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1. Introduction

The Stochastic Gradient Langevin Dynamics (SGLD), first introduced by Welling
and Teh [31], has attracted a lot of attention in various areas [4, 23, B3]. The
SGLD algorithm and its variants have shown exceptional performance when dealing
with many practical sampling or optimization tasks. As an online algorithm, SGLD
can be viewed as adding independent white noise to the well known the classical
machine learning algorithm, Stochastic Gradient Descent (SGD), making it useful
for sampling tasks. The goal here is to generate samples from a target distribution
m. In fact, SGLD is a Markov process that approximates the overdamped Langevin
diffusion whose invariant measure is the target distribution 7 in the sampling task.
Here the approximation is realized by using random batch to compute the drift at
discrete time T}, := k7, and n is the constant time step (or learning rate). In this
paper, our primary focus is on the theoretical study of SGLD’s convergence to the
invariant measure and its convergence rate.

Let us first explain the SGLD method. Suppose that the distribution of interest
is 7 o< exp(—pU), where U : R? — R is the free energy and 3 > 0 is a positive
constant describing the inverse temperature of the system. One effective way to
sample from the target 7 is through the following overdamped Langevin diffusion,
whose invariant measure is exactly 7:

dX = -VU(X)dt + /2671dW, X|;= = Xo,

where W is the Brownian motion in R?. To numerically compute the sampling
procedure, one often uses the Euler—-Maruyama scheme. Given the time step (or
learning rate) 1y at kth iteration, and denote T}, := Zf:_ol 7i, the Euler-Maruyama

scheme iterates as follows:
XTkJrl = XTk - nkVU(XTk) =+ 2571(WT1€+1 - WTk)'

The key idea of SGLD is to reduce the computation cost by using the random
batch. In fact, in various sampling and optimization tasks from machine learning
and data science, people deal with the potential U(+) coming from high dimensional
large-scaled data with size N. Often U(-) is of the form U(-) = E¢[U%(+)], which is
the expected value of a function depending on a random variable ¢ € S. However,
usually we do not have any knowledge of the data’s distribution, and the only
realistic approach to computing U(+) is through the random batch of a fixed small
size S < N repeatedly and independently used at each T}, (see (L)) for the details).
When k goes large such that kS ~ N > 1, the random batch approximation for
U(-) = E¢[US(+)] is then realized accumulatively due to the law of large numbers,
and meanwhile the computational cost at each step is significantly reduced since
S < N. In practice, one often has U(z) = Up(z) + + Zfil 4;(z) and, as in the
stochastic gradient descent algorithm [I5] [26], £ often represents the minibatch of
{1,..., N} (In this case, for fixed batch-size S (a determined constant), £ belongs to
the set S = {(a1,...,as) : a;(1 <i < S) are S different random numbers uniformly
chosen from {1,...,N}}. For £ = (ay,...,as), the corresponding unbiased estimate
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U is U(z) = Up(z) + % 25:1 Ly, (x).) The general form of SGLD iteration can be
written in the following form.

XTk+1 = XTk - nkVU&k (XTk) + 25_1(WT1C+1 - WTk) (1'1)

Here, U is an unbiased estimate for U, and thus VU¢* is also an unbiased esti-
mate for VU. As mentioned above, & often represents the random mini-batch of
some fixed batch size S at time ¢, and {{,}72, are i.i.d. Also, In our analysis, we
also consider the following continuous version, which is a continuous-time Markov
process with continuous path:

t t
X, = Xp, — [ VUS(Xp,)ds + / V25 Taw,,
Ty

T

t€ [Ty Tht1), k=0,1,... (1.2)
and the corresponding differential form
dX; = —VU (X5, )dt + /23~ 1dW,
Xilier, = X1, t € [T, Thes1) k=0,1,.... (1.3)

Note that the value of ([[2)) at time grid T} is exactly that of ([IZ1I), so it is enough
to study the continuous version to obtain estimate for SGLD at ¢t = T.

Recent decades have witnessed great development of theoretical research for
sampling error bound of SGLD [6], 14l [T9] 23] B2] [33]. With SGLD considered a
numerical scheme for the overdamped Langevin diffusion, one is naturally motivated
to study the algorithm’s approximation accuracy. Specifically, when comparing the
densities p¢, py of time marginal distributions of SGLD and overdamped Langevin
diffusion, respectively, the authors of [19] proved that H(p; || p:) < Cn?, where
H(-||-) is the relative entropy (or KL-divergence) and recall that 7 is the constant
learning rate. Consequently, using ergodicity of the overdamped Langevin diffusion
which can be derived provided that its invariant measure 7 satisfies the log-Sobolev
inequality, one can estimate the Wasserstein or total variation distance between p,
and the target 7 : Wy(pt,7), TV (py, ) < Ce=t + On® for some rates a < 1
and p = 1, 2. Notably, recently the authors of [I9] obtained the optimal rate a =1
while in some other literature like [0, 14} 23] (32, B3] « is no larger than % Moreover,
under the global strongly-log-concaveness assumption for the target m, using the
synchronous coupling method, it can be proved that the SGLD algorithm itself as
a Markov chain has an invariant measure 7, and p; converges to 7 exponentially
in time in terms of Wasserstein-2 distance [4]. However, the stringent requirement
of global strong-log-concaveness potentially restricts the broader applicability of
these results. For instance, this result would not give a good theoretical guarantee
of convergence when one is sampling from Gaussian mixture distributions. The
question of the existence and uniqueness of 7, as well as the algorithm’s ergodicity
when one only assumes strong-log-concaveness of the target distribution 7 outside
some compact sets, remains an open area for future research. The primary objective
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of this paper is to resolve such problem; specifically, we aim to study the geometric
ergodicity of SGLD, assuming strong-log-concaveness of the target distribution m
outside some compact sets and some other regular Lipschitz conditions (see Sec. 2]
for more details).

Now in order to study the geometric ergodicity of SGLD, we use the classical
coupling method [7], and in particular we apply the method of reflection coupling
[10, IT, 20], which was originally designed to study the contraction property of
many continuous SDEs. Here, we give a brief summary of how the reflection cou-
pling method is adopted to study the geometric ergodicity of SGLD. Consider the
two time marginal distributions gy, v of SGLD ([I.2]), starting from the initial dis-
tributions pg, 1y, respectively. We aim to prove the contraction property under
the Wassertein-1 distance: Wi (ue, v¢) S e ““Wi (1o, o). The coupling method then
reduces this goal to find some paired dynamics (X;,Y;) satisfying the laws of X,
Y; are jui;, v4, respectively, and the Lyapunov exponent

~ := limsup l logE|X; — Yi| < —c,
t—oo
is negative for this paired dynamics (X;, Y;). Note that the geometric ergodicity
arises from strong convexity of the potential U(-) outside some compact sets. This
strong convexity becomes strong monotonicity property for any two points (z,y)
far away, as in Lemma [ZZIl Therefore, any such pair (X;, Y;) would attract each
other if they are sufficiently far away.

Next, in order to construct such paired dynamics (X, Y;), we use the key tech-
nique — reflection coupling equipped with a specific Lyapunov function f(-). This
technique was originally designed by Lindvall and Rogers in 1986 and was developed
by Eberle, etc. to study the geometric ergodicity of many continuous dynamics.
Here, the Lyapunov function f(-) defined in (Z7) in our result is an increasing,
concave function. Correspondingly, we consider the Kantorovich-Rubinstein dis-
tance Wy(-,-) with cost function f(-) defined in ([2.6) below. The reflection cou-
pling methods begins with choosing the pair of initial points (Xo,Yp) such that
Ef(|Xo — Yo|) = W¢(uo,v0). Then we choose a realization X; of SGLD (2] such
that the law of X is u; and the law of X is pg. The key step in the reflection cou-
pling method is that we construct a companion process Y; with Y coupled above
with X and satisfies: (i) Y; shares the same random batch and Brownian motion
with Xy, and has an additional reflection term in its diffusion part (see (B.1]) below);
(ii) Y; is also a realization of SGLD (LZ) and the law of Y; is 4 (see Lemma [B.1]).
Then the contraction property mentioned above is reduced to estimation of the neg-
ative Lyapunov exponent for the paired dynamics (X;, Y;). In fact, with this spe-
cially designed diffusion in the paired dynamics (X¢,Y;), we can actually prove the
exponential decay in time of Ef(X; —Y;) and therefore obtain the W;-contraction
(see Theorem 2.)):

We(pe, ) SEf(1X — Yi|) < Cem PPRf(|Xo — Yol) = Ce™ T W (1o, v0).
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Notably, the key contribution of the reflection coupling is as follows: different from
synchronous coupling method where X;, Y; shares exactly the same Brownian
motion, in the reflection coupling, the process X; — Y; is still a diffusion process.
In particular its diffusion is an anisotropic one, see the expression in ([B.G]). Con-
sequently, the existence of this diffusion leads to a f”(-) term after Itd’s calculus,
see ([BI3). Then the contraction property can be obtained based on the following
concave property of the constructed Lyapunov function in (Z7):

f//(T) S -,

for all 7 in a bounded set. After proving the contraction property, one can directly
obtain the geometric ergodicity of SGLD (see Corollary 2]) using the Banach’s
contraction mapping theorem. Moreover, our choice of the f(-) makes the two dis-
tances Wy (-,-), Wi(-,-) equivalent, enabling one to obtain the geometric ergodicity
under the Wasserstein-1 distance. Further details regarding the formulation of such
paired dynamics (X¢,Y;) and the construction of the Lyapunov function f(-) will
be elaborated upon in Sec. Bl

These years, the reflection coupling has been instrumental in establishing
the geometric ergodicity of various random dynamic systems including over-
damped/underdamped Langevin diffusion [11] 12| 21], Hamiltonian Monte Carlo
[20 B], first-order interacting particle systems [8 [13], etc. Recently, in [21],
the authors constructed a reflection coupling for the discrete Euler—Maruyama
scheme directly and obtained the contraction and ergodicity in Wasserstein-1 and
Wasserstein-2 distances without random batch. Moreover, their method also gives
some estimates for the long-time behavior of SGLD, but there is an O(7n) remain-
der in the control coming from the variance of the random batch (see [2I, The-
orem 2.16]), so intuitively the ergodicity of SGLD could not be proved directly
through this estimate. In [I7], the authors studied the ergodicity of the time-
continuous random batch dynamics for the interacting particle systems, using a vari-
ant of the reflection coupling. The model studied resembles SGLD but we remark
that the proof there makes use of the external confining potential and regards the
random batch version of the interaction as perturbation. In our setting below, we
only assume the confining property of the expected drift with no external potential
to help, and we will consider the freezing drift dynamics instead and show that
the distance between laws of two SGLD copies will vanish to zero in Wasserstein-1
distance exponentially in time.

However, due to existence of the time discretization and the random mini-batch,
there are several difficulties arising when applying the reflection coupling to analyze
the SGLD algorithm, detailed as follows. The first difficulty arises from the numeri-
cal discretization. In the time continuous interpolation (2, the drifts are evaluated
at Ty but the dynamics is evolving and the hitting time (defined in 33]) in the
reflection coupling could be between [Ty, Tk+1). This dismatch brings extra difficulty
compared with the reflection coupling for time-continuous processes. Furthermore,
when dealing with this difficulty, one needs to conduct careful estimate for the tail
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behavior of the multiplicative noise (; (see (B:6) below). In fact, although the diffu-
sion part W; in (1) or Lemma Bl below is a Brownian motion, it correlates with
the original Brownian motion W;. Therefore, in (6] below, {; = f;k dWS — dWj
is a multiplicative noise. Estimate for this multiplicative noise is not trivial and we
will overcome this via tools including the Burkholder-Davis—-Gundy inequality in
Lemma[32 So far, to the best of our knowledge, there is scant literature addressing
the ergodicity of discrete algorithms under such mild assumptions. These difficul-
ties shall be addressed carefully using a series of conditional expectation estimates,
detailed in Sec. Bl

The second difficulty arises from how to make use of the consistency of the
random batch E¢[U(-)] = U(+) to prove the geometric ergodicity of SGLD. In our
result, we only assumed the confining property for the expected potential. On each
time subinterval [Ty, Ti4+1) of the SGLD algorithm, one only sees the behavior of
the process associated with US rather than U. One has to consider the averaged
dynamics so that our assumptions for the averaged potential U can be used. So more
technical details will be required to obtain the ergodicity, see Proposition 3.1l Here
we give a brief summary of Proposition Bl regarding the estimate for the random
batch. Recall the paired dynamics (X;,Y;) discussed above. After It6’s calculation,
one needs to estimate

E[p(Xs, Y1) (VU (Xr,) — VU (Yr,.)],
for some function ¢(-,-) and t € [Tk, Tk+1). The key step is to use conduct the
following splitting:
E[¢(X:, Y:) (VU (X1,) — VU (Yr,))]
= E[¢p(Xr,, Y1) (VU (X1,) — VU (Yr,)) (14 + 1))
+E[G(Xy, V) — (X, Y3, ) (VU (X)) = VU (V7)) (La + 15))],

where A := {| X7, — Y7, | > R} and B := A° for some R > 0. Since X1, , Yr,, 1a
are all independent of the random batch &, we are able to use the consistency of
random batch E¢[U¢(-)] = U(+) and obtain the following for the first term:

E[¢<XTk ) YTk)<VU£k (XTk) - VU&C (YTk ))]
= E[¢<XTk ) YTk)<VU(XTk) - VU(YT]C ))]

Actually, this equality above reveals the consistency between SGLD and the over-
damped Langevin diffusion, since it remains true if we replace Y; above with some
solutions to the overdamped Langevin diffusion. Moreover, for the second term,
under the event A, we use the uniform-in-batch Lipschitz condition in Assump-
tion ZT] to bound VU (X1,) — VU (Y7, ), and the tail estimate obtained in
Lemma B2 to estimate (¢(Xy,Y;) — ¢(X7,, Y7, ). So eventually obtain an estimate
for

E[¢(X, Y:) (VU (X1,) = VU (Y1) 1],

2450035-6
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under the event A in Proposition Bl For estimate under the event B, one can-
not directly apply tail estimate in Lemma to estimate the remainder term in
the splitting above. So the consistency of random batch is no longer used, but the
uniform-in-batch Lipschitz condition in Assumption [2.1] is required in our deriva-
tion, scattered throughout the proof (see (322) and (33]) for instance). This
uniform-in-batch Lipschitz condition is natural: Intuitively, the average of a family
of non-smooth functions could be smooth, while in this case one cannot guarantee
the convergence since the SGLD dynamics can evolve with non-smooth drift in all
time.

The rest of the paper is organized as follows. In Sec. 2] we list our main assump-
tions and main results. The detailed proof will be given in Sec. [3 where a series
of key estimates for the conditional expectations will be given. Section [4is for the
generalization to drifts that are not necessarily gradients. In some
missing proofs will be given.

2. Assumptions and Main Result
2.1. Local nonconvexity assumption

We will use the reflection coupling to show the ergodicity under the following locally
nonconvex setting, which is common in many practical tasks.

Assumption 2.1. (a) (locally nonconvex). The Hessian matrix of U is uniformly
positive definite outside B(0, Ry), namely, there exist Ry > 0, ko > 0 such that

VU (x) = kola, Vo€ RNB(0,Ry); (2.1)

(b) (global uniform-in-batch Lipshitz). There exists K > 0 such that Vz,y € R,
VeEeS,

[VU*(z) = VU*(y)| < K|z —y|. (2.2)
Moreover, sup [VU(0)| < oc.

Remark 2.1. In many applications in data science, people study the empirical risk
with a penalty [I4, [23]. Particularly, one may consider
N
~ 1 A
U=— L) + Sz
=0
If £;’s have certain decay property as |z| — oo, the function U satisfies Assump-
tion 211 For instance, one may consider U being the cross-entropy loss with some
additional [2-penalties as in some machine learning tasks; one may also compare
this with some analogous examples in the interaction particle systems, where one
has suitable bounded interactions and some external force Uy [16, [17].

From the locally nonconvex setting in Assumption 2.7], it is not hard to derive
the following strong monotonicity property for the pair (z,y), which is useful in our
analysis.

2450035-7
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Lemma 2.1. Suppose Assumption [Z1] holds, then there exists R > 2, k > 0 such
that

(x —y)- (VU(z) = VU(y)) > klz —y|*, Vaz,yc R, |x —y|>R. (2.3)

The proof is deferred to Another useful observation from Assump-
tion 211 is that, we are able to control pth moment (p > 1) of the SGLD iteration

X¢ defined in ([L2). See the detailed proof in [Appendix A]

Lemma 2.2 (Moment control for SGLD). Consider the SGLD iteration (L2).
Suppose Assumption 2.1 holds.

(1) For anyp>1, any T > 0 and any step size ni > 0,
sup E [ sup |Xs|p] < 4o0. (2.4)
0<t<T [0<s<t

The upper bound may depend on p, T, 3 and the dimension d.
(2) Letp>2.If 35 > 0 such that nx < r/(2(p — 1)K?) — § for all k, then

sup E|X;|P < +oo0. (2.5)
>0

The upper bound may depend on p, B and the dimension d.

2.2. Geometric ergodicity of SGLD

By considering the behavior of Z;, we aim to obtain a contraction result in terms
of the Kantorovich—Rubinstein distance defined by

W)= _nt [ o=y (2.6)

'YGH(H7V)

One aims to find some suitable increasing, concave function f such that f(|-]) is
equivalent to |- | and hence one is able to control Wasserstein-1 distance using Wy.
The specific function we consider in this work is given by

flr) ::/0 e_cf(SARl)ds, r>0. (2.7)

Here, Ry > 3R/2 and ¢y > 0 are constants to be determined. Clearly, f is concave
and increasing. Moreover, for r > 0,

e iy < flr)y <o (2.8)

We will discuss more on the motivation of the construction for such paired dynamics
(Xt,Y;) and the Lyapunov function in Sec. Bl
Next, we will take ¢y > 0 such that

1
5\/2&%,1%*1 ~-K>0 (2.9)

2450035-8
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and fix Ry := 2R. Moreover, we consider small steps and require the upper bound
for the time step h := sup,, 7 to satisfy

1
h%|log h|% < min (@eQCme, \/E) ,

(2.10)
h <& 2h2llogh|?(KR)™", h<min(1/(2K),R?/9,1)
and
- ( ZBR? ZBR? ¢BR2 /32 )
= 128log 5’ 128(2csR + 1og(18/k)) " log(45(1 + v/2Bc; "2/ RKR) /2) |
(2.11)

where ¢, ¢ are two positive constants independent of k£ and the dimension d coming
from Lemma and Proposition B.1] respectively.

We will establish in this work the following Wasserstein contraction results of
SGLD. We leave the detailed proof to Sec.[3l

Theorem 2.1 (Wasserstein contraction for SGLD). Suppose Assumption 2]
holds. For any two initial distributions po and vg, denote py and vy to be the corre-
sponding time marginal distributions for the time continuous interpolation of SGLD
algorithm (L2). Denote h := sup,ng. Let f be the Lyapunov function defined
in Z1). Assume that h and the parameters satisfy conditions in (29)—21II), then
the following Wasserstein contraction result holds:

Wy (pr,,vr,) < e Wi (o, vo), k€N, (2.12)
where
c= %eiQCfR min(y/26-1¢;R/2, k).
Consequently,

Wl(uTkvka) < 0067CT1€W1 (,U(), Vo), keN, c:= e2er it (213)

The contraction rate is not necessarily the optimal one, which we believe is
dimension-free (see the discussion in Remark [3.2]). We have listed many restrictions
on the step size. For the second restriction, the most essential one is that we need
h < 1/K for the contraction to hold. Here, we required h < 1/(2K) instead for
the formulas of contraction rate to be of reasonable order. Other restrictions on the
step size can be relaxed somehow (for example 3R/2 can be replaced by a number
close to R and the numerates are loose). They are chosen just to make the formula
of contraction rate appear clean. However, the dependence of 3 in the upper bound
of the third restriction is essential. Besides, only Lemma (a) is needed for the
proof, so the restriction in Lemma (b) is not included.

Moreover, if the step size (or learning rate) is constant n; = n such that the
discrete chain is time-homogeneous, then the SGLD as a discrete time Markov chain

2450035-9
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has an invariant measure 7 by the Banach contraction mapping theorem [I§]. In
particular, we have the following corollary.

Corollary 2.1 (Wasserstein ergodicity of SGLD). Consider the SGLD with
constant step size n = n. Assume that the step size n satisfies the restrictions in
Theorem 211 for any initial distribution pg € W1, the SGLD iteration has a unique
invariant measure 7, and the time marginal distribution py of (L2) satisfies for the
constants cg, ¢ in Theorem 211 that

Wi (pnn, T) < coe” Wi (po, 7). (2.14)
Proof. By Theorem 1] there exists kyp € Ny such that

Wi(pry, ,vry,) < %Wl(uo,uo). (2.15)
Denote the corresponding transition kernel for nth iteration by P,. Then, p +—

1Py, is contractive. By contraction mapping theorem, there exists a fixed point 7,
satisfying

T = Ta Py - (2.16)
Then, by Markov property, © := kl—o Zf;;gl s Py, is the invariant measure of the

SGLD iteration. Moreover, m = 7P, for any invariant measure so that the invariant
measure is unique by the contraction property of Pj,. Besides, 7 = 7.
Letting vy, = 7 in Theorem 2T} (ZI4) then follows. |

Under Assumption 2] 7 o< e~V satisfies the log-Sobolev inequality, and one can
get a uniform-in-time error estimate using KL divergence in [19]. We are then able
to estimate the W distance between the target distribution 7 and the invariant
measure 7 of the SGLD algorithm. In fact, for constant step size 1, by [19, Theo-
rem 3.2], the discretization error in terms of relative entropy (or KL-divergence) is
given by

H(pnn || pun) < Ao, ¥n €N, (2.17)

where prny, pny correspond to the SGLD iteration and the overdamped Langevin
diffusions, respectively. As a remark, the constant Ay scales almost linearly with the
dimension d under certain assumptions. The reason for the improved error bound
in @I7) (from O(\/7) to O(n) in terms of Wasserstein or total vatiantion distance,
in comparison with existing results like [6l [14], 23] B2, [33]) is that, starting from
the Fokker—Planck equation for the discrete algorithm, the authors directly consid-
ered the distance between distribution instead of other trajectory methods; also,
techniques like Girsanov’s transform were applied to handle additional difficulties
brought by the random batch. As a consequence of (ZIT), since 7 satisfies the
log-Sobolev inequality, the Wasserstein-1 distance can be controlled by the square
root of the KL-divergence by some classical transportation inequalities [24] 28],

2450035-10
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enabling one to derive an improved sampling error bound Wi (pny, ) for SGLD
[19, Corollary 5.1]. We conclude the result in the following corollary.

Corollary 2.2. Consider the SGLD with constant step size 1 and denote its density
at time nn by ppy. Under Assumption 2L for the step size n small enough (with
the restrictions in Theorem[Z] and in [19, Theorem 3.2]), for some positive A, Cy,
Cs independent of pg, n we have

Wi (P, ™) < Con + Cre” 2™, (2.18)
Moreover, the SGLD iteration has a unique invariant measure T satisfying
Wi (w,m) < An, (2.19)

where m o< e PY is the target distribution.

3. Proof of Theorem [2.1]

In this section, we prove Theorem [ZI] — the contraction property under the Wy
distance. In the following, we will apply the technique of reflection coupling dis-
cussed in the introduction to analyze SGLD. See for more details on
the construction of the reflection coupling and the Lyapunov function.

We summarize here several challenges we would overcome in the analysis. The
first difficulty arises from how to make use of the consistency of the random batch
E¢[U(-)] = U(+) to prove the geometric ergodicity of SGLD. In our result, we only
assumed the confining property for the expected potential. On each time subinterval
[Tk, Ti41) of the SGLD algorithm, one only sees the behavior of the process associ-
ated with U%* rather than U. Therefore, one has to consider the averaged dynamics
so that our assumptions for the averaged potential U can be used. So more techni-
cal details will be required to obtain the ergodicity, see Proposition 3.1l Second, we
look into the issues that come with numerical discretization — given the discrete
nature of the scheme, the drift term for SGLD is evaluated at X7, instead of X,
introducing additional challenging elements into our analysis. Furthermore, when
dealing with this difficulty coming from time discretization, one needs to carefully
estimate the tail behavior of the multiplicative noise (; in (8I4)). In fact, although
the diffusion part W; in (BI) or Lemma [31] is a Brownian motion, it correlates
with the original Brownian motion W;. Therefore, in (3.6]), {; = f;k dI/T/S —dWy is a
multiplicative noise. Estimate for this multiplicative noise is not trivial and we will
overcome this via tools including the Burkholder-Davis—-Gundy (BDG) inequality
in Lemma

3.1. Reflection coupling for SGLD

For any two initial distributions pug, vg in the statement of Theorem 21l we con-
struct the following reflection coupling:

dX; = —VUS (X7, )dt +\/26-1dW, t € [Ty, Tpt1), t < T;

2450035-11
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di/t = 7VU§’C (YTk)dt + 2571(Id — 26t ® 6,5) . dVV, te [Tk,Tk+1), t < T,
Xe=Y, t>r

(3.1)
where
X -V
e 1= —=——— 3.2
s (3.2)
and the stopping time 7 is defined by
=inf{t>0: X, =Y;}. (3.3)

Moreover, the initials Xg, Yo of () should be chosen such that
Ef(|Xo — Yol) = W (o, o). (3.4)

Recall the definition of Wy in ([2:6). For any two o, v in Theorem 211 (34) can
actually be achieved since one can always choose an optimal coupling v € (10, 110)
such that [o., pa f(lz — y|)dy = Ws(po, o) B0], and in this case, Xo ~ po and
}/0 ~ .

Note that jg (Ig — 21(cry€s ® es) - dWy is also a Brownian motion. Then, Y, is
thus also a copy of the time continuous interpolation of SGLD. Therefore, (1) is
a well-defined coupling for the SGLD iteration. Similar arguments also appeared in
related literature like [I0] [I1]. We summarize this in the following lemma.

Lemma 3.1. Under the settings of B1) and B3)), the process

t
Wt = / (Id — 21{S<T}€5€z)dWS,
0

is a Brownian motion in R with respect to the natural filtration. Consequently, Y;

is also a realization of SGLD (2.

Proof. Clearly, Wo = 0 and W, is a martingale with respect to 7 := o(Wy : s < 1).
Then by Levy’s characterization of Brownian motion, one only needs to verify that
for any t' >t > 0, E[Wt/ ® Wt] = tly. Indeed, by independent increment of the
Brownian motion Wy, one has

EWy @ W] =E [(/Ot(l 21 (s yeser )dW) (/Ot(l — 21 cryesey )W )T]

t
:/ E[(Iq — 21 (scryese; )(Id — 21 ryes€ ) |ds =tlg4,
0
where the last inequality is due to the fact that

ele :( ) ():(S_}:/S)zl
: IX Yol |Xe—=Y] 7

S
2450035-12
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Therefore, the process W, is a Brownian motion in R%. Consequently, Y; is also a
solution of SGLD (I2). |

Denote Z; := X; — Y;. Then for t € [T}, Tj+1) and t < 7, the process Z satisfies
zg

2
Zm W (3.5)

dZy = — (VU (Xp,) — VU (Yp,))dt +2+/23-1

and Z; = 0 for all t > 7.
Clearly, the process Z; defined in (B3] satisfies for ¢ € [Tk, Tk+1),

Ly = ZT;C — (t/\Tka/\T)ATk + 24/ 2&71@, (36)
where the process (; is defined by
tAT Z®2
G = / 5 — . dWs 3.7
CZ o 1P 0
and
A, := VU (X7, ) — VU (Y7,). (3.8)

Clearly, by optional stopping theorem [J], ; is a martingale. Later in Lemma
and Corollary 31 we will prove some sub-Guassian properties of such martingale.
These estimates are very helpful to overcome the challenge brought by numerical
discretization. We remark that (3.0) and (B37) also guarantee that Z, = Zp, = 0
for t > T}, > 7, which is consistent with the definition of the coupling.

3.2. Geometric ergodicity and uniform estimate for SGLD

Recall that the increasing, concave function f is of the form
f(r) :/ efcf(S/\Rl)ds, r > 0. (3.9)
0

With the construction in ([BI]), we are then able to prove the geometric ergodicity
of SGLD. In fact, due to the argument at the beginning of Sec. Bl we aim to show
that

Ef(1Z:]) < e”"Ef(|Z0)),
which is clearly equivalent to
Ef(|Zinr]) < e “Ef(|Zo]). (3.10)
Introduce the regularization stopping time sequence
=it > 0:(Z] ¢ 7)) jeNy, (3.11)

which is increasing and can be proved to converge to 7 as j — oo later in Lemma 3.5
Hence to obtain [B.I0), by Fatou’s lemma, one needs to show that

Ef(1Zunr|) < e Ef(|Zol)-

2450035-13
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Therefore, the main goal in the proof of Theorem[21lis to give the following uniform
estimate:

d

SEf(Zine, ) < —CES(Zuns, ), (3.12)

where c is independent of j, 1 and &.
In the following, we give the proof of our main result, Theorem 21l Some aux-
iliary lemmas and their proofs will be given in Sec.

Proof of Theorem [2.1 Recall the definition of 7; in (BII). We first fix T > 0
and consider those k values such that 7)1 < T'. Consider the process ZtT I= Zipr-
Clearly, for ¢ € [Tk, Ty1),

ZP =27 — (t A1y = Ti A73) Az, +2V/2871¢7, (3.13)
with
t/\Tj Z®2
TP 5. dW,. 3.14
‘ /Tk/\‘rj |Z5|2 ( )

In fact, 7; < 7. If 75 < Ty, Z” = Z;i and one can focus on the previous subinterval.
If 7; € [T, Tk+1), one may verify that this holds.
Corresponding to (B.I3]), the process Z; satisfies for t € (T A 75, Thy1 A T5),

_ _ Z®2
dZ; = —(VUS (Xp,) — VU (Y, ))dt + 21/24-1 Z’f E - dW.
t

Since

Y TR f’(|:17|) TRT
v 1(ah) = (e 55 + LD (1, - 222,

by Dykin’s formula and the strong Markov property [9], one has then for ¢t €
[The, Th+1),

7j
Zt

iz = E Kﬂﬂlf”(lZﬁ'l) - 1E )

o .AT,C> 1{t<Tj}] . (3.15)

Our goal is to obtain an upper bound of the form —cE[f(|Z;7])] of the right-
hand side of (B.I5]), where A7, is computed using U¢(X7, ) and U¢(Y7, ). Note that
we only assume convexity property for U outside B(0, R) as stated in Lemma 2.T]
so we first split the expectation in (B3] into the following three parts:

d - st
ZE(1Z7)] =E [f (IZ#D@ 'ATkl{Z;1|>R}1{f<w}}
i (szﬂ1f”(|ZZj|>1{t<Tj}]

2450035-14
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7j
Zt

+E *f/(|ZtTj|)w : ATk1{|Z;i|§R}1{t<Tj}:|>

=: Il(t) + Ig(t). (316)

Moreover, when estimating the right-hand side of ([BI6), we need to further
split them like in Taylor’s expansion. The essence of this splitting lies in two main
actions: (1) Conduct evaluations at ¢ = T}, which enables the utilization of the
tower property by taking expectation with respect to the random batch & first;
(2) estimate the residual terms carefully. The main reason for such splitting is
that, for ¢ € [Tj,Tk+y1), Z; depends on the random batch &; for instance, E¢, [Z; -
(VU (Xr,) — VU (Y7,))] # B, [Z1 - (VU(X1,,) — V(Y7 ))]. With this main idea
of splitting, in the following we will separately estimate each term in ([B.I0]), and
we will take j sufficiently large such that Lemma (serving Proposition B.1]),
Lemma [34] (serving the term I5(t)) and Proposition Bl (serving the term I1(¢)) in
Sec. below hold.

For the term I3 (t), we will make use of the convexity condition along with the
tail estimate in Lemma B2l By Proposition Bl (which is based on Lemma B.2]), for
the step size 7 in the range considered, then for ¢ € [Ty, T+1)

Li(t) < —(e"“ Mk —'n?|log nk|% - i’)(i_éﬁR2"’:1/128)IE[|Z;fC 1 (3.17)

{|Z;J,;|>R}]'
Since |Z'| < |Z7 | + e K| Z7 | + |¢/| by Assumption 2T} we have

Tj 1 Tj Tj
_E[|ZT,€|1{\Z;1\>R}] = _W(Eﬂzt |1{\Z;i\>R}] - E[|¢; |1{‘Z;3;‘>R}])'

Clearly,
E“C;jll{\z;ib]g}] < \/nkH (|Z"Ec| > R) < \/n_kR_lE“ZEu“Z;ibR}]- (3~18)

Therefore, for the event {|Z;L | > R}, one has

1

o i1 e < —
E[|Z7| {|ZTJ,€|>R}] = (1+\/77_kR_1)(1+77kK)E[

1271

{|Z;f,;|>R}]'
This then implies for 7, < min(1/(2K), R?/9) that

Tj 1 Tj
_E[|ZTk|1{|Z;i|>R}] < _§E[|Zt |1{\Z;i\>R}]

IN

1 -
_§E[|Zt |1{\z;1\>3}1{t<rj}]» (3.19)

for large j.
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Now combining (BI7) and BI9), we have the following estimate for the
term Iy (¢):

1, . 1 1 _ eBR% -
Il(t) < _5(6 leﬁ_ClnﬂlOgnkP —3e 1 )E“Zt |1{|Z;J"€|>R}1{t<rj}]-
(3.20)

For I5(t), the strategy is to make use of f” that provides a negative part when
|Z:] is small. This can also be understood as utilization of the convexity from the
concave function f when U does not have convexity in B(0, R).

The first part in I5(¢) is given using the definition by

E[V281f"(1Z7 ) lieery] =E[ = v 23~ tepemerl % ‘1{|z:j \gRl}l{Kﬁ'}]'
(3.21)

For the second part in I(t), by Assumption [Z1] Lemma 2] and definition of f,
one has
z

E 7f/(|ZZ—J|)w .ATkl{\Z;i\SR}l{t<Tj}

< E[Kf/thTJ |)|Z;i|1{|z;i|gR}1{t<Tj}]

—erlzTd T
<E[Ke P NZE 1L 20 <nyzp1cmy Hisr)]

—csR Tj
+E[Ke 1|ZTk|1{|Z;i|§R7‘Z?‘>Rl}1{t<n}]. (3.22)

In principle, the idea is to use B2I)) to control the terms arising from (322]).
Hence, one may get

1 — ez A Tj
I2(t) E|:(_§\/2ﬁ 1Cfe 112 |+K€ £12: ||ZT,€|> 1{\Z;i\SR,\Z:j\SR1}1{t<TJ'}

IN

—c+R1 1 = Tj Tj
+|:€ iR <—§ 26 lcf]P)(|Zt |§R17|ZTk|§R7t<Tj)

+ KRP(|Z | < R,|Z{| > Ryt < Tj))}
= Jl(t) + Jz(t).
Direct estimate yields:
(1 .
—c th — —1 Tj ) )
Jl(t) <E |:—e £l | (5\/26 1ch - K) |ZTk|1{‘Z;2|§R,|Z:J|§R1}1{t<7—j}

<0 (3.23)

if

1
5\/25—1ch—1 —K>0.

2450035-16



Stoch. Dyn. 2024.24. Downloaded from www.worldscientific.com
by SHANGHAI JAOTONG UNIVERSITY on 06/03/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

Geometric ergodicity of SGLD

Here we need to choose sufficiently large coefficient ¢y in the definition of f such

that $1/26-1cyR™! — K > 0.

To handle the remaining term J (), we first observe that
1 / — —crR1 p—1 Tj
J2<t) S _5 2/8 1Cfe ! Rl E“Zt |1{‘Z:]‘SRIV‘Z;ZC‘SRVt<T]}]

—1 T5
+ KRR, 'E[|Z] |1{‘Z:j|>R1,|Z;‘L‘SR,t<Tj}]

1 _ —cfR1 p—1 i
= —5V28 e T RIE[Z0 L 4 ey

1 / — —crR —1 —1 Tj
+<§ 25 1Cf€ f lRl +KRR1 )E[|Zt]|1{zz—j|>R1,|Z;iSR,t<Tj}j|'
(3.24)

Based on tail estimate in Lemma B2 we prove in Lemma B4 for small 7 and
large j,

E[|Z7]1 Z7 1 (3.25)

{\Z;—j\>R1,\Z;i\§R,t<Tj}] < e(m)E[ {\Z;i|§R,t<'rj}]’

where

15R e—CB(R1—3R/2)*n~1/8
e(n) = —2 7 . (3.26)

Therefore, for the conditions given,

1 —c — ~ Tj
Jo(t) < — (5\/25—1@«3 Rt g(nk)) E[|Z] |1{\z;1\g3}1{t<rj}]» (3.27)

where

1 15R, e~ ¢B(R1—3R/2)%n"1/8
E(n) = <§\/2ﬂlcfe_ch1R11 +KRR11> 1 =

Hence, for t € [Ty, Tyt1), one is able to conclude from F20), (B:27) that

%E[f(lZ? )| < —e(RE[Z{ 11cry] < —c(WE[F(1Z7 N1i<ry],

where
1
c(k) := min (5 \/25_1Cfe_ch1Rfl —&(mw),

e o log 3 ) )
Letting j — 400, since 7;, — 7 by Lemma[3.5]in Sec. and the moment control
in (B61) (recall that Ty+1 < T and Z; = Z7), one has by dominated convergence

theorem that

E[f(12:)) < E[f (120, )] — C(k)/T E[f(1Zs)1(s<ry]ds.
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Since Z; =0 for t > 1,
E[f(|Zt|)1{t<'r}] = E[f(|Z:])]-
By Gronwall’s inequality, one has
Blf(|Z, )] < e “WE[f(| Z1, ).

Define h := sup,, ;. Choosing small h as stated in Theorem [Z] we are able to
conclude

E[f(|1Z1,])] < e” " E[f(1Zo])] = =T W (10, 10), (3.28)
where
c= %efchl min(y/26-e; Ry, k). (3.29)

Note that this resulted inequality is independent of T'. Since T is arbitrary, this
holds for all £ > 0. So one eventually has

Wipr,,vr,) < e “TeWy(uo,v0), Yk eN. (3.30)

Above, ug and vy denote any two initial distributions, and yu; and 14 are the cor-
responding time marginal distributions for the time continuous interpolation of
SGLD algorithm (L2)). Moreover, since e~ ¢/f1r < f(r) < r for any r > 0, we
have

Wi (pr,, vry,) < coe” T Wi(po, o), Vk €N, (3.31)

with cg := e/ 1. This then ends the proof by choosing R, = 2R. O

3.3. Propositions and lemmas used in the proof of Theorem [2.1]

In the following, we present crucial estimations used in the proof above: Lemma [3.2]
Corollary Bl Lemmas B.3}-3.5 and Proposition Bl As can be observed in the
proof of Theorem 2] the main issue to solve due to the existence of numerical
discretization is that, one needs to estimate how far Z; moves during the time
interval [T}, t] for t € [Tk, Tk+1). This then motivates us to estimate the diffusion
part ¢/’ defined in ([3I4) first.

In the next lemma, we estimate the martingale ¢’ defined in (B.I4):

tAT; Z®2

T S .

’ ._/ 7 W
Tk/\‘l'j S

Note that although the diffusion part W; in BI) or Lemma Bl is a Brownian
motion, it correlates with the original Brownian motion W;. Therefore, in (B.0]),
G = j;k dWs—dWy is a multiplicative noise. However, since the diffusion coefficient
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®2 .
\ZZtTP has unit norm, we are able to give the following tail estimate for ;7 using the

BDG inequality.

Lemma 3.2. Recall the definition for (' in @BI4). For any j € Ny, for fized
t € [Tk, Tes1), the random variable supq, <., |CS| is subgaussian in the sense
that

IP’( sup (17| > a FTk> < 267677’;1(12, Va >0, (3.32)

Ty, <s<t

where the o-algebra Fr, is defined by Fr, := 0(X,,Ys;s < T}), and ¢ is a positive
constant independent of t, k, & and a. Consequently,

P ( sup [(77] > E*%néﬂognkﬁ FTk) <2n — 0 asn — 0. (3.33)
T

K <s<t

Proof. We prove the subgaussian property ([3.32)) via the well-known t2-condition
[29]: there exists o > 0 such that

Bl I* | F,] < 2, (3.34)

where we denote ;7 := supy, <<, ¢’ Clearly, ¢/’ of the form [3I4) is a martingale

by optional stopping theorem [J], and its quadratic variation satisfies (¢;”) < t A
7; — Tk A 7; < n. Then it holds by the BDG inequality [Il [5] that
e =1
j »
Bl Fr) =14 a”E67[* | 1]
p=1

+oo
1 )
<1+ Z ECYPC%E[(CT]%}CH | Fr,]

p=1""

+o0 1
<14+ Ca(ma), (3.:35)
p=1
where o is a positive parameter to be determined, and Cs), is a positive constant
satisfying [Il [5l 25]:
Cap < (Cv/20), (3.36)
where C is a positive constant related to the Hilbert space only (in our case R?).

Combining (335) and (B336), we have

- T2
E[BQWHP |FT,C] <1+ OZ Z)_(ana)P.
p!
p=1
Clearly, ’;—T < epp*% < eP, which can be derived from an intermediate result in the
proof of Stirling’s formula [27]: logp! > (p + %) log p — p. Therefore,

—+o0
7j 2enia
Elet’ P | £.1< 1 02 2 P10 2YkY o
‘ Il p:l( ) N 1 —2ena
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by choosing @ = m = En,;l. Therefore, the 2 condition (34]) holds.
Finally, using Chernoff’s bound [29], for any a > 0, it holds that

P(|67| > a| Fp,) < E[e®0” | Fp,]/ee” < 2e=om ", (3.37)
Consequently, taking a = E*%ng |log mi|2 gives the last claim. O

We will make use of the subgaussian estimate to control a series of conditional
expectations. In particular, later we need the conditional expectations on events like
|ngc | > R and ¢t < 7;. If these two events are independent, there is little difficulty.
The difficulty is that these two are highly correlated. Actually, we will make use
of the fact that the former event almost is contained in the second one so that the
estimates can carry through as well.

As a start, we prove the following conditional estimate of |(;’ | as an illustration.
1 EBR2 )
2K’ 1281log8/?
obtained in Lemma 3.2l Suppose that IP’(|Z;L| > R) > 0. Then, for j large enough,
it holds that

Corollary 3.1. Let mi, < min( where ¢ is the positive constant

E¢7[1127] > Rt < 73] < 8V2/mk, V't € [Th, Tit) (3.38)

Proof. For simplicity, we denote the events
A= {|Z”EC| >R}, B:={t<mj}.

Our goal is then to control E[|¢;?|1415]/P(AN B).

First, using the BDG inequality for p € (0,2) (see, e.g., |22, Theorem 7.3]), one
has

- L
E(IG | A] < 4V2E[E[(C™)], | Fn] | A] < 4V2y/k. (3.39)
Next, we estimate P(B¢| A). By Markov inequality and the moment control in

Lemma [2.2],
T] E|Zz|? .
(|Z | > jo) < — 0 as jo — o0.
]0
Hence, for jg large enough (independent of j),

™ ) 1
P(|1Z | > jo) < ZP(A)-
Clearly,

P(|Z7,| = Jo) N P(B°N{R < |Zz| < jo})
P(A) P({R < |Z7 | <jo})

P(B°| A) <

Now, since
NZ3| = 1Z7 || < mK|Zg | + 2328717,
then B¢ could happen only if

22571 sup |¢J|>max{g—|2”| L2z -5 }
Ty <s<t
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Taking j with j > 3jo + R/4 and j~* < R/4, then
P(B°N{R <|Zz| < jo})

P{R <|Z7 ]| < jo})
By Lemma [3:2, one obtains that

<P (2 2671 sup |¢7| > R/4|7Tk) :

T, <s<t

P<2 2071 sup |<;f|>R/4|ka) < 9e~ PR /128,

Ty, <s<t

Hence, for n; < %, one has
1
P(BC|A) < 5 (3.40)
Consequently,
E[|¢[1a15] E[|¢14] E[l¢”1l4] -
< = < 2E[|¢,7||A
P(ANB) ~— P(A)-P(BCNA) 1-P(BCA) — lice™1}4]
and the claim then follows. O

Next, we will make use the same idea to establish a series of conditional expec-
tations, which is based on the tail estimate in Lemma 3.2

Lemma 3.3. Let n, € (0,1/2K). Then, for j > jo+ R/4, it holds that
Tj . —eBR?*n; ' /128 T
E“ZTk|1{\Z;i\>R}1{tZTj}j| < (€(jo) + 2~ FF -/ )E“ZT,J]'{\Z;ZCDR}]’
(3.41)
where €(jo) — 0 as jo — oo.
Proof. Clearly, B4I) is trivial if P(|Z;/| > R) = 0. Below, we assume that

P(|Z7 | > R) > 0.
On one hand, using the result for moment control (Lemma [22),

E(1Z5 Ly 27 1550y Lzt SENZE Y 50 15 500] < cGOB(IZE 1177 1y )
(3.42)

where €y(jo) — 0 uniformly in j as jo — oo.

Fix jo and let |Z;L| = 2z € (R, jo]. By similar discussion as in the proof of
Corollary B} since n, K < 1/2, for j > jo + R/4 and j~! < R/4, for 7; < t, one
necessarily needs 21/26-1 supy, <<, [¢/’| > R/4. Hence, for such j, one has

P(t > 75|27 | = 2) < 2~ PR /128, (3.43)
Hence, letting pu7, (dz) be the law of | Z7 |, one has

E[|Z7, Y rezy <ioy Mz

Jo
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B _ Jo
< 2~ PRy 1/128/ zpr, (dz)
R

< 26~ PR BR[| 77 |1

{127, = my)-
(3.44)

Combining [3:42)) and [B.44)), the claim (341]) holds. O

The following result follows from the same idea as above, but more involved. It
tells us that the two random variables | Z{’| and |Z}] | are roughly the same. Note
that this result is also based on the tail estimate in Lemma [3.21

Lemma 3.4. Under Assumption 21l for any Ry > 3R/2 with R obtained in
Lemma 2l and my, < min(55, 15 6¢R1 (R — 3R/2), BcR?/(12810g5)), there emists
Jjo > Ry such that for all 7 > jo,

E“th|1{|ij|>R1,\Z;1|§R,t<rj}] < e(nk)E[lZﬂ|1{|Z;Q‘SR¢<TJ_}], (3.45)

where
15 R, e~ cA(R1—3R/2)*n""1/8
e(n) == —= = : (3.46)

Proof. The idea is that for the event {|Z{’| > Riy,|Z| < R} to happen, |Z|
must be R for some time during T} and t. Conditioning on this, |Z;7| should be
large (roughly comparable to R), while the moment for |Z;”| > R; is then a small
fraction of this conditional moment.

Define the event

E:={|Z3)| < R,3s € [T}, t},| 27| = R}.

If P(E) = 0, there is nothing to prove. Below, we assume that P(F) > 0. Again,
the event E is also almost contained in {t < 7;}. We will in fact show that

E“Zt”|1{\Z[f\>Rl,\z;jc\gR,t<rj}]
—E[|IZ7 1151 1 oy reny) < COWEIZP | LaLary]. (347)
For a nonnegative random variable X, one has
E[X] = IE/OO lixspydr = /OO P(X > r)dr.
Then, i i

E“th |1E1{|Z:j |>R1,t<fj}]

:/0 P<|ZtTj|1E1{|Zt’j|>R1,t<rj} > r)dr
= R1P(|ZZ—J| > R, Bt < Tj) +/ P(|ZZ—J| >r Bt < Tj)d’l’.
Ry
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By applying the strong Markov property for |Z¢’| hitting R and using the same
idea in the proof of Corollary 31l one has for j large enough that
P(|Z]| > r, E,t <T1j) <2P(|Z| > r|E)P(E,t < ;).

Using the definition of the event E and applying LemmaB.2l with the strong Markov
property for |Zs’| = R, one has

(|Z7—J| > T|E) < 9e~C B(r— 3R/2)2nk1/8, Vr >Ry > 33/2_ (3_48)
Hence, one then has

]E[|th|1E1{|z?' \>Rl,t<rj}]

< 2 |Rye—BR1—3R/2)°n /8 /OO e eB(r=3R/2)*n, /8 1. P(E,t < ;)
Ry

2Ry + 8npe LB (Ry — 3R/2) "V )e BEIBR/D 8P ¢ < 1)
< 3R1676ﬁ(R1*SR/2)2";1/SP(E,t < Tj).

Next, we aim to show that

7 R
E[|th|1E1{t<7—j}] E]PD(E t < T])
In fact,
EZ] 151 qery] = / P27 > 1 Bt < 7,)dr
0
R/4
/ P(|Z’| > r, E,t < 7;)dr.

0

For r € [0, R/4],

P(|Z]| > r,E,t <T1j) > P(BE,t <T1j) —P(|Z]’| < R/4, E,t < 75).

Suppose s is the stopping time for |Z7| hitting R during [Tk, t], then one needs

tAT; Z®2
/ - dWy
SAT;j |Zt’ |

241 > R/4,

for |Z[7| < R/4 and t < 7; to happen (if j is large enough).
By strong Markov property and similar estimate as in the proof of Corollary [3.1]
one has

P(|Z7| < R/4,E,t < T;) < 2P <|Z %’E) P(E,t < 1)

_ 2
< de PN P(Et < 7). (3.49)
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Hence,

P(|Z| > r, E,t <T1j) >

Tp(E,t <)

and the claim (347) holds.
Note that the event EN{t < 7;} is smaller than {|Z7/ | < R} N {t < 7;} so that

E[|Z{ 11E1{1<ry] < EUZ?|1{‘Z;Q‘SR}1{:5<T]-}]- (3.50)

With (347) in hand, the claim then follows. O

Next, we obtain the following estimate for the term I1(¢) defined in (BI0),
which explains how we treat the random batch at discrete time T}, and make use
of the far away convexity. Note that this result is also based on the tail estimate in
Lemma

Before the detailed derivation, we first give a brief summary of proof for Propo-
sition B.J] regarding the estimate for the random batch. After Itd’s calculation, one
needs to estimate

E[¢p(Xe, Vi) (VU (X1,) = VU (Yr,))1a],

for some function @(-,-), t € [Tk, Tk+1) and some event A independent of the ran-
dom batch &. The key step in Proposition [3.1] is to use Taylor’s expansion and
consistency of the random batch:

E[¢(X:, Vo) (VU (X1,,) — VU (Yr,.))14]
= E[¢(XTk ) YT}C)(VUEIC (XTk) — VU (YTk ))]-A] + 6(77)
= E[¢(XTk ) YTk)(VU(XTk) - VU(YTk ))]-A] + 6(7’)7

where the last equality is due to E¢[U¢(+)] = U(+) and the fact that & is independent
of X7, and Y7, . Moreover, under the event A, the small remainder term ¢(n) can be
estimated through the tail behavior obtained in Lemma The details are given
as follows.

Proposition 3.1. Let f be the Lyapunov function defined in (27). Suppose

1
Assumption 211 holds. Assume that i, < 1/2K, KRn, < 57%n§|1ognk|% <1 (e
is the constant coming from LemmaB.2). Denote

2K 4e1/2
/o —71/2 e K 7Cf(R/271) 1
d:=c (R/2—1+ cre )+ 7 (3.51)
Then for j sufficiently large, it holds that
Tj ZTj v 7
E|=F27 ) gy - (VU (Xn,) = VUS <YTk>>1{z;z;>R}1{t<n}]

1 ~ap2,—1 )
< —(e Mk — [ logm| 2 = 3e= P N 20 1) ]
k

(3.52)
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Proof. We first show that for j € Ny, ¢t € [Tk, Tit1),

Tj

E [—f’(IZ? )2

27 (VU (Xr1,) — VU (Y7,) ’ka]

zz _
( (121 |)|Z d (VU (X1,) — VU (Yr,))

c’nillognkIZIZ}iO Y23 15 ry- (3.53)

Recall that for ¢ € [Tk, Tit1),
20 = Z — (t A1y — T A1) Az, +21/2672¢7. (3.54)
Noting that |f/(r)| < 1, by Assumption 2T and Lemma B2 it follows easily that

TJ
ZP )= A 4
' |: <| t |)| J| Tk {‘Z 7 |>R} {1¢: ]‘>C 277k ‘IOg"]k‘Z} ' Tk:|

< oK |Z7 |1 (3.55)

{127} >R}
On the other hand, consider the following:
z
¢ [ 120Dz |2, ATL122 b ol ) ‘ka} '
Consider the function g : R* — R defined by

g(x) = ff’(lxl)é—l Ar,

Here, A, = VU (X7, ) — VU (Yr,) is Fr, measurable, satisfying | Az, | < K|ZTk|
by Assumptionlﬂ] Clearly, for = # 0, the gradient Vg(z) = — f'(|z|)Ap, - |x| (Ig —
) "z &z \wP - A, is well defined. Hence

Vg\Z5 + (1= NZ7) - (—Ap,) < Az, Kz P
AT, ' SN2 0 =NZT] T Mg+ (1 =NZ0 ]
where we used f”(r)Ar, - |x—2 Aq, <0. Then, for || < E‘%nﬂlognkﬁ’

1
9(Z]) =g(Z7) + </0 Vg(AZ + (1 - A)Z,s”)dA> (2] - z7))

1 Z"'j 2
_g(Z;f)+nkK2/ - 12, _d\
: 0 Mg +(1=N)Z,”|

1 1
+</ |Vg()\ZFR+(1)\)Z;j)|d)\>E 3 ,f|lognk|2.
0
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1
Hence, choosing small 7, such that Kn, < % and E’%n,ﬂlognkﬁ < 1, it is not

difficult to control |)‘Z;1 +(1-NZ7| > |Z;L|(1 —nK)—12> |Z;f€|(1/2 —1/R).
Moreover,
—csINZg +(1-0z7 |

Tj Tj |ATk|
VgAZE + (1= NZ7)| < — _

+ Cf|ATk|€

K R/ .
(m‘i’KCfe f(R/2 1)> |ZTZ€|

1
Hence, for KRy, < 6_%77,3 |logmk |2,
. . ., 1 1 .
IZ 570 5 my < (9(Z5) + i1 logmel 2125 D1 774 15y

where

2K
& g 1/2 (R/2 — 4 checfumn) .

By Lemma [3:2] this then implies

oz
Ef/ZTJ +A 1 T 1 - 1 1 F:|
[ 71z |)IZ,JI T2 1> Ry 179 | <o /207 | 1ogmi 31 |7 T
Tj Z’;’J L 1 Tj
< (1 —2m) (‘f/(|ZT1|) |Z;f| - A, +&ng [log k|2 |ZT1|> 1{\Z;i\>R}
k
T Z’;’J T _ * 1 T
k

(3.56)

Combining (B55) and (B56), the claim [B353]) holds.
Next, we prove ([352). Clearly,

zp
12|

B | 120D (VU (X) = VU (V)1 5y L |

%
z7 |

— B |2 ) (VU™ () = VU (V) L5 |
zp

12|

~E [f’(lZ?I) (VU (Xx,) = VU™ (V1)) 1{|Z;J,;|>R}1{t2w}]

= By + Bs.
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For the first term, using ([B.53]), the consistency of the random batch £, and the
convexity condition in Assumption 2], one has
7

(_f/(|Z;i|) ZTk . (vak (XTk) —VUS* (YTk))

B <E L
|ZT‘;C

, % 1, 7.
+c'ng [log i |2 |ZT;|> 1{Z;Q>R}‘|

7

<f'<|z;f;|>z—ff (VU () - VU(T)
Z7]

k

=E

1 1 Tj
+c'ng | log | 2 |ZT1|> 1{Z;1>R}‘|

< —(€—CfR1,<; - 0/7713 | lognklé)E“Z;i|1{|Z;i|>R}]’ (3.57)

where we used the convexity outside B(0, R) in the last inequality.
For the second term, by Lipschitz condition in Assumption 2.1l we have

|B2| < KE“ZZZ|1{|Z;i|>R}1{t27j}]- (3.58)

Finally, combining (3X1), B5]) and B41]) in Lemma [33] we conclude that for
7 large enough
7

o Z _ _
E |:f/(|ZtJ ) L (VU& (Xr,) — VU (YTk))1{|z;i|>R}1{t<Tj}

2
< 7(€7ch1K - C/T]g | log 77k|% _ “D’B*EﬁRZn;l/128)}E[|Z;—{C |1{‘ZT]‘ \>R}j| . (359)
T,
’ O
Lemma 3.5. It holds that 7; is nondecreasing in j and
T, =T, a.8., (3.60)

where T is a stopping time defined in (33)).

Proof of Lemma It is clear that 7; is nondecreasing in j and sup,; 7; < 7.
Fix T' > 0. By Holder’s inequality and Lemma 2.2] for any T > 0,

é
s<t s<t

< <2E [sup|Xs|2] +2E {sup|Y5|2]) <C(T), Vtel0,T],
s<t

s<t

(3.61)
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where C(T') is a positive constant. Then, lim; o P(|Z7,a7| > j) < limj_.o
0. By continuity and the definition of 7;, 7, one has

supm; AT =7 ANT.
J
Since 7' is arbitrary, 7; — 7. O

Remark 3.1. Lemma can also be proved based on moment control for
the stopped process Xi’° = Xs,wj, which is a weaker result compared with
Lemma[2.2 and is in fact easier to prove than the moment control of sup, ., | Xs| in
Lemma 2.2 -

Remark 3.2 (Discussion on dimension dependency for the contraction
rate). We believe that the contraction rate ¢ in our result is dimension-free. The
only place that might be influenced by the dimension d is the positive constant Cs),
in (B36) coming from the BDG inequality. So far, we have not found any reference
claiming that the constant in the BDG inequality is independent of the dimension
d. However, the process (; defined in ([B.7) resembles a 1D Brownian Motion, since
the rank of the matrix Z22/|Z;|? is one with trace to be 1. If the direction Z;/|Z;|
does not change, then it is exactly 1D Brownian motion. The difference is that the
direction is changing along time.

4. General Drift Case

In many applications, the drift term may not be of the form —VU. In this section,
we generalize the results to the general diffusion processes where the drifts are no
longer gradients, namely, one still has ergodicity for the random batch version of
the Euler-Maruyama scheme for diffusion processes.

Consider the time continuous diffusion process

dX = b(X)dt + /23~ W, (4.1)

where b(-) is a given drift, which might not be a gradient field (in this case, X
is no longer a Langevin diffusion). Let b* be an unbiased stochastic estimate of b,
E(b%(:)) = b(+). The random batch version of the Euler-Maruyama scheme for the
continuous SDE (&), the correspondence of SGLD iteration, is then given by

XTk+1 - XTk + nkbgk (XTk) + 2/871(WT1C+1 - WTk)' (42)
Similarly with (I2)), we only need to analyze the following time interpolation:
t t
X, = Xr, - / b (X1, s + / V2B TAW,, te [ThThr), k=0,1,....
Tk Tk
(4.3)

In order to obtain similar contraction property, we need the following assump-
tion, which corresponds with Assumption 2.1
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Assumption 4.1. There exist R > 0, K > 0, K > 0 such that the followings hold:
(a) Vjz —y[> R,
—(z—y) - (b(z) = b(y)) = Klz —y|*; (4.4)
(b) Vo,y e R, VE €S,
6% () = b5 (y)| < Kz —yl. (4.5)

Again, the first assumption can be obtained if for some ko > 0 and Ry > 0 the
following holds:

—v-Vb(z)-v > kolv|?, VzeRNB(,Ry), VveR (4.6)

Then, we are able to prove the contraction property for the algorithm (@.2]),
which naturally implies geometric ergodicity for constant step size n = n by con-
traction mapping theorem [I8].

Theorem 4.1 (Wasserstein contraction with general drift). Consider the
random Euler—-Maruyama iteration [@3). For any two initial distributions po and
vy, denote pr, and v, to be the corresponding laws at Ty,. Denote h := supy, 0.
Let f be the Lyapunov function defined in (ZT). Then under Assumption 1l for
fized R1 = 2R and c¢ satisfying %\/25_1ch_1 — K >0, there exists § > 0 such
that for h <9, the following Wasserstein contraction result holds:

Wy (uz,,vr,) < e “TeWi(uo,v0), k€N, (4.7)
where
c= %efQCfR min(\/2ﬂ—*10fR71/2, K).
Consequently,

Wilpr,,vr,) < coe” " Wi(po,vo), k€N, cqi= e, (4.8)

Moreover, if ni. = n is a constant, then for n < 4, the iteration [@2) has a unique
invariant distribution T such that

Wy (MTk R ﬁ') < C()(ZiCTIC Wi (/1,0, ﬁ), k e N. (49)

The proof is almost the same as that of Theorem [ZI1 The only difference is
that we use condition (a) in Assumption ] instead of the convexity condition
(condition (a) in Assumption ZT]) when estimating the term I3 near (B17).

5. Conclusion

In this paper, We proved the geometric ergodicity of the SGLD algorithm under
nonconvexity settings. As a popular online sampling algorithm, SGLD has shown
exceptional performance when dealing with high-dimensional and large-scaled data.
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Via the technique of reflection coupling, in Theorem 2] we proved the Wasser-
stein contraction of SGLD when the target distribution is log-concave only outside
some compact sets. In particular, the time discretization and the minibatch in
SGLD introduced several difficulties when applying the reflection coupling, which
were addressed by a series of careful estimates of conditional expectations. As a
direct corollary, we proved that the SGLD with constant step size has an invari-
ant distribution and obtained its geometric ergodicity in terms of W; distance.
The generalization to non-gradient drifts was also included. We also remarked that
the contraction rate ¢ in Theorem [2.1] is intuitively dimension-free, as discussed
in Remark Remarkably, we believe that many techniques in this article are
applicable to other discrete algorithms involving random batches.
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Appendix A. Missing Proofs
In this section, we give the detailed proofs for Lemmas 2.1l and
Proof of Lemma 21l Fix r > 2R, and choose two arbitrary point =,y € R?
satisfying |« — y| = r. Then it holds that
(x—y) - (VU(@) = VU(y) _ (@ —y)- fy V2Ultz + (1 t)y)dt - (z — y)

|z — y|? |z —y?
(A.1)

For fixed x,y above, denote

Ay ={te€ (0,1): |tz + (1 — t)y| < Ro}
and

Ay :={t € (0,1): [tz + (1 —t)y| > Ro}.
Then, by Assumption 2.1],

/0 V32U (tx + (1 — t)y)dt = </A1 +/AZ> V2U (tz + (1 —t)y) dt
= (—m(A1)K 1) + (m(As)kola), (A.2)

where m denotes the Lebesgue measure in R!. Clearly, {tz + (1 —t)y : t € (0,1)}
is a segment connecting the two point z,y in R?. Then by definition of the ball

2450035-30



Stoch. Dyn. 2024.24. Downloaded from www.worldscientific.com
by SHANGHAI JAOTONG UNIVERSITY on 06/03/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

Geometric ergodicity of SGLD

B(0,Rg) := {z € R? : |z| < Ry}, the longest segment contained in B(0, Ry) is of
length 2Ry. Therefore,

2R 2R
m(A) < =2, m(Ay) =1-m(A) 21— =2 (A.3)
Combining (AJ)-(A3), for all z,y € R? satisfying |z — y| = 7,

(e =) (VUG - VUG) 2Ry 28y 2R,
oy > Ea (12 B oo == B2

(A4)

Choosing R := max(4Ro(K + ko)/ko,2), the conclusion (23] then holds with
K= Ko/2. |

Next, we prove the result of p-th moment control for SGLD.

Proof of Lemma We first control the moments of X;, namely E|X;|? on
(0,77, and then prove the moment control of sup, < | X¢|.

We take p > 2 first. By 1t6’s formula, for ¢ € [Tk, Ti41), we have

- - - - - $®2
A = P2, VU CEr e+ 5795 (L o= D ) s Lac
t

—p| X PT2X, - /28~ dW. (A.5)
Note that (I; + (p — 2) % |2) I; = p+d — 2. This implies that
d_ _ _ _ _
ZEIX|" = E[=—p| X" X, - VU (X)) + 57 p(p + d = 2)E[ X772 (A.6)
By the Lipschitz condition in Assumption 2.1} we can directly obtain
d_ - _ . B —
ZEIXI” < (p = DEIX|” + Cp, K)(1+ E[ X, ") + 87 'p(p + d — 2)E| X",

This easily yields

sup E| Xy [P < oo, (A.7)
t<T

where the upper bound depends on p, T, d but is independent of &j.
Next, we prove

sup E { sup |Xs|p} < 400. (A.8)
0<t<T  lo<s<t
Note that |X;|? = |Xo|P + M; + A, where
t
M, = / VI IR PR, - dW,, Wt >0 (A.9)
0
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and
¢ - t -
Ay = —/ p| X P72 X, - beds +/ B p(p+d —2)| X, [P~ 2ds,
0 0 (A.10)
b = VU (Xp,), Vt& [Ty, Tit1).
Then,
E { sup |Xs|p} <E|Xo’P +E [ sup MS} +E { sup AS] . (A.11)
0<s<t 0<s<t 0<s<t
Clearly M; is a martingale. By BDG inequality [22], one has
E[sup Ms} < 4VBE[(M)]] = 8/~ 1pE (/ X, |2 2ds) 1
0<s<t
Then using Jensen’s inequality and (A7), one has
- 3
E [ sup MS] <8/ 1p (/ E|Xs|2p_2ds) < Cy. (A.12)
0<s<t 0

For the term E[supg<,<; As|, using the Lipshitz condition in Assumption .11
we first observe that for ¢ € [0, T,

t t
4 < / Pl XA 1(K sup |X, |+b0) ds+ Cy / XL P2ds,

0<u<s

where by, C'5 are time-independent positive constants. Applying Young’s equality,
we have

t
E [ sup AS} < (pK + 1)/ E [ sup |)_(u|p] ds + Cy. (A.13)
0

0<s<t 0<u<s

Combining (AIT))-(AI3) together, one has that

t
E { sup |Xs|p} < Cs + (pK + 1)/ E [ sup |Xu|p] ds, Vte[0,T]. (A.14)
0

0<s<t 0<u<s

Hence, by Gronwall’s inequality, for all ¢ € [0, T, we have

E { sup |Xs|p] < CyePEHIT, (A.15)

0<s<t

The bound for p € [1,2] then follows easily by Holder’s inequality.
Next, we aim to establish the uniform moment control of X; for n; being suf-
ficiently small. Starting with (A.6)), the first term on the right-hand side may be
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written as
E[—p|X:|P2X, - VU (X1,)]
- E[fppsz |p72XTk - VU (XTk )]
1
+pE [ / Vh(AK: + (1 — N Xg)dA - (Ko — Xn,)
0

= p(Kl + KQ), (AlG)

where the function A is defined by h(z) := —|z[P~2z - VU (X7, ), and has a well-

defined gradient Vh(z) = —VU (X7,) - |z[P~2 (14 + (p— 2)%). Since X; — X7, =
—(t — Tp) VU (X7,) + /26~ (W, — Wr,),

1
K2 < (p— l)nk/ EIAX; + (1= X\ Xy [P72 VU (Xg, ) [d)
0

1
Y- 1)\/2571/0 EAX, + (1 — \) X, |72 VU (X1, )|

t
/ dW’ d.
Ty
Note that p—2 > 0, |AX; + (1 — \) X7, [P~2 < max(| X, [P72, | X1, |P72) < (| X P2+
| X7, [P~2). Then, one has

Ka < (p= 11 + 80 KPE(X, 2| X, P + X, )
+Cs, 03 (p — DmE(| X P72 + | X7, [P72)
VT, DI(EIX) P 4 (8 X, ) -1/7 4 1]
For the term K7, by Assumption 2.1] and Lemma 2.T],
—2-VU(z) < —klz|? + bo|z| + C(R).
Using the consistency of the random batch &, we have

K = E[—| X7 [P 2 X7, - VU(X7,)]
= E[-| X5, [P"* X, - VU(X1,)]
< —kE| X7, [P + boE| X7, [P~ + C(R)E| X1, [P2. (A.17)

Let e, = (p — 1)nx(1 + 01) K2. Then by Young’s inequality, we conclude that

9 _
p(Kl + Ks) < — (K— €k (1 + 5) — (52) E|XTk|p

+ <ek (1 - 2) + 62) E|X:|P + C. (A.18)
p
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Letting u(t) := E|X¢|P, one then has for t € [T}, Ty 1] that

a(t) < — <F; . (1 + %) - 52) w(Ty) + (ek (1 - %) + 52) u(t)

+C<61762ap7d)' (A19)
For 0 < A1 < A2 and v > 0 satisfying
) S Alu(t) - )\QU(Tk) + C,

one may obtain by Gronwall’s inequality that

’U(Tk+1) < <6>\177k _

However, since

1 1
— (MM — 1)\ | (T + C~— (M —1).
/\1 )\1

A A
_2) Mk + )\_2 <1+ ()\1 - )‘2)77’“
1

1
)\l'ﬂk o )\l'ﬂk _ 1 — 1 _
e 3 (e )2 ( N

1

one then has

O(Thr1) <1+ (A1 — Az)]v(Tk)C%l(e’\””“ —1).

We apply this elementary derivation for A\; = e;(1 —2/p) + 62 and Ay = k — e (1 +
2/p) — d2, then obtain

(Tk+1) [1 - (I{ - 2€k - 252)77k] (Tk) + C(p7 d7 ﬂv 517 527”]@)'

Since we can choose d; and d2 small, by the condition nx < k/(2(p — 1)K?) —§
given, k — 2¢;, — 2d5 is bounded below by a positive number and C(p, d, 83, 1, d2, nx)
has a uniform upper bound in k. Moreover, since k < K, (k — 2e;, — 252)m, < 1.
The claim then follows. |

Appendix B. Details for Construction of Reflection Coupling and
Lyapunov Function

Here we present more details for the principal method employed in this study —
reflection coupling equipped with a specific Lyapunov function f(-), as described
in the introduction.

Consider the two time marginal distributions p,(S ), pt ) of some SDEs (in our

result, it is ([2))), starting from the initial distributions pél), pé ), respectively.

As has been discussed in the introduction, here we aim to prove the contraction
property:
2 ) (2
Wiet”, o) S e W, p67)-
Here, f(-) is some suitable Lyapunov function and Wy(-,-) is the Kantorovich—
Rubinstein distance associated with the cost function f(-). The reflection coupling

method begins with choosing the pair of initial points (Xo, Yp) such that Ef(| X, —
Yo|) = Wf(pgl), pé )). Then we choose a realization X; of SGLD (LZ) such that the
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law of X is pgl) and the law of X is pél). The key step in the reflection coupling

method is that we construct a companion process Y; with Yy coupled above with
Xo and satisfies: (i) Y; shares the same Brownian motion with X,, and has an
additional reflection term in its diffusion part, and Y; also shares the same random
batch & at each T} in our SGLD setting (L2); (ii) Y; is also a realization of the
same SDE for X; and the law of Y; is p,EQ). Then the contraction property mentioned
above is reduced to estimation of the negative Lyapunov exponent for the paired
dynamics (X¢, Y;). Namely, we aim to show that

Ef(|X: = Yi|) < Ce”“"Ef (| Xo — Yo).

In the followings, we will first introduce the necessity of using the technique of
reflection coupling, and then introduce the motivation of the construction of the
reflection coupling and the associated Lyapunov function. Note that the geomet-
ric ergodicity arises from the strong convexity of the potential U(-) outside some
compact sets. In fact, by strong monotonicity property in Lemma 2]

(z—y) (VU(z) = VU(y)) > xlz — y|?,

any such pair (X;, Y;) would attract each other if they are sufficiently far away.
Take the following numerical scheme for SDE as a simple illustration:

X" = X" - gVU(X™) + i, ¢~ N(0,1). (B.1)

In the settings of this paper, on one hand, as mentioned above, the strong convexity
outside some compact sets of the potential U(-) in the drift implies that any paired
iteration (X", Y™) associated with (B would attract each other if they are far
away. On the other hand, the external force is weak inside the compact set since
in this area the potential U(-) does not have strong convexity. In this case, the
diffusion term would dominates the drift, since c;/f < con, where ¢y, ¢; are of
O(1). Therefore, at first glance, one cannot directly prove the contraction when the
diffusion overshadows the drift. Nonetheless, the application of reflection coupling
[10] offers a resolution by facilitating the closer convergence of two particles X¢, Y;
even within the compact set. Take the following overdamped Langevin diffusion for
example:

dX; = b(Xy)dt +dW, X|i—o = Xo.

The reflection coupling method for the overdamped Langevin diffusion considers
another slave copy of X;, which shares the same Brownian motion but has a reflec-
tion term in the diffusion part:

(X; — ¥;)®?
[ X¢ = Yi[?
It can be shown that the diffusion with a reflection is still a Brownian motion
(see [10] or Lemma B.TI), so Y; is also a realization of the overdamped Langevin

_y,)®2
diffusion. With the reflection matrix (14 — 2%), the two particles X;, Y;

dY, = b(Yy)dt + (Id —2 ) LW, Y=o = Yo,
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would eventually move towards each other when the diffusion dominates the drift.
92 (X —Y,)®?

[ Xt —Ye]?
either approaching or depart from each other. However, the restored force would

In fact, from the reflection operator (I; — ), the Brownian motion can be

prevent X, Y; from going too far away from each other. With this intuitive picture
of how the reflected couple (X, Y:) moves, it is then left to prove the contraction
via practical calculation, namely, one needs to find some Lyapunov function f(-)
satisfying

(1) Cir < f(r) < Cor for all r.

(2) Ef(]X: — Yz|) decays exponentially in time.

Below we discuss a bit on our motivation for how to fund such Lyapunov function.

One can see from Ito’s formula that

d
SEIF (X0 - Yil)
" / Xt*Yt
=E|f (IthYt|)+f(IthYtl)m%b(Xt)*b(Yt)) - (B2)

Since the goal is to obtain an estimate of the form

SEIF(X - ¥iD] S ~ELF (X - %)

one naturally requires the following conditions when constructing such f: (1) Cyr <
f(r) < Cor; (2) |F/(r)] < L; (3) f'(r) < —=Csr for all r < Ry, where Ry is some
positive constant larger than R. If these conditions are satisfied, then one can see

from (B.2)) that

d
EE[fOXt = YiD1{x,—vi|<r}]

< E[(=Cs] Xy = Vi + LIV oo Xt = Vi) 1{1x,~vi < )]

S —Ef(1Xe = Yi)1{x,—vi <R}

provided that Cj is relatively large. This then motivates one to seek a concave
increasing Lyapunov function f of the form

flr) ::/ e_cf(SARl)ds, r>0.
0

for some positive ¢y, Ry to be determined (in our result for SGLD, we choose
Ry = 2R and the required condition for c¢; is stated in (Z9)). Then one can
obtain the contraction property for this reflection coupled continuous dynamics
(Xh)/t)'
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