ε(x, t) = (ρε ∗ UNε )(x, t) and (2.2) (or (1.12)) can be rewritten as

d

dt
xεi(t) = UN,ε(xεi(t), t), i = 1, . . . , N.(2.7)

Next, we show that uN,ε defined by (2.3) is weak consistent with the mCH equa-
tion (1.1). Let us give the definition of weak solutions first. Rewrite (1.1) as an
equation of u,

(1− ∂xx)ut + [(u2 − u2
x)(u− uxx)]x

= (1− ∂xx)ut + (u3 + uu2
x)x −

1

3
(u3)xxx +

1

3
(u3
x)xx = 0.

For a test function φ ∈ C∞c (R× [0, T )) (T > 0), we denote the functional

L(u, φ) : =

∫ T

0

∫
R
u(x, t)[φt(x, t)− φtxx(x, t)]dxdt

− 1

3

∫ T

0

∫
R
u3
x(x, t)φxx(x, t)dxdt− 1

3

∫ T

0

∫
R
u3(x, t)φxxx(x, t)dxdt

+

∫ T

0

∫
R

(u3 + uu2
x)φx(x, t)dxdt.(2.8)

Then, the definition of weak solutions in terms of u is given as follows.

Definition 2.2. For m0 ∈M(R), a function

u ∈ C([0, T );H1(R)) ∩ L∞(0, T ;W 1,∞(R))

is said to be a weak solution of the mCH equation if

L(u, φ) = −
∫
R
φ(x, 0)dm0

holds for all φ ∈ C∞c (R × [0, T )). If T = +∞, we call u as a global weak solution of
the mCH equation.
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2814 YU GAO, LEI LI, AND JIAN-GUO LIU

For simplicity, we denote

〈f(x, t), g(x, t)〉 :=

∫ ∞
0

∫
R
f(x, t)g(x, t)dxdt.

With the definitions (2.4)–(2.7), for any φ ∈ C∞c (R× [0, T )), we have〈
mN
ε , φt

〉
+
〈
UN,εmN

ε , φx
〉

=

∫ T

0

∫
R

N∑
i=1

piδ(x− xεi(t))φt(x, t)dxdt

+

∫ T

0

∫
R

N∑
i=1

piδ(x− xεi(t))UN,ε(x, t)φx(x, t)dxdt

=

∫ T

0

N∑
i=1

pi[φt(x
ε
i(t), t) + UN,ε(xεi(t), t)φx(xεj(t), t)]dt

=

∫ T

0

N∑
i=1

pi
d

dt
φ(xεi(t), t)dt = −

N∑
i=1

φ(xi(0), 0)pi = −
∫
R
φ(x, 0)dmN

0 .(2.9)

On the other hand, combining the definition (2.5) and (2.8) gives

L(uN,ε, φ) =

∫ T

0

∫
R
uN,ε[φt − φtxx]dxdt− 1

3

∫ T

0

∫
R

(∂xu
N,ε)3φxxdxdt

− 1

3

∫ T

0

∫
R

(uN,ε)3φxxxdxdt+

∫ T

0

∫
R
((uN,ε)3 + uε(uN,εx )2)φxdxdt

= 〈φt, (1− ∂xx)uN,ε〉+ 〈[(uN,ε)2 − (∂xu
N,ε)2](1− ∂xx)uN,ε, φx〉

= 〈mN,ε, φt〉+ 〈UNε mN,ε, φx〉.

Set

EN,ε : = L(uN,ε, φ) +

∫
R
φ(x, 0)dmN

0

= 〈mN,ε −mN
ε , φt〉+ 〈UNε mN,ε − UN,εmN

ε , φx〉.(2.10)

We have the following consistency result.

Proposition 2.1. We have the following estimate for EN,ε defined by (2.10):

|EN,ε| ≤ Cε,(2.11)

where the constant C is independent of N, ε.

Proof. By a changing of variable and the definition of the Schwartz function, we
can obtain ∫

R
|x|ρε(x)dx =

∫
R
|x|1
ε
ρ(
x

ε
)dx = ε

∫
R
|x|ρ(x)dx ≤ Cρ · ε(2.12)

for some constant Cρ.
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2815

Due to
∑N
i=1 |pi| ≤M0 and (2.12), the first term on the right-hand side of (2.10)

can be estimated as

∣∣〈mN,ε −mN
ε , φt〉

∣∣ =

∣∣∣∣∣
∫ T

0

∫
R

N∑
i=1

piρε(x− xεi(t))[φt(x, t)− φt(xεi(t), t)]dxdt
∣∣∣∣∣

≤
N∑
i=1

|pi|
∫ T

0

∫
R
ρε(x− xεi(t))||φtx||L∞ |x− xεi(t)|dxdt

≤ CρM0||φtx||L∞Tε.

For the second term, by definitions (2.4) and (2.6) we can obtain

〈UNε mN,ε − UN,εmN
ε , φx〉

=

N∑
i=1

pi

∫ T

0

∫
R
UNε (x)ρε(x− xεi(t))φx(x, t)dxdt

−
N∑
i=1

pi

∫ T

0

UN,ε(xεi(t))φx(xεi(t), t)dt

=

N∑
i=1

pi

∫ T

0

∫
R
UNε (x)ρε(x− xεi(t))φx(x, t)dxdt

−
N∑
i=1

pi

∫ T

0

∫
R
UNε (x)ρε(x

ε
i(t)− x)φx(xεi(t), t)dxdt

=

N∑
i=1

pi

∫ T

0

∫
R
UNε (x)ρε(x− xεi(t))[φx(x, t)− φx(xεi(t), t)]dxdt.

Due to ||UNε ||L∞ ≤ 1
2M

2
0 , we have

∣∣〈UNε mN,ε − UN,εmN
ε , φx〉

∣∣ ≤ 1

2
CρM

3
0 ||φxx||L∞Tε.

This ends the proof.

Notice that

(1− ∂xx)Gε = ρε.

The mollification approximates the Dirac delta function with a “blob function” ρε,
which shares some ideas with the traditional blob regularization for vortex sheet [19].
However, our regularization is more than “blob regularization” and the key feature is
the double mollification that guarantees the weak consistency. If we use

d

dt
xεi(t) = UNε (xεi(t); {xk}Nk=1)

to define approximate trajectories instead of (2.2), we will not get the weak consistency
result. Regarding this issue, one can refer to the discussion in the introduction or
Lemma 2.1. In section 5, we find that this regularization has the dispersive effects
by studying the modified equation, which justifies “dispersive regularization” in the
title.

D
ow

nl
oa

de
d 

06
/0

7/
18

 to
 1

52
.3

.3
4.

82
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2816 YU GAO, LEI LI, AND JIAN-GUO LIU

2.2. Convergence theorem. In this subsection, we prove global existence of
N -peakon solutions for the mCH equation and this answers the second question (ii)
in the introduction.

Theorem 2.1. Let mN
0 (x) be given by (2.1) and {xεi(t)}Ni=1 is defined by (2.7)

subject to initial data xεi(0) = ci. uN,ε(x, t) is defined by (2.3). Then, the following
holds.

(i) There exist {xi(t)}Ni=1 ⊂ C([0,+∞)), such that xεi → xi in C([0, T ]) as ε →
0 (in the subsequence sense) for any T > 0. Moreover, xi(t) is globally Lipschitz
continuous and for a.e. t > 0, we have∣∣∣∣ ddtxi(t)

∣∣∣∣ ≤ 1

2
M2

0 for i = 1, . . . , N.(2.13)

(ii) Set

uN (x, t) :=

N∑
i=1

piG(x− xi(t)),(2.14)

and we have (in subsequence sense)

uN,ε → uN , ∂xu
N,ε → uNx in L1

loc(R× [0,+∞)) as ε→ 0.(2.15)

(iii) uN (x, t) is an N -peakon solution to (1.1).

Proof. (i) Due to Gε = G ∗ ρε, we have

||Gε||L∞ ≤
1

2
and ||Gεx||L∞ ≤

1

2
.

Hence,

||uN,ε||L∞ ≤
1

2
M0 and ||uN,εx ||L∞ ≤

1

2
M0,(2.16)

where M0 is given in (2.1). By Definition (2.6) and (2.16), we have

|UN,ε(x, t)| ≤ ||UNε ||L∞
∫
R
ρε(x)dx ≤ ||uN,ε||2L∞ + ||∂xuN,ε||2L∞

≤ 1

4
M2

0 +
1

4
M2

0 =
1

2
M2

0 .(2.17)

Combining (2.7) and (2.17), we have

|xεi(t)− xεi(s)| =
∣∣∣∣∫ t

s

d

dτ
xεi(τ)dτ

∣∣∣∣ =

∣∣∣∣∫ t

s

UN,ε(xεi(τ), τ)dτ

∣∣∣∣
≤
∫ t

s

|UN,ε(xεi(τ), τ)|dτ ≤ 1

2
M2

0 |t− s|.(2.18)

For each 1 ≤ i ≤ N , by (2.17) and (2.18), we know {xεi(t)}ε>0 is uniformly (in
ε) bounded and equicontinuous in [0, T ]. For any fixed time T > 0, the Arzelà–
Ascoli theorem implies that there exists a function xi ∈ C([0, T ]) and a subsequence
{xεki }∞k=1 ⊂ {xεi}ε>0, such that xεki → xi in C([0, T ]) as k → ∞. Then, use a diago-
nalization argument with respect to T = 1, 2, . . . and we obtain a subsequence (still
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2817

denoted as xεi) of xεi such that xεi → xi in C([0, T ]) as ε→ 0 for any T > 0. Moreover,
by (2.18), we have

|xi(t)− xi(s)| ≤
1

2
M2

0 |t− s|.

Hence, xi(t) is a globally Lipschitz function and (2.13) holds.
(ii) Because uN,ε(x, t) → uN (x, t) and ∂xu

N,ε(x, t) → uNx (x, t) as ε → 0 for a.e.
(x, t) ∈ R × [0,+∞) (for (x, t) 6= (xi(t), t)), (2.15) follows by Lebesgue dominated
convergence theorem.

(iii) Next, we prove that uN given by (2.14) is a weak solution to the mCH
equation.

Obviously, we have

uN ∈ C([0,+∞);H1(R)) ∩ L∞(0,+∞;W 1,∞(R)).

Similarly as (2.9), for any test function φ ∈ C∞c (R× [0,∞)) we have

〈mN
ε , φt〉+ 〈UN,εmN

ε , φx〉 = −
∫
R
φ(x, 0)dmN

0 ,

where (mN
ε , mN,ε) is defined by (2.4) and (UNε , UN,ε) is defined by (2.6). By the

consistency result (2.11), we have

L(uN,ε, φ) +

∫
R
φ(x, 0)dmN

0 → 0 as ε→ 0,(2.19)

where

L(uN,ε, φ) =

∫ T

0

∫
R
uN,ε(φt − φtxx)dxdt− 1

3

∫ T

0

∫
R
(∂xu

N,ε)3φxxdxdt

− 1

3

∫ T

0

∫
R

(uN,ε)3φxxxdxdt+

∫ T

0

∫
R

[(uN,ε)3 + uN,ε(∂xu
N,ε)2]φxdxdt.(2.20)

(Here, T satisfies supp{φ} ⊂ R× [0, T ).) We now consider convergence for each term
of L(uN,ε, φ).

For the first term on the right-hand side of (2.20), using (2.15) and the fact that
supp{φ} is compact we can see∫ T

0

∫
R
uN,ε(φt − φtxx)dxdt→

∫ T

0

∫
R
uN (φt − φtxx)dxdt as ε→ 0.

The second term can be estimated as follows:∣∣∣∣∣
∫ T

0

∫
R

[(∂xu
N,ε)3 − (uNx )3]φxxdxdt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
R

(∂xu
N,ε − uNx )[(∂xu

N,ε)2 + (uNx )2 + ∂xu
N,εuNx ]φxxdxdt

∣∣∣∣∣
≤ 3

4
M2

0 ||φxx||L∞
∫ ∫

supp{φ}
|∂xuN,ε − uNx |dxdt→ 0 as ε→ 0.
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2818 YU GAO, LEI LI, AND JIAN-GUO LIU

Similarly, we have the following estimates for the rest terms on the right-hand side of
(2.20): ∫ T

0

∫
R

[(uN,ε)3 − (uN )3]φxxxdxdt→ 0 as ε→ 0,∫ T

0

∫
R

[(uN,ε)3 − (uN )3]φxdxdt→ 0 as ε→ 0,

and ∫ T

0

∫
R
[uN,ε(∂xu

N,ε)2 − uN (uNx )2]φxdxdt

=

∫ T

0

∫
R

[(uN,ε − uN )(∂xu
N,ε)2 + uN (∂xu

N,ε + uNx )(∂xu
N,ε − uNx )]φxdxdt

→ 0 as ε→ 0.

Hence, the above estimates shows that for any test function φ ∈ C∞c (R× [0,∞))

L(uN,ε, φ)→ L(uN , φ) as ε→ 0.(2.21)

Therefore, combining (2.19) and (2.21) gives

L(uN , φ) +

∫
R
φ(x, 0)dmN

0 = 0,

which implies that uN (x, t) is an N -peakon solution to the mCH equation with initial
date mN

0 (x).

2.3. A limiting system of ODEs as ε → 0. In this section, we derive a
system of ODEs to describe N -peakon solutions by letting ε → 0 in (2.7). First, we
give an important lemma.

Lemma 2.1. The following equality holds:

lim
ε→0

(ρε ∗ (Gεx)2)(0) =
1

12
.

Proof. Set F (y) =
∫ y
−∞ ρ(x)dx. Because ρ is an even function, we have

F (−y) =

∫ −y
−∞

ρ(x)dx =

∫ ∞
y

ρ(x)dx.

Therefore,

F (y) + F (−y) =

∫ y

−∞
ρ(x)dx+

∫ ∞
y

ρ(x)dx = 1.(2.22)

Furthermore, we have
F (+∞) = 1, F (−∞) = 0.

Due to ρε(x) = ρε(−x), we can obtain

Iε : = (ρε ∗ (Gεx)2)(0) =

∫
R
ρε(y)

(∫
R

1

2
e−|x−y|ρ′ε(x)dx

)2

dy

=
1

4

∫
R
ρ(y)

(
1

ε

∫ y

−∞
eε(x−y)ρ′(x)dx+

1

ε

∫ ∞
y

eε(y−x)ρ′(x)dx

)2

dy

=
1

4

∫
R
ρ(y)

(∫ y

−∞
e−ε|x−y|ρ(x)dx−

∫ ∞
y

e−ε|x−y|ρ(x)dx

)2

dy.
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2819

Then, by using Lebesgue dominated convergence theorem and (2.22) we have

lim
ε→0

Iε =
1

4

∫
R
ρ(y)

(∫ y

−∞
ρ(x)dx−

∫ ∞
y

ρ(x)dx

)2

dy

=
1

4

∫
R
ρ(y)(F (y)− F (−y))2dy =

1

4

∫ ∞
−∞

F ′(y)(1− 2F (y))2dy

=
1

4

∫ ∞
−∞

F ′(y)− 2(F 2(y))′ +
4

3
(F 3(y))′dy

=
1

4

(
F (+∞)− 2F 2(+∞) +

4

3
F 3(+∞)

)
=

1

12
.

Remark 2.1. The above limit is independent of the mollifier ρ and intrinsic to
the mCH equation (1.1). Consider one peakon solution pG(x − x(t)). To obtain the
correct speed for x(t), the right value for G2

x at 0 is the limit obtained by Lemma 2.1:

(G2
x)(0) =

1

12
.

By the jump condition for piecewise smooth weak solutions to (1.1) in [11, equation
(2.2)], the speed for x(t) should be

dx(t)

dt
= G2(0)− 1

3
[G2

x(0+) +Gx(0+)Gx(0−) +G2
x(0−)],

implying that the correct value of G2
x at 0 is

1

3
[G2

x(0+) +Gx(0+)Gx(0−) +G2
x(0−)] =

1

12
,

which agrees with the limit obtained by Lemma 2.1. This is different from the precise
representative of the BV function G2

x at the discontinuous point 0

1

2
[G2

x(0−) +G2
x(0+)] =

1

4
.

Next, we use Lemma 2.1 to obtain the system of ODEs to describe N -peakon
solutions by letting ε→ 0 in (2.7).

Proposition 2.2. For any constants {pi}Ni=1, {xi}Ni=1 ⊂ R (note that xi are
fixed compared with xεi(t) in (2.3)), denote Ni1 := {1 ≤ j ≤ N : xj 6= xi} and
Ni2 := {1 ≤ j ≤ N : xj = xi} for 1 ≤ i ≤ N . Set

uN,ε(x) :=

N∑
j=1

pjG
ε(x− xj),

and
U ε(x) := [ρε ∗ (uN,ε)2](x)− [ρε ∗ (uN,εx )2](x).

(Note that xi are constants in U ε(x) comparing with UN,ε(x, t) defined by (2.6).)
Then we have

lim
ε→0

U ε(xi) =

 N∑
j=1

pjG(xi − xj)

2

−

 ∑
j∈Ni1

pjGx(xi − xj)

2

− 1

12

( ∑
k∈Ni2

pk

)2

.

(2.23)
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2820 YU GAO, LEI LI, AND JIAN-GUO LIU

Proof. See the appendix.

Remark 2.2 (system of ODEs). From Proposition 2.2, we give a system of ODEs

to describe N -peakon solution uN (x, t) =
∑N
i=1 piG(x− xi(t)). For 1 ≤ i ≤ N , set

Ni1(t) := {1 ≤ j ≤ N : xj(t) 6= xi(t)} and Ni2(t) := {1 ≤ j ≤ N : xj(t) = xi(t)}.
(2.24)

The system of ODEs is given by, 1 ≤ i ≤ N,

d

dt
xi(t) =

(
N∑
j=1

pjG(xi(t)− xj(t))
)2

−
( ∑
j∈Ni1(t)

pjGx(xi(t)− xj(t))
)2

(2.25)

− 1

12

( ∑
k∈Ni2(t)

pk

)2

.

Before the collisions of peakons, we can deduce (1.4) from (2.25).

Remark 2.3 (nonuniqueness and the change of energy H0). Consider the initial
two peakons p1δ(x − x1(0)) + p2δ(x − x2(0)) with x1(0) < x2(0) and 0 < p2 < p1.
Due to (1.4), the evolution system before collision for x1(t) and x2(t) is given by

d

dt
x1(t) =

1

6
p2

1 +
1

2
p1p2e

x1(t)−x2(t),

d

dt
x2(t) =

1

6
p2

2 +
1

2
p1p2e

x1(t)−x2(t).

(2.26)

Hence, they will collide at finite time T∗ = 6(x2(0)−x1(0))
p21−p22

. When t > T∗, if we assume

the two peakons stick together, according to (2.25) the evolution equation is given by

d

dt
xi(t) =

1

6
(p1 + p2)2, t > T∗, i = 1, 2.(2.27)

For i = 1, 2, we define

x̂i(t) =

{
xi(t) given by (2.26) for t < T∗,

xi(t) given by (2.27) for t > T∗,
(2.28)

and the sticky peakon weak solution

û(x, t) = p1G(x− x̂1(t)) + p2G(x− x̂2(t)), m̂ = û− ûxx.(2.29)

In this case, the energy H0 (defined by (1.15)) of this sticky solution m̂ is given by

H0(m̂(t)) =


1

2
(p2

1 + p2
2) + p1p2e

x̂1(t)−x̂2(t), t < T∗,

1

2
(p1 + p2)2, t > T∗.

(2.30)

The energy H0 is increasing before T∗ and H0 is continuous at the collision time T∗.
If we assume the two peakons cross each other after t > T∗ (still with amplitudes

p1, p2), then according to (2.25), the evolution equations for x1(t) and x2(t) are given
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2821

by 
d

dt
x1(t) =

1

6
p2

1 +
1

2
p1p2e

x2(t)−x1(t), t > T∗,

d

dt
x2(t) =

1

6
p2

2 +
1

2
p1p2e

x2(t)−x1(t), t > T∗.
(2.31)

This system is different with (1.4). For i = 1, 2, we define

x̄i(t) =

{
xi(t) given by (2.26) for t < T∗,

xi(t) given by (2.31) for t > T∗,
(2.32)

and the crossing peakon weak solution

ū(x, t) = p1G(x− x̄1(t)) + p2G(x− x̄2(t)), m̄ = ū− ūxx.(2.33)

For the energy H0 of the crossing solution m̄, we have

H0(m̄(t)) =
1

2
(p2

1 + p2
2) + p1p2e

−|x̄1(t)−x̄2(t)|

=


1

2
(p2

1 + p2
2) + p1p2e

x̄1(t)−x̄2(t), t < T∗,

1

2
(p2

1 + p2
2) + p1p2e

x̄2(t)−x̄1(t), t > T∗.

(2.34)

H0 increases before time T∗ and decreases after time T∗. H0 is again continuous at
the collision time T∗.

Both the sticky solution u(x, t) and the crossing solution ū(x, t) are two global
peakon solutions, which proves nonuniqueness of weak solutions to the mCH equation.
This nonuniqueness example can also be found in [12, Proposition 4.4].

The above example also shows that after collision, peakons can merge into one
giving the sticky solution u, or cross each other yielding the crossing solution ū.
Moreover, if we view T∗ as the start point with one peakon, then the crossing solution
ū shows the scattering of one peakon. This indicates all of the situation mentioned in
question (iii) in the introduction.

At the end of this section, we give a useful proposition.

Proposition 2.3. Let xi(t), 1 ≤ i ≤ N , be N Lipschitz functions in [0, T )
with x1(t) < x2(t) < · · · < xN (t) and p1, . . . , pN are N nonzero constants. Then,

uN (x, t) :=
∑N
i=1 piG(x − xi(t)) is a weak solution to the mCH equation if and only

if xi(t) satisfies (1.4).

Proof. Obviously, we have

uN ∈ C([0, T );H1(R)) ∩ L∞(0, T ;W 1,∞(R)).

In the following proof we denote u := uN . For any test function φ ∈ C∞c (R× [0, T )),
let

(2.35) L(u, φ) =

∫ T

0

∫
R
u(φt − φtxx)dxdt

−
∫ T

0

∫
R

[
1

3
(u3
xφxx + u3φxxx)− (u3 + uu2

x)φx

]
dxdt =: I1 + I2.
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2822 YU GAO, LEI LI, AND JIAN-GUO LIU

Denote x0 := −∞, xN+1 := +∞ and p0 = pN+1 = 0. By integration by parts for
space variable x, we calculate I1 as

I1 =

∫ T

0

∫
R
u(φt − φtxx)dxdt =

N∑
i=0

∫ T

0

∫ xi+1

xi

u(φt − φtxx)dxdt

=

N∑
i=0

∫ T

0

∫ xi+1

xi

1

2

∑
j≤i

pje
xj−x +

1

2

∑
j>i

pje
x−xj

 (φt − φtxx)dxdt

=

∫ T

0

N∑
i=1

piφt(xi(t), t)dt.(2.36)

Similarly, for I2 we have

I2 = −
∫ T

0

∫
R

[
1

3
(u3
xφxx + u3φxxx)− (u3 + uu2

x)φx

]
dxdt

=

∫ T

0

N∑
i=1

piφx(xi(t))

1

6
p2
i +

1

2

∑
j<i

pipje
xj−xi +

1

2

∑
j>i

pipje
xi−xj

+
∑

1≤m<i<n≤N
pmpne

xm−xn

 dt

=

∫ T

0

N∑
i=1

piφx(xi(t))V (t)dt,(2.37)

where V (t) is given by

V (t) =
1

6
p2
i +

1

2

∑
j<i

pipje
xj−xi +

1

2

∑
j>i

pipje
xi−xj +

∑
1≤m<i<n≤N

pmpne
xm−xn .

Combining (2.35), (2.36), and (2.37) gives

L(u, φ) =

N∑
i=1

pi

∫ T

0

d

dt
φ(xi(t), t)dt+

∫ T

0

N∑
i=1

piφx(xi(t))

(
V (t)− d

dt
xi(t)

)
dt

= −
∫
R
φ(x, 0)dmN

0 +

∫ T

0

N∑
i=1

piφx(xi(t))

(
V (t)− d

dt
xi(t)

)
dt.(2.38)

By Definition 2.2 we know uN is a weak solution if and only if d
dtxi(t) = V (t), which

is (1.4).

Remark 2.4. Proposition 2.3 implies the uniqueness of the limiting trajectories
xi(t) before collisions. Consider the two peakon case in Remark 2.3. From Proposition
2.3, we know that solutions to (1.4) cannot be used to construct peakon weak solutions
after t > T∗. If we assume x1(t) > x2(t) when t > T∗, Proposition 2.3 tells that (2.31)
is the right evolution equation for xi(t), i = 1, 2.

3. Limiting peakon solutions as ε → 0. In this section, we analyze peakon
solutions given by the dispersive regularization.
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2823

3.1. No collisions for the regularized system. In this subsection, we show
that trajectories {xεi(t)}Ni=1 obtained by (2.7) will never collide. Define

f ε1(x) :=
1

2

∫ ∞
0

ρε(x− y)e−ydy and f ε2(x) :=
1

2

∫ 0

−∞
ρε(x− y)eydy.(3.1)

Changing variable gives

f ε1(x) =
1

2

∫ x

−∞
ρε(y)ey−xdy and f ε2(x) =

1

2

∫ ∞
x

ρε(y)ex−ydy.(3.2)

It is easy to see that both f ε1 , f
ε
2 ∈ C∞(R) and we have the following lemma.

Lemma 3.1. Let C0 := ||ρ||L∞ . Then, the following properties for f εi (i = 1, 2)
hold:

(i)

f ε2(x) = f ε1(−x), Gε(x) = f ε1 + f ε2 , and Gεx(x) = −f ε1(x) + f ε2(x).(3.3)

(ii)

||f ε1 ||L∞ , ||f ε2 ||L∞ ≤
1

2
, and ||∂xf ε1 ||L∞ , ||∂xf ε2 ||L∞ ≤

C0

2ε
+

1

2
.(3.4)

Proof. (i) The first two equalities in (3.3) can be easily proved. For the third one,
taking a derivative of (3.2) gives

∂xf
ε
1(x) =

1

2
ρε(x)− f ε1(x), and ∂xf

ε
2(x) = −1

2
ρε(x) + f ε2(x).(3.5)

Hence, we have Gεx(x) = −f ε1(x) + f ε2(x).
(ii) By Definition (3.1), we can obtain

||f ε1 ||L∞ , ||f ε2 ||L∞ ≤
1

2
.

Due to (3.5) and C0 = ||ρ||L∞ , we have

||∂xf ε1 ||L∞ , ||∂xf ε2 ||L∞ ≤
C0

2ε
+

1

2
.

Theorem 3.1. Let {xεi(t)}Ni=1 be a solution to (2.7) subject to xεi(0) = ci, i =

1, . . . , N and
∑N
i=1 |pi| ≤ M0 for some constant M0. If c1 < c2 < · · · < cN , then

xε1(t) < xε2(t) < · · · < xεN (t) for all t > 0.

Proof. If collisions between {xεi}Ni=1 happen, we assume that the first collision is
between xεk and xεk+1 for some 1 ≤ k ≤ N − 1 at time T∗ > 0. Our target is to prove
T∗ = +∞.

By (2.3) and (3.3), we have

uN,ε(x, t) =

N∑
i=1

piG
ε(x− xεi) =

N∑
i=1

pi (f ε1(x− xεi) + f ε2(x− xεi)) ,

and

uN,εx (x, t) =

N∑
i=1

piG
ε
x(x− xεi) =

N∑
i=1

pi (−f ε1(x− xεi) + f ε2(x− xεi)) .
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2824 YU GAO, LEI LI, AND JIAN-GUO LIU

Hence, we obtain

UNε (x, t) = (uN,ε + uN,εx )(uN,ε − uN,εx ) = 4

(
N∑
i=1

pif
ε
2(x− xεi)

)(
N∑
i=1

pif
ε
1(x− xεi)

)
.

From (2.7), we have

d

dt
xεk =

[
ρε ∗ UNε

]
(xεk) and

d

dt
xεk+1 =

[
ρε ∗ UNε

]
(xεk+1).(3.6)

For t < T∗, taking the difference gives

d

dt
(xεk+1 − xεk)

= 4

∫
R
ρε(y)

(
N∑
i=1

pif
ε
2(xεk+1 − y − xεi)

)(
N∑
i=1

pif
ε
1(xεk+1 − y − xεi)

)
dy

− 4

∫
R
ρε(y)

(
N∑
i=1

pif
ε
2(xεk − y − xεi)

)(
N∑
i=1

pif
ε
1(xεk − y − xεi)

)
dy

= 4

∫
R
ρε(y)

(
N∑
i=1

pif
ε
2(xεk+1 − y − xεi)

)

×
N∑
i=1

pi
(
f ε1(xεk+1 − y − xεi)− f ε1(xεk − y − xεi)

)
dy

+ 4

∫
R
ρε(y)

(
N∑
i=1

pif
ε
1(xεk − y − xεi)

)

×
N∑
i=1

pi
(
f ε2(xεk+1 − y − xεi)− f ε2(xεk − y − xεi)

)
dy.

Combining (3.3) and (3.4) yields∣∣∣∣ ddt (xεk+1 − xεk)

∣∣∣∣ ≤ 2M2
0 ||∂xf ε1 ||L∞(xεk+1 − xεk) + 2M2

0 ||∂xf ε2 ||L∞(xεk+1 − xεk)

≤ Cε(xεk+1 − xεk), t < T∗,(3.7)

where

Cε = M2
0

(
C0

ε
+ 1

)
.

Hence, for t < T∗ we have

−Cε(xεk+1 − xεk) ≤ d

dt
(xεk+1 − xεk) ≤ Cε(xεk+1 − xεk),(3.8)

which implies

0 < (ck+1 − ck)e−Cεt ≤ xεk+1(t)− xεk(t) for t < T∗.

By our assumption about T∗, we know T∗ = +∞. Hence, we have xε1(t) < xε2(t) <
· · · < xεN (t) for all t > 0.
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2825

Remark 3.1. Let uN (x, t) =
∑N
i=1G(x − xi(t)) be an N -peakon solution to the

mCH equation obtained by Theorem 2.1. From Theorem 3.1, we have

x1(t) ≤ x2(t) ≤ · · · ≤ xN (t).(3.9)

This result shows that the limit solution allows no crossing between peakons.

3.2. Two peakon solutions. As mentioned in the introduction, the sticky
peakon solutions given in [12] also satisfy (3.9). In this subsection, when N = 2,
we show that the limiting N -peakon solutions given in Theorem 2.1 agree with sticky
peakon solutions (see u(x, t) in Remark 2.3). Due to Proposition 2.3, the cases with
no collisions are easy to verify.

Consider the case with a collision for N = 2. When p2
1 > p2

2 and x1(0) = c1 <
c2 = x2(0), the equations for x1(t) and x2(t) before collisions are given by

d

dt
x1(t) =

1

6
p2

1 +
1

2
ex1(t)−x2(t),

d

dt
x2(t) =

1

6
p2

2 +
1

2
ex1(t)−x2(t).

(3.10)

The two peakons collide at T∗ = 6(c2−c1)
p21−p22

. Next, we prove the following theorem.

Theorem 3.2. Assume N = 2 and mN
0 (x) = p1δ(x−c1)+p2δ(x−c2) with p2

1 > p2
2

and c1 < c2. Then, the peakon solution uN (x, t) = p1G(x − x1(t)) + p2G(x − x2(t))
obtained in Theorem 2.1 is a sticky peakon solution, which means

x1(t) = x2(t) for t ≥ T∗ :=
6(c2 − c1)

p2
1 − p2

2

.(3.11)

To prove Theorem 3.2, we first consider (2.7) for N = 2. Denote Sε(t) := xε2(t)−
xε1(t) > 0. By the fact that f ε1(−x) = f ε2(x), we find that

d

dt
xε1 = 4

∫ ∞
−∞

ρε(y)
[
p1f

ε
2(−y) + p2f2(−Sε − y)

][
p1f

ε
1(−y) + p2f

ε
1(−Sε − y)

]
dy

= 4

∫ ∞
−∞

ρε(y)
[
p1f

ε
1(y) + p2f

ε
1(Sε + y)

][
p1f

ε
2(y) + p2f

ε
2(Sε + y)

]
dy.(3.12)

By changing of variables y → −y and using the fact that ρε is even, we obtain

d

dt
xε2 = 4

∫ ∞
−∞

ρε(y)
[
p1f

ε
2(Sε − y) + p2f2(−y)

][
p1f

ε
1(Sε − y) + p2f

ε
1(−y)

]
dy

= 4

∫ ∞
−∞

ρε(y)
[
p1f

ε
2(Sε + y) + p2f

ε
2(y)

][
p1f

ε
1(Sε + y) + p2f

ε
1(y)

]
dy.(3.13)

Taking the difference of (3.12) and (3.13) gives

d

dt
Sε = 4(p2

2 − p2
1)

∫ ∞
−∞

ρε(y)
[
f ε1(y)f ε2(y)− f ε1(Sε + y)f ε2(Sε + y)

]
dy.(3.14)

We have the following useful proposition, the proof of which is in the appendix.

Proposition 3.1. For any s > 0, we have

lim
ε→0

4

∫ ∞
−∞

ρε(x)
[
f ε1(x)f ε2(x)− f ε1(s+ x)f ε2(s+ x)

]
dx =

1

6
.(3.15)

The above convergence is uniform about s ∈ [δ,+∞) for any δ > 0.
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2826 YU GAO, LEI LI, AND JIAN-GUO LIU

Proof of Theorem 3.2. Let mN
0 (x) = p1δ(x − c1) + p2δ(x − c2) for constants pi

and ci satisfying

c1 < c2 and p2
1 > p2

2.(3.16)

xε1(t) and xε2(t) are obtained by (2.7). From Theorem 3.1, we have xε1(t) < xε2(t) for
any t ≥ 0. By Theorem 2.1, for any T > 0, there are x1(t), x2(t) ∈ C([0, T ]) such that

xε1(t)→ x1(t) and xε2(t)→ x2(t) in C([0, T ]), ε→ 0.

Hence, we have
x1(t) ≤ x2(t).

By Proposition 2.3, we know that the solution given by Theorem 2.1 is the same as
the sticky peakon solution when t < T∗.

By (3.14) and Proposition 3.1, we can see that for any 0 < δ < min
{
c2 −

c1,− 1
6 (p2

2 − p2
1)
}

, there is a ε0 > 0 such that when Sε(t) ≥ δ we have

1

6
(p2

2 − p2
1)− δ < d

dt
Sε(t) <

1

6
(p2

2 − p2
1) + δ < 0 for any ε < ε0.

Claim 1. If there exists t0 > 0 such that Sε(t0) ≤ δ, then Sε(t) ≤ δ for t > t0.
Indeed, if there is t1 > t0 and Sε(t1) > δ, we set

t2 := inf{t < t1 : Sε(s) > δ for s ∈ (t, t1)}.

Hence, t2 ≥ t0 and Sε(t2) = δ. Moreover, Sε(t) > δ for t ∈ (t2, t1). Therefore,

Sε(t1) =

∫ t1

t2

d

ds
Sε(s)ds+ Sε(t2) ≤

[1

6
(p2

2 − p2
1) + δ

]
(t1 − t2) + δ ≤ δ,

which is a contradiction with Sε(t1) > δ.

Claim 2. We have Sε(t) ≤ δ for t ≥ 6(c2−c1−δ)
p21−p22−6δ

=: tδ. If not, from Claim 1 we

have Sε(t) > δ for t ≤ tδ. Hence,

Sε(tδ) =

∫ tδ

0

d

ds
Sε(s)ds+ c2 − c1 ≤

[1

6
(p2

2 − p2
1) + δ

]
tδ + c2 − c1 ≤ δ,

which is a contradiction.

With the above claims, we can obtain

lim
ε→0

Sε(t) = 0 for t ≥ 6(c2 − c1)

p2
1 − p2

2

,(3.17)

which implies (3.11)

Remark 3.2. Though the peakons are not physical particles and they are not
governed by Newton’s laws, we have the analogy of the conservation of momentum
during the collision. Let p be the “mass” of the peakon. The speeds of the two
peakons before collision are 1

6p
2
1 + 1

2p1p2 and 1
6p

2
2 + 1

2p1p2, respectively. The speed
after collision is 1

6 (p1 + p2)2. We can check formally that

(p1 + p2)
1

6
(p1 + p2)2 = p1

(
1

6
p2

1 +
1

2
p1p2

)
+ p2

(
1

6
p2

2 +
1

2
p1p2

)
.
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2827

We can then introduce the instantaneous (infinite) “force” as

F1 = p1[ẋ1]δ(t− T∗) =
1

6
p1p2(p2 − p1)δ(t− T∗),

where [ẋ1] represents the jump of ẋ at t = T∗. Similarly,

F2 = p2[ẋ2]δ(t− T∗) =
1

6
p2p1(p1 − p2)δ(t− T∗).

Here F1 + F2 = 0, which is equivalent to the “local conservation of momentum.”

3.3. Discussion about three particle system. When N ≥ 3, the limiting
N -peakon solutions obtained by Theorem 2.1 can be complicated. In this subsection,
we study the interactions between three peakon trajectories.

Denote the initial data x1(0) < x2(0) < x3(0) and constant amplitudes of peakons
pi > 0, i = 1, 2, 3. Let xεi(t), i = 1, 2, 3, be solutions to the regularized system (2.7)
and xi(t), i = 1, 2, 3, be the limiting trajectories given by Theorem 2.1. Let xsi (t),
i = 1, 2, 3, be trajectories to sticky peakon solutions given in [12]. Before the first
collision time, by Proposition 2.3 we know that xi(t) = xsi (t), i = 1, 2, 3, which is the
solution to (1.4). However, after collisions, the limiting trajectories xi(t) may or may
not coincide with the sticky trajectories xsi (t). Below, we consider two typical cases.

Sticky case (i). We illustrate this case by an example with p1 = 4, p2 = 2, p3 = 1
and x1(0) = −7, x2(0) = −5, x3(0) = −3 (see Figure 1). For the sticky trajectories
(red dashed lines in Figure 1) xsi (t), i = 1, 2, 3, the first collision happens between
xs2(t) and xs3(t) at time t∗1. Then xs2(t) and xs3(t) are sticky together traveling with
new amplitude p2 + p3 for t ∈ (t∗1, t

∗
2). Because p1 > p2 + p3, xs1(t) catches up with

xs2(t) and xs3(t) at t∗2. At last, the three peakons are all sticky together after t∗2.
When ε > 0 is small, the behavior of trajectories xεi(t), i = 1, 2, 3, given by the

regularized system (2.7) is very similar to the sticky trajectories (see the blue solid
lines in Figure 1). This indicates that xi(t) ≡ xsi (t) for any t > 0 and the limiting
peakon solution given by Theorem 2.1 agrees with the sticky peakon solution.

Sticky and separation case (ii). We illustrate this case by an example with p1 =
4, p2 = 2, p3 = 3 and x1(0) = −7, x2(0) = −6, x3(0) = −2 (see Figure 2). For

-5 0 5
0

0.5

1

1.5

2

2.5

x

t

·
·

t⇤1

t⇤2

Fig. 1. p1 = 4, p2 = 2, p3 = 1 and x1(0) = −7, x2(0) = −5, x3(0) = −3; ε = 0.02. The
blue solid lines are trajectories of three peakons {xεi(t)}3i=1 given by dispersive regularization system
(2.7). The red dashed lines are trajectories of sticky three peakons.
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-5 0 5
0

0.5

1

1.5

2

x

t

t̂1

t̂2

·
·T1 ·

Fig. 2. p1 = 4, p2 = 2, p3 = 3 and x1(0) = −7, x2(0) = −6, x3(0) = −2; ε = 0.02. The blue
solid lines are trajectories for three peakons {xεi(t)}3i=1 obtained by dispersive regularization system
(2.7). The red dashed lines are trajectories of sticky three peakons.

the sticky trajectories (the red dashed lines in Figure 2) xsi (t), i = 1, 2, 3, the first
collision happens between xs1(t) and xs2(t) at time t̂1. Then xs1(t) and xs2(t) are sticky
together traveling with new amplitude p1 + p2 for t ∈ (t̂1, t̂2). Because p1 + p2 > p3,
xs1(t) and xs2(t) catch up with xs3(t) at t̂2. At last, the three peakons are all sticky
together after t̂2.

When ε > 0 is small, the behavior of trajectories xεi(t), i = 1, 2, 3, given by
the regularized system (2.7) is very similar with the sticky trajectories xsi (t) before
T1, where xε1(t) get close to xε2(t). However, when xε3(t) comes close to xε2(t), xε2(t)
separates from xε1(t) around T1 and gradually moves to xε3(t) and then holds together
with xε3(t). Since p2 + p3 > p1, xε2(t) and xε3(t) get far away from xε1(t).

This indicates the limiting trajectories xi(t) 6= xsi (t) for t ≥ T1 and the limiting
peakon solution given by Theorem 2.1 does not agree with the sticky peakon solution.
Below, we offer some discussion about this interesting phenomenon.

Next, we discuss in detail the limiting solution in cases like Figure 2, i.e., p1 >
p2 > 0, p1 + p2 > p3 > 0 , p1 < p2 + p3 and x3(0) − x2(0) � x2(0) − x1(0) > 0.
Consider the limiting solution of the form

u(x, t) =
3∑
i=1

piG(x− xi(t)),

where xi(t) are Lipschitz continuous and x1(t) ≤ x2(t) ≤ x3(t). Since x1(0) < x2(0) <
x3(0), by Proposition 2.3, xi(t) : i = 1, 2, 3 satisfy the following system for t ∈ (0, T∗),
where T∗ > 0 is the first collision time:

dx1

dt
=

1

6
p2

1 +
1

2
p1p2e

−(x2−x1) +
1

2
p1p3e

−(x3−x1),

dx2

dt
=

1

6
p2

2 +
1

2
p1p2e

−(x2−x1) +
1

2
p2p3e

−(x3−x2) + p1p3e
−(x3−x1),

dx3

dt
=

1

6
p2

3 +
1

2
p1p3e

−(x3−x1) +
1

2
p2p3e

−(x3−x2).

(3.18)

Let Si := xi+1 − xi ≥ 0, i = 1, 2. From (3.18), the distances Si satisfy the following
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equations for t < T∗:
dS1

dt
=

1

6
(p2

2 − p2
1) +

1

2
p2p3e

−S2 +
1

2
p1p3e

−(S1+S2),

dS2

dt
=

1

6
(p2

3 − p2
2)− 1

2
p1p2e

−S1 − 1

2
p1p3e

−(S1+S2).

(3.19)

For the case in Figure 2 to happen, S2(0) should be large enough so that S1(T∗) = 0
and

lim
t→T−∗

dS1

dt
=

1

6
(p2

2 − p2
1) +

1

2
p2p3e

−S2(T∗) +
1

2
p1p3e

−S2(T∗) < 0.

In other words, S2(T∗) > S∗2 > 0, where S∗2 is defined by

1

6
(p2

2 − p2
1) +

1

2
p2p3e

−S∗2 +
1

2
p1p3e

−S∗2 = 0.

Since S1(t) ≥ 0, while

1

6
(p2

2 − p2
1) +

1

2
p2p3e

−S2 +
1

2
p1p3e

−(S1+S2) < 0,

(3.19) must not be valid for t ∈ (T∗, T∗ + δ) for some δ > 0 and neither does (3.18).
Indeed, the new system of equations must be (1.4) for N = 2:

d

dt
xi(t) =

1

6
(p1 + p2)2 +

1

2
(p1 + p2)p3e

xi(t)−x3(t), i = 1, 2,

d

dt
x3(t) =

1

6
p2

3 +
1

2
(p1 + p2)p3e

x2(t)−x3(t).

(3.20)

Hence, S1(t) = 0 for t ∈ (T∗, T∗+δ) while S2(t) keeps decreasing because p1 +p2 > p3.
Note that the sticky solutions xsi (t) satisfy (3.20) until xs1(t) = xs2(t) = xs3(t). On

the contrary, the simulations indicate that x1(t) and x2(t) can split when x2(t) < x3(t)
and then {xi(t)}3i=1 do not satisfy (3.20) after the splitting. Define the splitting time
T1 as

T1 = inf{t ≥ T∗ : S1(t) > 0}.
We claim that T1 ≥ T2 := inf{t > 0 : S2(t) = S∗2} > T∗. Suppose otherwise

T1 < T2; then there exists δ > 0 such that S1(t) > 0 for t ∈ (T1, T1 + δ) with some
small δ, S1(T1) = 0 and S := inft∈(T1,T1+δ) S2(t) > S∗2 . For t ∈ (T1, T1 + δ), S1 and
S2 must satisfy (3.19) by Proposition 2.3. Consequently,

d

dt
S1(t) ≤ 1

6
(p2

2 − p2
1) +

1

2
p2p3e

−S +
1

2
p1p3e

−S < 0, t ∈ (T1, T1 + δ).

Since S1(T1) = 0, we must have S1(t) ≤ 0 for t ∈ (T1, T1 + δ). This is a contradiction.
Now that (3.20) holds on (T∗, T1) while T1 ≥ T2, we find

T2 = T∗ + 6(S2(T∗)− S∗2 )/((p1 + p2)2 − p2
3) > T∗.

The question is when the split happens (i.e., how large can T1 be).

Conjecture. At the point of splitting (t = T1), both x1(t) and x2(t) are right-
differentiable, and x1(t) : t ≥ T1 and x2(t) : t ≥ T1 are tangent at t = T1.
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Fig. 3. (a) p1 = 4, p2 = 3, p3 = 2 and x1(0) = −4, x2(0) = −3, x3(0) = 4. The three peakons

merge into one peakon. (b) p1 = 4, p2 = 3, p3 = 2 and x1(0) = −4, x2(0) = −2, x3(0) = 4. The
three peakons merge into two separated peakons.

If this conjecture is valid, then we must have

lim
t→T+

1

d

dt
S1(t) = 0

and therefore
T1 = T2.

In summary, the dispersive regularization limit weak solution is quite different
from the sticky particle model in [12] when N ≥ 3. Another difference we note is
that the sticky particle model has bifurcation instability for the dynamics of a three
peakon system: consider a three particles system with initial data p1 = 4, x1(0) = −4,
p2 = 3, x2(0) ∈ (−4, 4), and p3 = 2, x3(0) = 4. There exists xc ∈ (−4, 4) such that in
the x2(0) > xc cases, the second and third peakons merge first and then they move
apart from the first one (see Figure 3(b)), while x2(0) < xc implies that the first two
merge first and then they catch up with the third one, merging into a single particle
(see Figure 3(a)). This is a kind of bifurcation instability due to the initial position
of the second peakon: a little change in x2(0) results in very different solutions at
later time. It seems that the ε→ 0 limit does not possess such instability due to the
splitting as in Figure 2.

4. Mean field limit. In this section, we use a particle method to prove global
existence of weak solutions to the mCH equation for general initial data m0 ∈M(R).

Assume that the initial date m0 satisfies

m0 ∈M(R), supp{m0} ⊂ (−L,L), M0 :=

∫
R
d|m0| < +∞.(4.1)

Let us choose the initial data {ci}Ni=1 and {pi}Ni=1 to approximate m0(x). Divide the
interval [−L,L] into N nonoverlapping subinterval Ij by using the uniform grid with
size h = 2L

N . We choose ci and pi as

ci := −L+ (i− 1

2
)h; pi :=

∫
[ci−h2 ,ci+h

2 )

dm0, i = 1, 2, . . . , N.(4.2)

Hence, we have

N∑
i=1

|pi| ≤
∫

[−L,L]

d|m0| ≤M0.(4.3)
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2831

Using (4.2), one can easily prove that m0 is approximated by

mN
0 (x) :=

N∑
j=1

pjδ(x− cj)(4.4)

in the sense of measures. Actually, for any test function φ ∈ Cb(R), we know φ is
uniformly continuous on [−L,L]. Hence, for any η > 0, there exists a δ > 0 such that
when x, y ∈ [−L,L] and |x− y| < δ, we have |φ(x)− φ(y)| < η. Hence, choose h

2 < δ
and we have∣∣∣∣ ∫

R
φ(x)dm0 −

∫
R
φ(x)dmN

0

∣∣∣∣ =

∣∣∣∣ ∫
[−L,L]

φ(x)dm0 −
∫

[−L,L]

φ(x)dmN
0

∣∣∣∣
=

∣∣∣∣ N∑
i=1

∫
[ci−h2 ,ci+h

2 )

(
φ(x)− φ(ci)

)
dm0

∣∣∣∣ ≤ η N∑
i=1

∫
[ci−h2 ,ci+h

2 )

d|m0| ≤M0η.(4.5)

Let η → 0 and we obtain the narrow convergence from mN
0 (x) to m0(x).

For initial datamN
0 (x), Theorem 2.1 gives a weak solution uN (x, t) =

∑N
i=1 piG(x−

xi(t)), where xi(0) = ci and pi are given by (4.2). Moreover, (2.13) holds for xi(t),
1 ≤ i ≤ N.

Next, we are going to use some space-time BV estimates to show compactness of
uN . , we recall the definition of BV functions.

Definition 4.1. (i) For dimension d ≥ 1 and an open set Ω ⊂ Rd, a function
f ∈ L1(Ω) belongs to BV (Ω) if

Tot.V ar.{f} := sup
{∫

Ω

f(x)∇ · φ(x)dx : φ ∈ C1
c (Ω;Rd), ||φ||L∞ ≤ 1

}
<∞.

(ii) (Equivalent definition for one dimension case) A function f belongs to BV (R)
if for any {xi} ⊂ R, xi < xi+1, the following statement holds:

Tot.V ar.{f} := sup
{xi}

{∑
i

|f(xi)− f(xi−1)|
}
<∞.

Remark 4.1. Let Ω ⊂ Rd for d ≥ 1 and f ∈ BV (Ω). Df := (Dx1
f, . . . ,Dxdf) is

the distributional gradient of f . Then, Df is a vector Radon measure and the total
variation of f is equal to the total variation of |Df |: Tot.V ar.{f} = |Df |(Ω). Here,
|Df | is the total variation measure of the vector measure Df [20, Definition (13.2)].

If a function f : R → R satisfies Definition 4.1(ii), then f satisfies Definition (i).
On the contrary, if f satisfies Definition 4.1(i), then there exists a right continuous
representative which satisfies Definition (ii). See [20, Theorem 7.2] for the proof.

Now, we give some space and time BV estimates about uN , ∂xu
N , which is similar

to [12, Proposition 3.3].

Proposition 4.1. Assume initial value m0 satisfies (4.1). pi and ci, 1 ≤ i ≤ N ,

are given by (4.2) and mN
0 is defined by (4.4). Let uN (x, t) =

∑N
i=1 piG(x − xi(t))

be the N -peakon solution given by Theorem 2.1 subject to initial data mN (x, 0) =
(1− ∂xx)uN (x, 0) = mN

0 (x). Then, the following statements hold.
(i) For any t ∈ [0,∞), we have

Tot.V ar.{uN (·, t)} ≤M0, T ot.V ar.{∂xuN (·, t)} ≤ 2M0 uniformly in N.(4.6)
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(ii)

||uN ||L∞ ≤
1

2
M0, ||∂xuN ||L∞ ≤

1

2
M0 uniformly in N.(4.7)

(iii) For t, s ∈ [0,∞), we have

∫
R
|uN (x, t)− uN (x, s)|dx ≤ 1

2
M3

0 |t− s|,
∫
R
|∂xuN (x, t)− ∂xu

N (x, s)|dx ≤M3
0 |t− s|.

(4.8)

(iv) For any T > 0, there exist subsequences of uN , uNx (also labeled as uN , uNx )
and two functions u, ux ∈ BV (R× [0, T )) such that

uN → u, uNx → ux in L1
loc(R× [0,+∞)) as N →∞,(4.9)

and u, ux satisfy all the properties in (i), (ii), and (iii).

Proof. See [12, Proposition 3.3]. We remark that the key estimate to prove (4.8)
is (2.13).

With Proposition 4.1, we have the following theorem.

Theorem 4.1. Let the assumptions in Proposition 4.1 hold. Then, the following
statements hold:

(i) The limiting function u obtained in Proposition 4.1(iv) satisfies

u ∈ C([0,+∞);H1(R)) ∩ L∞(0,+∞;W 1,∞(R))(4.10)

and it is a global weak solution of the mCH equation (1.1).
(ii) For any T > 0, we have

m = (1− ∂xx)u ∈M(R× [0, T ))

and there exists a subsequence of mN (also labeled as mN ) such that

mN ∗
⇀m in M(R× [0, T )) (as N → +∞).(4.11)

(iii) For a.e. t ≥ 0 we have (in subsequence sense)

mN (·, t) ∗⇀m(·, t) in M(R) as N → +∞(4.12)

and

supp{m(·, t)} ⊂
(
− L− 1

2
M2

0 t, L+
1

2
M2

0 t
)
.(4.13)

Proof. The proof is similar to [12, Theorem 3.4] and we omit it.

Remark 4.2. We remark that when m0 is a positive Radon measure, m is also
positive. Actually, m0 ∈ M+(R) implies that pi ≥ 0 and mN,ε ≥ 0. Therefore,
the limiting measure m belongs to M+(R × [0, T )). By the same methods as in [12,
Theorem 3.5], we can also show that for a.e. t ≥ 0,

m(·, t)(R) = m0(R), |m(·, t)|(R) ≤ |m0|(R).(4.14)
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2833

5. Modified equation and dispersive effects. Note that the regularization
for the N -peakon solutions can be equivalently reformulated as the regularization
performed directly on the equation. We consider the equation

mt +
[
m
(
ρε ∗

(
(ρε ∗ u)2 − (ρε ∗ ux)2

))]
x

= 0, m = u− uxx.(5.1)

To see the equivalence, consider its characteristic equation{
Ẋ(ξ, t) = ρε ∗

(
(ρε ∗ u)2 − (ρε ∗ ux)2

)
(X(ξ, t), t),

X(ξ, 0) = ξ ∈ R.
(5.2)

Due to the relation between u and m, we have

(5.3) (ρε ∗ u)(x) =

∫
R
ρε(x− y)

∫
R
G(y − z)m(z)dzdy

=

∫
R
Gε(x− z)m(z)dz =

∫
R
Gε(x−X(θ, t))m0(θ)dθ.

We define

(5.4) Uε(x, t) := (ρε ∗ u)2(x, t)− (ρε ∗ ux)2(x, t)

=

(∫
R
Gε(x−X(θ, t))m0(θ)dθ

)2

−
(∫

R
Gεx(x−X(θ, t))m0(θ)dθ

)2

,

and

U ε(x, t) = [ρε ∗ Uε](x, t).
Equation (5.2) can be rewritten as{

Ẋ(ξ, t) = U ε(X(ξ, t), t),

X(ξ, 0) = ξ ∈ R.
(5.5)

Because the velocity field U ε is bounded and smooth, one may show that (5.5) has a
global solution for given initial data m0 ∈M(R). Hence, the modified equation (5.1)
has a global solution. Notice that if we let

m0(x) =

N∑
i=1

δ(x− ci), and xεi(t) = X(ci, t),

then system (5.5) for {xεi(t)}Ni=1 recovers system (2.2).
Next, we use equation (5.1) to justify that our regularization method has disper-

sive effects. For a smooth function f , we have

ρε ∗ f(x) =

∫
R
f(x− εy)ρ(y) dy = f(x) + aε2fxx(x) +O(ε4),

where a is a constant given by

a =
1

2

∫
R
ρ(y)y2dy.
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Using the above fact, we have

Uε = (ρε ∗ u)2 − (ρε ∗ ux)2 = u2 − u2
x + 2aε2(uuxx − uxuxxx) +O(ε4),

and

U ε = Uε − aε2Uεxx +O(ε4)

= u2 − u2
x + aε2[2(uuxx − uxuxxx) + (u2 − u2

x)xx] +O(ε4).

Hence, the modified equation (5.1) becomes

mt + [m(u2 − u2
x)]x + aε2[2m(uuxx − uxuxxx) +m(u2 − u2

x)xx]x +O(ε4) = 0.(5.6)

To see that the correction term in the modified equation has dispersive effects, we do
linearization around the constant solution 1. Let u = 1 + δv. We have

m = u− uxx = 1 + δv − δvxx = 1 + δn,

where n = v−vxx. Keeping orders up to O(ε2) and δ, we have the following linearized
equation:

vt + (2v + n)x + 4aε2vxxx +O(δ) +O(ε4) = 0.(5.7)

The leading term corresponding to the mollification is a dispersive term 4aε2δvxxx.
Hence, our regularization method has dispersive effects.

Appendix A. Proofs of Proposition 2.2 and 3.1.

Proof of Proposition 2.2. Because
∑N
j=1 pjG(x− xj) is continuous, we have

lim
ε→0

ρε ∗ (uN,ε)2(xi) =

 N∑
j=1

pjG(xi − xj)

2

.(A.1)

Next we estimate the second term [ρε ∗ (uN,εx )2](xi) in U ε(xi). We have

(uN,εx )2(x) =

 ∑
j∈Ni1

pjG
ε
x(x− xj)

2

+ 2
∑

j∈Ni1,k∈Ni2
pjG

ε
x(x− xj)pkGεx(x− xk)

+

( ∑
k∈Ni2

pkG
ε
x(x− xk)

)2

=: F ε1 (x) + F ε2 (x) + F ε3 (x).

(A.2)

Because Gx(x) is continuous at xi − xj , we have the following estimate for F ε1 :

lim
ε→0

(ρε ∗ F ε1 )(xi) =

 ∑
j∈Ni1

pjGx(xi − xj)

2

.(A.3)

Because G and ρε are even functions, we know Gεx is an odd function. Next, consider
the second term F ε2 on the right-hand side of (A.2). Due to xk = xi for k ∈ Ni2, we
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A DISPERSIVE REGULARIZATION FOR THE mCH EQUATION 2835

have

(ρε ∗ F ε2 )(xi) = 2
∑

j∈Ni1,k∈Ni2
pjpk

∫
R
ρε(xi − y)Gεx(y − xj)Gεx(y − xi)dy

= 2
∑

j∈Ni1,k∈Ni2
pjpk

∫ ∞
0

ρε(y)Gεx(−y)

×
(∫

R

[
Gx(xi − xj − y − x)−Gx(xi − xj + y − x)

]
ρε(x)dx

)
dy

≤ 2
∑

j∈Ni1,k∈Ni2
pjpk

∫ √ε
0

ρε(y)Gεx(−y)

×
(∫ √ε
−√ε

∣∣∣Gx(xi − xj − y − x)−Gx(xi − xj + y − x)
∣∣∣ρε(x)dx

)
dy

+ 3
∑

j∈Ni1,k∈Ni2
pjpk

∫ ∞
√
ε

ρε(y)dy =: Iε1 + Iε2.(A.4)

Due to xj 6= xi for j ∈ Ni1, we can choose ε small enough such that

(xi − xj − y − x)(xi − xj + y − x) > 0 for |x|, |y| < √ε.

Hence,

|Gx(xi − xj − y − x)−Gx(xi − xj + y − x)| ≤ 1

2
|2y| < √ε.

Putting the above estimate into Iε1 gives

Iε1 = 2
∑

j∈Ni1,k∈Ni2
pjpk

∫ √ε
0

ρε(y)Gεx(−y)

×
(∫ √ε
−√ε

∣∣∣Gx(xi − xj − y − x)−Gx(xi − xj + y − x)
∣∣∣ρε(x)dx

)
dy

≤
∑

j∈Ni1,k∈Ni2
|pjpk| ·

√
ε→ 0 as ε→ 0.(A.5)

For Iε2, changing variable gives

Iε2 = 3
∑

j∈Ni1,k∈Ni2
pjpk

∫ ∞
√
ε

ρε(y)dy

= 3
∑

j∈Ni1,k∈Ni2
pjpk

∫ ∞
1√
ε

ρ(y)dy → 0 as ε→ 0.(A.6)

Combining (A.4), (A.5), and (A.6), we have

lim
ε→0
|(ρε ∗ F ε2 )(xi)| = 0.(A.7)
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For F ε3 in (A.2), using Lemma 2.1 we can obtain

lim
ε→0

(ρε ∗ F ε3 )(xi) = lim
ε→0

∫
R
ρε(xi − y)

( ∑
k∈Ni2

pk

∫
R
G(y − xk − x)ρε(x)dx

)2

dy

=

( ∑
k∈Ni2

pk

)2

lim
ε→0

∫
R
ρε(y)

(∫
R
G(y − x)ρε(x)dx

)2

dy

=

( ∑
k∈Ni2

pk

)2

lim
ε→0

[
(Gεx)2 ∗ ρε

]
(0)

=
1

12

( ∑
k∈Ni2

pk

)2

,(A.8)

where we used xi = xk for k ∈ Ni2 in the second step. Finally, combining (A.3),
(A.7), and (A.8) gives

lim
ε→0

[ρε ∗ (uN,εx )2](xi) =
1

12

( ∑
k∈Ni2

pk

)2

+

 ∑
j∈Ni1

pjGx(xi − xj)

2

.(A.9)

Combining (A.1) and (A.9) gives (2.23).

Proof of Proposition 3.1. Let

4

∫ ∞
−∞

ρε(x)
[
f ε1(x)f ε2(x)− f ε1(s+ x)f ε2(s+ x)

]
dx =: Iε1 − Iε2,

where

Iε1 := 4

∫ ∞
−∞

ρε(x)f ε1(x)f ε2(x)dx and Iε2 := 4

∫ ∞
−∞

ρε(x)f ε1(s+ x)f ε2(s+ x)dx.

For Iε1, by changing of variables, we have

Iε1 =

∫ ∞
−∞

ρ(x)

(∫ x

−∞
ρ(y)eε(y−x)dy

)(∫ ∞
x

ρ(y)eε(x−y)dy

)
dx.

Set

F (x) :=

∫ x

−∞
ρ(y)dy.

By the Lebesgue dominated convergence theorem, we have

lim
ε→0

Iε1 =

∫ ∞
−∞

ρ(x)

(∫ x

−∞
ρ(y)dy

)(∫ ∞
x

ρ(y)dy

)
dx

=

∫ ∞
−∞

F ′(x)F (x)(1− F (x))dx =
1

6
.(A.10)

Similarly, for Iε2 we have

Iε2 =

∫ ∞
−∞

ρ(x)

(∫ x+ s
ε

−∞
ρ(y)eε(y−x)−sdy

)(∫ ∞
x+ s

ε

ρ(y)eε(x−y)+sdy

)
dx.
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When δ > 0 and s ∈ [δ,+∞), we have
δ

ε
≤ s

ε
. Hence,

0 < Iε2 ≤
∫ ∞
−∞

ρ(x)

(∫ ∞
−∞

ρ(y)dy

)(∫ ∞
x+ s

ε

ρ(y)dy

)
dx

≤
∫ ∞
−∞

ρ(x)

(∫ ∞
x+ δ

ε

ρ(y)dy

)
dx.

Therefore, the following convergence holds uniformly for s ∈ [δ,+∞):

lim
ε→0

Iε2 = 0.(A.11)

Combining (A.10) and (A.11) gives (3.15).
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