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Abstract. Deep generative models aim to learn the underlying distribution of data

and generate new ones. Despite the diversity of generative models and their high-
quality generation performance in practice, most of them lack rigorous theoretical

convergence proofs. In this work, we aim to establish some convergence results for
OT-Flow, one of the deep generative models. First, by reformulating the framework

of OT-Flow model, we establish the Γ-convergence of the formulation of OT-Flow

to the corresponding optimal transport (OT) problem as the regularization term
parameter α goes to infinity. Second, since the loss function will be approximated

by Monte Carlo method in training, we established the convergence between the

discrete loss function and the continuous one when the sample number N goes to
infinity as well. Meanwhile, the approximation capability of the neural network

provides an upper bound for the discrete loss function of the minimizers. The proofs
in both aspects provide convincing assurances for the stability of OT-Flow.
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Key words: Generative models, continuous normalizing flows, OT-Flow, Benamou-Brenier
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1. Introduction

Deep generative models [15, 21, 23, 33] are increasingly being adopted as the pre-

ferred methodology across various tasks due to their impressive performance, includ-

ing solving inverse problems [7], image generation [10], text-to-image [32] and video

generation [25]. The widely-used frameworks include diffusion probabilistic models
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(DPMs) [3, 17, 36], continuous normalizing flows (CNFs) [8, 16], variational auto-

encoders (VAEs) [21, 23] and generative adversarial networks (GANs) [2, 15]. Among

above four popular frameworks, CNFs are characterized by continuous-time ordinary

differential equations (ODEs), and DPMs utilize stochastic differential equations (SDEs)

as their backbone. Through DPMs and CNFs, samples evolve from data points to Gaus-

sian distribution in the forward process and gradually remove noise to generate samples

in the backward process. In comparison with GANs and VAEs, samples of DPMs and

CNFs are generated in smoother ways, not only achieving superior sample quality but

also enabling exact likelihood computation. Despite the diversity of generative models

and their outstanding performance in downstream tasks, the mathematical principles

behind the models and rigorous convergence proofs are developed far behind the rapid

iteration of the models. In this paper, our focus lies in establishing convergence results

for OT-Flow, which stands as one of the practical CNFs. Such convergence analysis

ensures stability during the training and aids in comprehending the underlying mech-

anisms of the model.

The continuous normalizing flows (CNFs) are a class of sample generative models

based on particle transportation purely. The CNFs aim to build continuous and invert-

ible mappings between an arbitrary distribution ρ0 and standard normal distribution

ρ1 by setting the velocity field as an output of neural network. In particular, for a given

time T , one is trying to obtain a mapping z : Rd × [0, T ] → Rd, which defines a contin-

uous evolution x 7→ z(x, t) of every x ∈ Rd. Then the density ρ(z(x, t), t) satisfies

log ρ0(x) = log ρ
(

z(x, t), t
)

+ log |det∇z(x, t)| for all x ∈ Rd. (1.1)

Especially at time T we have

log ρ0(x) = log ρ1
(

z(x, T ), T
)

+ log |det∇z(x, T )|.

Define

ℓ(x, t) := log |det∇z(x, t)|,

then z(x, t) and ℓ(x, t) satisfy the following ODE system:

∂t

[

z(x, t)
ℓ(x, t)

]

=

[

v(z(x, t), t;θ)
tr(∇v(z(x, t), t;θ))

]

,

[

z(x, 0)
ℓ(x, 0)

]

=

[

x
0

]

. (1.2)

To train the dynamics, CNFs minimize the expected negative log-likelihood given by the

right-hand-side in (1.1), or equivalently the KL divergence between target distribution

and final distribution under the constraint (1.2) [16,31,33]

J = KL
[

ρ(z(x, T ))‖ρ1(z(x, T ))
]

. (1.3)

For convenience we solve (1.2) together to obtain the change of ρ, which will lead to

a more efficient estimation of density.

From the ODE system (1.2), we can see that once the velocity field is learned, one

can track the evolution of density and invert the transport map by running the ODE

FOR PRIVATE USE ONLY

Generated for ??????  (Shanghai Jiaotong University) at 111.186.40.99 on 2025-06-03 12:23:15

DOI https://doi.org/10.4208/nmtma.OA-2024-0114



Convergence Analysis of OT-Flow for Sample Generation 327

backward. The invertibility of CNFs grants us access to estimate the density of the

sample space, which can be employed for Bayesian inference tasks [11,22,30].

In general, the velocity field that transforms a given probability measure to a target

one is not unique in the formulation of CNFs. One should observe the parallels between

CNFs and the dynamic formulation of Wasserstein distance, where both involve the evo-

lution of probability distributions through mass transportation under a velocity field.

It is natural to incorporate optimal transport concepts into CNFs to enhance algorithm

performance. Finlay et al. [13] pioneered the introduction of optimal transportation

regularization in normalizing flows, while Onken et al. [29] subsequently proposed

OT-Flow as an enhanced version of CNFs, which leverages optimal transport theory to

regularize the CNFs and enforce straight trajectories that are easier for numerical in-

tegration. OT-Flow may be preferred in applications due to the particles’ straight-line

paths and trajectories avoiding intersections. Consequently, such a model is expected

to improve its invertibility and generation efficiency.

The optimal transport was first introduced by Monge [28] in 1781 and was relaxed

by Kantorovich [19]. The optimal transport theory actually provides a specific way

to transform the measure µ to ν with minimum transportation cost. In particular, let

Ω ⊂ Rd. Given two distributions µ, ν ∈ P(Ω), where P(Ω) is the set of all probability

measures on Ω, one can define the Wasserstein p-distance (p ≥ 1) between µ and ν

Wp(µ, ν) =

(

inf
γ∈Π(µ,ν)

∫

|x− y|pdγ

)1/p

, (1.4)

where Π(µ, ν) is the set of transport plans, i.e. a joint measure on X×Y , with marginal

distribution µ and ν. Define the space

Wp :=

{

µ ∈ P(Ω) :

∫

Ω
|x|pµ(dx) < ∞

}

. (1.5)

Then (Wp,Wp) is a complete metric space. Wasserstein distance stands out as a promi-

nent choice among metrics due to its ability to quantify dissimilarity between two

distributions, even in cases where one or both distributions consist of discrete data

samples with disjoint supports, which can be applied to traditional models for im-

provements [29, 34]. On a convex and compact domain Ω, the Wasserstein distance

Wp admits the following dynamic Benamou-Brenier formulation [35, Chapter 5, The-

orem 5.28]. Let µ and ν are two probability distribution on Ω and are absolutely

continuous with respect to the Lebesgue measure, and vt is a vector field on Ω,

W p
p (µ, ν)

= min
ρ,v

{
∫ 1

0
‖vt‖

p
Lp(ρ) dt : ∂tρt +∇ · (ρtvt) = 0, v · n|∂Ω = 0, ρ0 = µ, ρ1 = ν

}

, (1.6)

where

‖vt‖
p
Lp(ρt)

=

∫

Ω
|vt(x)|

pρt(dx).
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Clearly, the optimal velocity field vt in this problem is one of the candidates for CNFs

and could be optimal in certain sense. The cost in the OT-Flow to train the velocity

field is then given as follows:

J = KL
[

ρ(x, T )‖ρ1(x)
]

+
2

α
Eρ0

[
∫ T

0

1

2
|v(z(x, t), t)|2dt

]

. (1.7)

Here α is a hyperparameter to balance KL divergence and trajectory penalty. Note that

even when Ω is not compact or not convex when there is some possibility that dynamic

formulation is not strictly equal to the Wasserstein distance, such a formulation could

still be beneficial since the dynamical formulation itself corresponds to some metric.

The KL divergence term in (1.7) serves as a soft terminal constraint, which enforces

the terminal distribution ρ(x, T ) transported by velocity field to get close to ρ1. The

second term is related to the dynamic Benamou-Brenier formulation of W2 distance

in optimal transport theory, which can also be regarded as a penalty of the squared

arc-length of the trajectories. Ideally if the KL divergence term is zero, minimizing the

cost function is equivalent to minimizing W2 distance and solving the optimal velocity

field, which will encourage straight trajectory.

OT-Flow proves practical in sample generation, gaining an advantage over previous

CNFs by integrating optimal transport concepts. One may find it interesting to explore

the relationship between the velocity field solved by neural networks in OT-Flow and

the classical solutions of OT problems. In our work, we conduct a convergence analysis

for OT-Flow. More specifically, our convergence analysis mainly contain two parts.

In the first part, we reformulate OT-Flow and classical OT problems into continuous

optimization problems with similar form. Subsequently, we demonstrate that OT-Flow

Γ-converges to OT as the regularization coefficient α → ∞, indicating the minimizers

of OT-Flow will converges to ones of classical OT problems. One should notice that OT-

Flow uses data samples to approximate the equivalent loss functional. In the second

part, we illustrate that as with an increasing dataset size, the minimizers of whose loss

functional is approximated through Monte Carlo method, will eventually converge to

theoretical solutions with a sufficient neural network approximation capability.

The rest of the paper is organized as follows. Section 2 provides some setup and

notations to formulate the problem. We provide an overview of Γ-convergence as well,

which serves as a fundamental tool in our analysis. Then we establish a convergence

analysis between OT-Flow and classical OT problems in Section 3. In Section 4, we

consider the convergence of the minimizers with respect to sample number N → ∞.

We conclude the work and make a discussion in Section 5.

2. Setup and notations

Recall the optimization problem of OT-Flow in (1.7). The KL divergence (relative

entropy) between two probability measure µ and ν on Rd is defined by
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KL [µ||ν] =







∫

D
log

(

dµ

dν

)

dµ, if µ ≪ ν,

∞, otherwise,
(2.1)

where dµ/dν denotes the Radon-Nikodym derivative of µ with respect to ν. Note

that the KL divergence is non-negative by Jensen’s inequality and achieves zero only if

µ = ν. Moreover, it is a convex functional with respect to either argument.

Assume D ⊂ Rd is a bounded domain with smooth boundary. To obtain the full de-

scription of the mathematical problems, one also needs to specify the no-flux boundary

condition v ·n = 0 on ∂D by the physical significance. Hence, the optimization problem

of OT-Flow becomes

min
ρ,v

KL
[

ρ(x, T )||ρ1(x)
]

+
1

α

∫ T

0

∫

D
ρ|v|2dxdt,

s.t. ∂tρ+∇ · (ρv) = 0 in D × [0, T ],

with ρ(x, 0) = ρ0(x),

v(x, t) · n = 0 on ∂D × [0, T ].

(2.2)

However, the minimization problem above in the variables (ρ, v) has nonlinear con-

straints. It has been deemed advantageous to transition the variables from (ρ, v) into

(ρ,m), where m = ρv. Thus, the full description of the optimization problem associated

with OT-Flow is presented as follows:

min
ρ,m

KL
[

ρ(x, T )||ρ1(x)
]

+
1

α

∫ T

0

∫

D

|m|2

ρ
dxdt,

s.t. ∂tρ+∇ ·m = 0 in D × [0, T ],

with ρ(x, 0) = ρ0(x),

m(x, t) · n = 0 on ∂D × [0, T ].

(2.3)

Correspondingly, the optimal transport problem then becomes

min
ρ,m

∫ T

0

∫

D

|m|2

ρ
dxdt,

s.t. ∂tρ+∇ ·m = 0 in D × [0, T ],

with ρ(x, 0) = ρ0(x), ρ(x, T ) = ρ1(x),

m(x, t) · n = 0 on ∂D × [0, T ].

(2.4)

In Section 3, we will first study the convergence of (2.3) to (2.4). We will allow

m to be measures and the exact meaning of |m|2/ρ will be explained in Section 3.2.

Moreover, the working space we choose in this work is

ρ ∈ L1
(

[0, T ];W2(D)
)

, m ∈ L1
(

[0, T ];M (D)
)

. (2.5)
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Then, the problems (2.3)-(2.4) become convex optimization problems, and the corre-

sponding functionals have the lower semi-continuity with respect to the weak conver-

gence (see Section 3.2 for details).

The main analytical tool employed in our study is the Γ-convergence [5]. Here, let

us briefly introduce the relevant concepts. We will collect some basics of Γ-convergence,

which is commonly used to investigate the convergence of the optimization problems

and their optimizers. We first recall the definitions of the usual Γ-convergence.

Definition 2.1. Let X be a topological space. Let (fn) be a sequence of functionals on X.

Define
Γ- lim sup

n→∞
fn(x) = sup

Nx

lim sup
n→∞

inf
y∈Nx

fn(y),

Γ- lim inf
n→∞

fn(x) = sup
Nx

lim inf
n→∞

inf
y∈Nx

fn(y),
(2.6)

where Nx ranges over all the neighborhoods of x. If there exists a functional f defined on

X such that

Γ- lim sup
n→∞

fn = Γ- lim inf
n→∞

fn = f, (2.7)

then we say the sequence (fn) Γ-converges to f .

Proposition 2.1. Any cluster point of the minimizers of a Γ-convergent sequence (fn) is

a minimizer of the corresponding Γ-limit functional f .

Thus, Γ-convergence serves as an ideal tool to characterize the convergence of the

minimizers of a sequence of optimization problems. Particularly, one can employ Γ-

convergence to investigate the asymptotic behavior of neural network solutions as the

regularization coefficient approaches infinity or approaches zero.

Direct verification of Γ-convergence using Definition 2.1 often proves to be chal-

lenging in many instances. Some refined versions of the Γ-convergence were pro-

posed in [6], which are known as Γseq-convergence. There exist many notions of Γseq-

convergence. In this discussion, we introduce two such formulations, which will be

instrumental in establishing a Γ-convergence analysis from OT-Flow to OT, as detailed

in Section 3. In particular, we will consider

Γseq(N
+,X−) lim

n
fn := inf

xn→x
lim sup
n→∞

fn(xn), (2.8)

Γseq(N
−,X−) lim

n
fn := inf

xn→x
lim inf
n→∞

fn(xn). (2.9)

Here, the infxn→x means the infimum is taken with respect to all sequences {xn} that

converge to x. The following proposition gives the closed relationship between Γseq-

convergence and the usual Γ-convergence. We will omit the proof and a more rigorous

proof can be found in [40].

Proposition 2.2. Suppose that X is a first-countable topological space. It holds that

inf
xn→x

lim sup
n→∞

fn(xn) = Γ- lim sup
n→∞

fn,

inf
xn→x

lim inf
n→∞

fn(xn) = Γ- lim inf
n→∞

fn.
(2.10)
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Consequently, if

inf
xn→x

lim sup
n→∞

fn(xn) = inf
xn→x

lim inf
n→∞

fn(xn) =: f (2.11)

exists, then (fn) Γ-converges to f .

As mentioned in the introduction, OT-Flow utilizes a neural network to parame-

terize the velocity field and optimize the cost functional in (1.7). However, training

the model directly with the cost functional is intractable as we only have data samples

from ρ0. To address this, one is supposed to rewrite cost functional in the form of

expectation over ρ0 and approximate the cost functional using Monte Carlo method.

According to [29], one may simplify the KL divergence term with density relationship

(1.1) and drop constant in the formulation. The final cost function J of OT-Flow gives

as follows:

J = Eρ0(x)

[

C(x, T ) +
2

α
L(x, T )

]

,

C(x, T ) = −ℓ(x, T ) +
1

2
|z(x, T )|2 +

d

2
log(2π),

L(x, T ) =

∫ T

0

1

2
|v(z(x, t), t)|2dt.

(2.12)

In particular, from the Pontryagin maximum principle [12], there exists a potential

function Φ : Rd × [0, T ] → R such that

v(x, t) = −∇Φ(x, t) (2.13)

OT-Flow parameterize Φ with a neural network instead of v in practice. We will con-

centrate on using neural networks to directly approximate the velocity field for the sake

of notation convenience, which will have no impact on our analysis. One should re-

member that the discretion of cost function will introduce variations to the minimizers

as well. Consequently, we will demonstrate that as the sample number N → ∞, the

optimal solutions of neural network will converges to the theoretical minimizers of the

cost functional in Section 4.

3. Convergence from OT-Flow problem to optimal transport problem

In this section, we will consider the OT-Flow and the optimal transport problems

for given ρ0 ∈ P(D) and ρ1 ∈ P(D). For the purpose of facilitating the proof, we

reformulate the optimal transport problem (2.4) into the following form to ensure

consistency of the constraints:

min
ρ,m

∫ T

0

∫

D

|m|2

ρ
dxdt+ 1E ,

s.t. ∂tρ+∇ ·m = 0 in D × [0, T ],

with ρ(x, 0) = ρ0(x),

m(x, t) · n = 0 on ∂D × [0, T ],

(3.1)
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where E is the set of the terminal constraints ρ(x, T ) = ρ1(x). Since ρ is required to

be integrable so far, rigorous definition of E will be given later. Moreover, 1E(x) is the

indicator function for a set E in X

1E(x) =

{

0, if x ∈ E,

+∞, otherwise.
(3.2)

The OT-Flow problem (2.3) can be equivalently written as

min
ρ,m

∫ T

0

∫

D

|m|2

ρ
dxdt+ αKL

[

ρ(x, T )||ρ1(x)
]

,

s.t. ∂tρ+∇ ·m = 0 in D × [0, T ],

with ρ(x, 0) = ρ0(x),

m(x, t) · n = 0 on ∂D × [0, T ].

(3.3)

We adopt this formulation for its closer alignment with the optimal transport prob-

lem (3.1).

Our goal is to prove that the minimization problem (3.3) is Γ−convergent to the

minimization problem (3.1) when α → ∞. Subsequently, it is necessary to rigorously

define the framework of the problems, including the topology of the space and the

meaning of the constraints etc.

3.1. The topological properties of the working spaces

We will concentrate on the properties of the spaces we will work on

X = L1
(

[0, T ];W2(D)
)

:=

{

ρ : [0, T ] → W2(D)

∣

∣

∣

∣

∫ T

0

∫

D
|x|2ρt(dx)dt < ∞

}

,

Y = L1
(

[0, T ];M d(D)
)

:=

{

m : [0, T ] → M
d(D)

∣

∣

∣

∣

∫ T

0
‖m‖Ddt < ∞

}

.

(3.4)

Here, M (D) is the set of signed measures on D and M d(D) is the set of vector-valued

signed measures on D with d components. The notation ‖m‖D indicates the total

variation norm which we explain below.

Let Cb be the set of all continuous functions on D (the subindex “b” indicates that it

is bounded, which is natural since continuous functions on bounded set are bounded).

Let C1
b be the set of all continuously differentiable functions on D and the first or-

der derivatives are bounded on D. Without explicitly stated, Cb is equipped with the

uniform convergence norm. Under the uniform convergence norm

‖ϕ‖ := ‖ϕ‖∞ = sup
x∈D

|ϕ(x)|, (3.5)

C1
b is a dense subset of Cb (of course, if one considers the norm ‖ϕ‖∞ + ‖Dϕ‖∞, C1

b

itself is complete).
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For a measure µ∈M (D), the total variation norm is the dual operator norm over Cb

‖µ‖D := sup
ϕ∈Cb,‖ϕ‖≤1

∫

D
ϕµ(dx). (3.6)

Similarly, if f is a vector-valued measure, the total variation norm is defined by

‖f‖D := sup

{
∫

D
g · f(dx) : g : D → Rd continuous, sup

x
|g(x)|2 ≤ 1

}

. (3.7)

Here, |g(x)|2 denotes the Euclidean length of g. If µ and f are absolutely continuous to

some non-negative measure λ (for example, the Lebesgue measure dx), then the total

variation norms for the scalar measure µ and vector valued measure f on D are as

follows:

‖µ‖D =

∫

D
|µ(x)| dλ, ‖f‖D =

∫

D
|f(x)|2 dλ, (3.8)

where we abuse the notations for convenience and understand µ(x) = dµ/dλ and

f(x) = df/dλ as the densities with respect to λ. The notation |f(x)|2 is the Euclidean

length of the vector f(x).
In our case, when ρ and m are curves in W2(D) and M d(D), the total variation

norms could be taken for each t ∈ [0, T ]. In our case ρ is a probability measure, so

‖ρt‖D = 1 for each t, and thus
∫

|x|2ρ(dx) < ∞ since D is bounded. Then, for every

measurable curve taking values in P(D), one then has

‖ρ‖ =

∫ T

0
‖ρ(t)‖Ddt = T,

∫ T

0

∫

D
|x|2ρ(dx) dt < ∞. (3.9)

The norm for m ∈ Y is then

‖m‖ =

∫ T

0
‖m(t)‖Ddt. (3.10)

Similar as in [40], we equip X and Y with the weak topology respectively: we say

ρn ⇒ ρ in X if
∫ T

0

∫

D
ϕdρn →

∫ T

0

∫

D
ϕdρ, ∀ϕ ∈ Cb(D̄ × [0, T ];R), (3.11)

and mn ⇒ m in Y if
∫ T

0

∫

D
g · dmn →

∫ T

0

∫

D
g · dm, ∀g ∈ Cb(D̄ × [0, T ];Rd). (3.12)

(Note that there is a typo in [40, p. 758, Eq. (3.18)] where C1
b should be Cb.) The weak

topology used here as the dual of the class of Cb functions is standard in literature. If

both mn and ρn uniformly bounded in total variation, then one can replace the test

functions from Cb to C1
b in (3.13) since the set C1

b is dense in Cb under the topology of

uniform convergence.

With the weak topology introduced, we observe the following properties of the

spaces.
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Proposition 3.1. Both X and Y are closed subspaces of the signed measures and vector-

valued signed measures with respect to the weak topology in the sense that

(i) If ρ(n) ∈ X and there is some ρ : [0, T ] → M (D) such that ρ(n) ⇒ ρ, then ρ ∈ X.

(ii) If m(n) ∈ Y and there is some m : [0, T ] → M d(D) such that m(n) ⇒ m, then

m ∈ Y .

Proof. Consider a sequence {ρ(n)} ∈ X such that ρn ⇒ ρ. First, since Cb(D̄ × [0, T ])
is a complete metric space, one can obtain by the Banach-Steinhaus theorem that

sup
n

‖ρ(n)‖ < ∞.

Then, one finds that

∣

∣

∣

∣

∫ T

0

∫

D
ϕρ(dx)dt

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∫ T

0

∫

D
ϕρ(n)(dx)dt

∣

∣

∣

∣

≤ lim inf
n→∞

‖ρ(n)‖‖ϕ‖.

This indicates that ‖ρ‖D < +∞. Since Cb(D̄ × [0, T ]) is separable, we can then find

a countable dense set {ϕm} ⊂ Cb such that for all ϕm and almost every t ∈ [0, T ] such

that
∫

D
ϕm(t)ρ

(n)
t (dx) →

∫

D
ϕm(t)ρt(dx).

This indicates that in fact for all Cb(D) functions, this weak convergence holds for

these t. Consequently, ρt ∈ P(D) for a.e. t ∈ [0, T ]. Hence, we find a version of ρ such

that ρt ∈ P(D) for all t. Since D is bounded, one then finds that

∫ T

0

∫

D
|x|2ρ(dx)dt < +∞.

Thus, ρ ∈ L1([0, T ];W2(D)). For the space Y, it is straightforward by the Banach-Stein-

haus theorem and the argument similarly above. Hence, both X and Y are closed

under weak topology.

3.2. Lower semi-continuity of the functionals

First of all, we equip the product space X × Y for (ρ,m) with the product topology

and then the weak topology (ρn,mn) ⇒ (ρ,m) is understood as: ∀f ∈ Cb(D̄×[0, T ];R),
g ∈ Cb(D̄ × [0, T ];Rd), one has

∫ T

0

∫

D
fdρn +

∫ T

0

∫

D
g · dmn →

∫ T

0

∫

D
fdρ+

∫ T

0

∫

D
g · dm. (3.13)

Next, we also rewrite the continuity equation in the weak sense as dual of C1
b ,

thereby incorporating the constraints into the working subspace. It should be noted
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that, as of now, ρ is only guaranteed to be integrable and ρ(x, T ) is not well-defined. In

particular, we can define the subspace H of X × Y as following:

H :=

{

(ρ,m) ∈ X × Y : −

∫ T

0

(
∫

D
(∂tϕ)ρ(dx) +∇ϕ ·m(dx)

)

dt

−

∫

D
ϕ(x, 0)ρ0(dx) = 0,∀ϕ ∈ C1

b (D̄ × [0, T ]), ϕ(·, T ) = 0

}

. (3.14)

Clearly H is closed due to the fact that the constraints are linear. Similarly, E can now

be rigorously defined as follows:

E :=

{

(ρ,m) ∈ X × Y : −

∫ T

0

(
∫

D
(∂tϕ)ρ(dx) +∇ϕ ·m(dx)

)

dt

+

∫

D
ϕ(x, T )ρ1(dx)−

∫

D
ϕ(x, 0)ρ0(dx) = 0,∀ϕ ∈ C1

b (D̄ × [0, T ])

}

. (3.15)

One should note that E is a closed subset of H.

If there is a version of t 7→ ρt that is continuous at T , one can define the limit

ρ̄(x, T ) := lim
δ→0

1

δ

∫ T

T−δ
ρs ds, (3.16)

and the functional

G(ρ, ρ1) :=











KL
[

ρ̄(x, T )||ρ1(x)
]

, if there is a version of t 7→ ρt

that is continuous at T ,

∞, otherwise.

(3.17)

G(ρ, ρ1) actually corresponds to the KL divergence term if we later focus on the feasible

points, which ensures the continuity of ρ. Corresponding to the optimization problems

(3.1) and (3.3), one naturally aims to introduce the functionals Fα and F∞ on H by

Fα(ρ,m) =

∫ T

0

∫

D

|m|2

ρ
dxdt+ αG(ρ, ρ1),

F∞(ρ,m) =

∫ T

0

∫

D

|m|2

ρ
dxdt+ 1E .

(3.18)

Here we have the expressions like |m|2/ρ for measures ρ and m, which must be defined.

For this purpose, we recall the Benamou-Brenier functionals for ρ ∈ M (Ω) and m ∈
M d(Ω)

Bp(ρ,m) := sup

{
∫

X
adρ+

∫

X
b · dm : (a, b) ∈ Cb(Ω;Kq)

}

, (3.19)
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where

Kq :=

{

(a, b) ∈ R× Rd : a+
1

q
|b|q ≤ 0

}

and
1

p
+

1

q
= 1.

It has the following characterizations.

Lemma 3.1. The functional Bp is convex and lower semi-continuous on the space M (Ω)×
M d(Ω) for the weak convergence. Moreover, the following properties hold:

• Bp(ρ,m) ≥ 0,

• if both ρ and m are absolutely continuous with respect to a same positive measure λ
on Ω, we can write

Bp(ρ,m) =

∫

X
fp
(

ρ(x),m(x)
)

dλ(x),

where we identify ρ(x) and m(x) are the densities with respect to λ, and fp : R ×
Rd → R ∪ {∞} is defined as

fp(t, x) := sup
(a,b)∈Kq

(at+ b ·x) =



















1

p

|x|p

tp−1
, if t > 0,

0, if t = 0, x = 0,

+∞, if t = 0, x 6= 0 or t < 0,

(3.20)

• Bp(ρ,m) < +∞ only if ρ ≥ 0 and m ≪ ρ,

• for ρ ≥ 0 and m ≪ ρ, we have m = v · ρ and

Bp(ρ,m) =

∫

1

p
|v|pdρ.

The detailed proof can be found in [35, Chapter 5, Proposition 5.18].

With the Benamou-Brenier functionals, we find that the rigorous definitions of the

goal functionals should be

Fα(ρ,m) =

∫ T

0
B2(ρ,m)dt+ αG(ρ, ρ1), ∀(ρ,m) ∈ H,

F∞(ρ,m) =

∫ T

0
B2(ρ,m)dt + 1E, ∀(ρ,m) ∈ H.

(3.21)

Then, the OT-Flow problem (2.3) is formulated by

min
(ρ,m)∈H

Fα(ρ,m), (3.22)

and the OT problem (2.4) is given by

min
(ρ,m)∈H

F∞(ρ,m). (3.23)

We note that the functionals just introduced enjoy good properties.
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Proposition 3.2. Both Fα and F∞ are convex and lower semi-continuous.

Proof. These two properties follow directly from those for the Benamou-Brenier

functional and the KL divergence.

The convexity of these functionals are well-known. Here, we sketch the verification

of the lower semi-continuity for the convenience of the readers (as the lower semi-

continuity is essential in this work). We take Fα as the example.

If
∫ T
0 B2(ρ,m)dt = +∞, then for each M > 0, there is some (ā, b̄) ∈ Cb(D̄ × [0, T ])

such that
∫ T

0

∫

D
(āρ+ b̄ ·m) dxdt > M.

Consider any sequence (ρn,mn) ⇒ (ρ,m), by the weak convergence, one then has

lim
n→∞

∫ T

0

∫

D

(

āρn(dx) + b̄ ·mn(dx)
)

dt > M.

This indicates that

lim
n→∞

∫ T

0
B2(ρ

n,mn)dt ≥ lim
n→∞

∫ T

0

∫

D

(

āρn(dx) + b̄ ·mn(dx)
)

dt > M.

Since M is arbitrary, one then has

lim
n→∞

∫ T

0
B2(ρ

n,mn)dt = +∞.

If

M :=

∫ T

0
B2(ρ,m)dt < +∞,

then for any ǫ > 0, one may take (ā, b̄) ∈ Cb(D̄ × [0, T ]) such that

∫ T

0

∫

D
(āρ+ b̄ ·m) dxdt < M + ǫ.

Consider any sequence (ρn,mn) ⇒ (ρ,m), by the weak convergence, one then has

∫ T

0
B2(ρ,m)dt <

∫ T

0

∫

D

(

āρ(dx) + b̄ ·m(dx)
)

dt+ ǫ

≤ lim inf
n→∞

∫ T

0

∫

D

(

āρn(dx) + b̄ ·mn(dx)
)

dt+ ǫ

≤ lim inf
n→∞

sup
(a,b)∈Cb((D×[0,T ];K2)

∫ T

0

∫

D

(

aρn(dx) + b ·mn(dx)
)

dt+ ǫ

= lim inf
n→∞

∫ T

0
B2(ρ

n,mn)dt+ ǫ.

Since ǫ is arbitrary, the lower semi-continuity of the first part in Fα is verified.
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The lower semi-continuity of KL divergence follows from a similar argument. The

central equation to derive the lower semi-continuity of KL divergence is the (Fenchel)

dual formulation of the KL [1, Lemma 9.4.4]

KL[P||Q] = sup
h∈Cb(Rd)

{

1 +

∫

hdP −

∫

ehdQ

}

. (3.24)

Thus, KL divergence is lower semi-continuous with respect to P is a direct consequence

of the fact that it is expressed as a supremum of linear functional. Suppose Pn ⇒ P,

then for all ǫ, there exits some h̄ ∈ Cb(R
d) satisfies

KL[P||Q] = sup
h∈Cb(Rd)

{

1 +

∫

hdP−

∫

ehdQ

}

< 1 +

∫

h̄dP −

∫

eh̄dQ+ ǫ

≤ lim inf
n→∞

{

1 +

∫

h̄dPn −

∫

eh̄dQ

}

+ ǫ

≤ lim inf
n→∞

sup
h∈Cb(Rd)

{

1 +

∫

hdPn −

∫

ehdQ

}

+ ǫ.

Thus, we have KL[P||Q] ≤ lim inf
n→∞

KL[Pn||Q], i.e. lower semi-continuity of KL diver-

gence with respect to the first argument. Consequently, the convexity and the lower

semi-continuity of G with respect to the first argument follow easily.

Though the space we consider is simply L1 in time. We find that the time regularity

of ρ is actually good for feasible points.

Proposition 3.3. Fix α > 0 or α = ∞. If (ρ,m) is a feasible solution of the optimization

problem (3.22) or (3.23), then there is a version of ρ such that t 7→ ρt is absolutely

continuous in W2(D). Moreover, mt ≪ ρt and the Radon-Nikodym derivative

vt =
dmt

dρt

satisfies that vt ∈ L1([0, T ];L2(ρt)).

Proof. If (ρ,m) is a feasible solution for either Fα or F∞, then

∫ T

0
B2(ρ,m)dt < +∞.

By Lemma 3.1, for there is a set E with Lebesgue measure zero such that t ∈ [0, T ] \E,

it holds that

mt ≪ ρt,
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and we can construct the corresponding velocity field by

vt =
dmt

dρt
.

Then, by Lemma 3.1, if we take λ = ρt, one then has for these t that

B2(ρ,m) =

∫

D
|vt|

2ρt(dx).

Recall that m ∈ L1([0, 1];M d(D)), then we can safely set v = 0 for t ∈ E and modify

the value of m on E freely. Then, m = ρv holds for all t ∈ [0, T ]. This means that

vt ∈ L1([0, T ];L2(ρt)) and the constraint ∂tρ + ∇ · m = 0 still holds for the modified

version of m.

For the absolutely continuity of the feasible solution ρ then follows from the con-

straint ∂tρ+∇ ·m = 0 in the weak sense (dual of C1
b ). One can find the rigorous proof

in [35, Chapter 5, Theorem 5.14]. Here we provide a sketch of the proof. One can

consider a segment of the curve, i.e. from ρt to ρt+h. A natural transport plan from ρt
to ρt+h can be given by the curve driven by vt

γ = (Tt, Tt+h)#ρ0,

where Tt is defined by
d

dt
Tt(x) = vt

(

Tt(x)
)

.

This plan provides an upper bound for W2(ρt, ρt+h)

W2 (ρt, ρt+h) ≤

(
∫

D×D
|x− y|2dγ

)1/2

=

(
∫

D
|Tt(x)− Tt+h(x)|

2 dρ0

)1/2

.

Using the fact that

|Tt(x)− Tt+h(x)|
2 ≤ h

∫ t+h

t
|vs (Ts(x))|

2 ds,

one has

W2 (ρt, ρt+h)

h
≤

(

1

h

∫ t+h

t
‖vs‖

2
L2(ρs)

ds

)1/2

. (3.25)

Since
∫ T

0
B2(ρ,m)dt < +∞

automatically indicates
∫ T

0
‖vt‖

2
L2(ρt)

dt < +∞,

then (3.25) provides Lipschitz behavior for ρt, which directly leads to the fact ρt is

absolutely continuous in W2(D).
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3.3. Γ-convergence to optimal transport problems

In this section, we aim to prove the Γ-convergence of OT-Flow to the optimal trans-

port problem as α → ∞ so that the solution of OT-Flow could converge to the solutions

of the optimal transport problem. We first show that the solutions (minimizers) indeed

exist.

Proposition 3.4. Assume D ⊂ Rd is a bounded domain with smooth boundary, and Fα

(resp. F∞) has at least one feasible point over H. Then, (3.22) (resp. (3.23)) has global

minimizers over H. Moreover, the minimizers, as feasible points, satisfy that ρ is absolutely

continuous in W2(D), and m ≪ ρ.

Proof. First of all, one should note that Fα is non-negative. Hence, it is clear that

F ∗
α = inf

(ρ,m)∈H
Fα(ρ,m) ≥ 0.

With the assumption that one feasible point exists, F ∗
α ∈ [0,∞).

Consider a feasible minimizing sequence (ρn,mn) such that Fα(ρn,mn) → F ∗
α. Let

ρn(x) and mn(x) be the densities with respect to some common non-negative measure

λn
t (for example, one can take λn

t = ρn and then ρn(x) = 1). Then, supn Fα(ρn,mn) <
∞ implies that

sup
n

∫ T

0

∫

D

|mn(x)|
2

ρn(x)
λn
t (dx)dt < +∞.

By the Hölder inequality one then has that

sup
n

‖mn‖ = sup
n

∫ T

0

∫

D
|mn(x)|λ

n
t (dx)dt

≤ sup
n

(
∫ T

0

∫

D
ρn(x)λ

n
t (dx)dt

∫ T

0

∫

D

|mn(x)|
2

ρn(x)
λn
t (dx)dt

)1/2

< ∞.

Hence, one has

sup
n

‖mn‖+ ‖ρn‖ < +∞.

The Banach-Alaoglu thoeorem (the closed unit ball of the dual space of a normed

vector space is compact in the weak star topology) tells us that there must be a weakly

convergent subsequence. Together with the lower semi-continuity of Fα, the minimizer

of Fα exists. Moreover, by Proposition 3.3, we conclude that the minimizer (ρα,mα) of

the functional Fα satisfies: (ρα)t is absolutely continuous in W2(D) and mα ≪ ρα. The

argument for F∞ is similar.

Theorem 3.1. Assume D ⊂ Rd is a bounded domain with smooth boundary. The follow-

ing results hold about the OT-Flow and optimal transport problems:

(i) For any ρ0, ρ1 ∈ P(D), Fα is Γ-convergent to F∞ as α → ∞.
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(ii) Suppose that both Fα and F∞ have feasible points. Let (ρα,mα) be an optimal so-

lution to the corresponding minimization problem (3.22). Then, for any increasing

sequence {αI} going to infinity, where I is an index set, there exists a convergent sub-

sequence (ραk ,mαk) ∈ H with αk → +∞ such that the limit (ρ∞,m∞) is a solution

of the minimization problem (3.23).

Proof. Since we consider feasible points, t 7→ ρt is continuous, one can replace G in

Fα with KL divergence explicitly.

(i) We use Γseq-convergence mentioned in Proposition 2.2 to prove the Γ-conver-

gence from Fα to F∞. By definition, we need to verify: for any weakly convergent

sequence (ρα,mα) ⇒ (ρ,m), one has

inf
(ρα,mα)→(ρ,m)

lim sup
α→∞

Fα(ρ
α,mα)

≤ F∞(ρ,m) ≤ inf
(ρα,mα)→(ρ,m)

lim inf
α→∞

Fα(ρ
α,mα). (3.26)

Above statement is equivalent to prove

• ∃(ρα,mα) ⇒ (ρ,m), F∞(ρ,m) ≥ lim sup
α→∞

Fα(ρ
α,mα).

• ∀(ρα,mα) ⇒ (ρ,m), F∞(ρ,m) ≤ lim inf
α→∞

Fα(ρ
α,mα).

For the first, one could take the constant sequence

(ρα,mα) = (ρ,m).

Then one has

lim sup
α→∞

Fα(ρ
α,mα) = lim sup

α→∞
Fα(ρ,m) ≤ F∞(ρ,m).

The above follows from the fact

lim sup
α→∞

αKL
[

ρ(x, T )||ρ1(x)
]

≤ 1E ,

which holds since

KL
[

ρ(x, T )||ρ1(x)
]

≥ 0

and the equality holds only when ρ(x, T ) = ρ1(x).

For the second, for any sequence (ρα,mα) ⇒ (ρ,m), one needs to show that

F∞(ρ,m) ≤ lim
α→∞

Fα(ρ
α,mα).

We consider the two parts in Fα and F∞ separately. The required relation for the first

part
∫ T
0 B2(ρ,m)dt follows directly from the lower semi-continuity.
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Considering the second part for the KL divergence, we can fix n. The lower semi-

continuity of KL divergence gives

nKL
[

ρ(x, T )||ρ1(x)
]

≤ n lim inf
α→∞

KL
[

ρα(x, T )||ρ1(x)
]

.

Let n → +∞, the left side becomes the indicator function we want

1E ≤ lim
n→∞

n lim inf
α→∞

KL
[

ρα(x, T )||ρ1(x)
]

≤ lim inf
α→∞

αKL
[

ρα(x, T )||ρ1(x)
]

.

Combining these two components consequently yields that

F∞(ρ,m) ≤ lim inf
α→∞

Fα(ρ
α,mα).

Thus, the Γ−convergence from Fα to F∞ has then been established.

(ii) Suppose (ρ∗,m∗) is a feasible solution of problem (3.23) and thus also a feasible

point of (3.22). With the existence of feasible points, both Fα and F∞ have global

minimizers. It is then clear that

Fα(ρ
α,mα) ≤ Fα(ρ

∗,m∗) = F∞(ρ∗,m∗).

This means that Fα(ρ
α,mα) is uniformly bounded in α. Again, by Hölder inequality as

demonstrated in Proposition 3.4, one has

sup
α

‖mα‖+ ‖ρα‖ < +∞.

By the Banach-Alaoglu theorem, we conclude that any bounded set in X × Y is pre-

compact. Consequently, there is a subsequence (ραk ,mαk) ⇒ (ρ,m). Combining with

Γ−convergence of the functionals, it follows that (ρ,m) is a minimizer of F∞.

For the existence of feasible points, one assumption is that both ρ0 and ρ1 are abso-

lutely continuous with respect to the Lebesgue measure. Then according to (1.6), there

is feasible point (ρ,m) with ρT = ρ1 such that

W2(ρ0, ρ1)
2 =

∫ T

0
B2(ρ,m)dt < ∞. (3.27)

Hence, the feasible point exists. In the application, ρ1 is a normal distribution, which

is clearly absolutely continuous with respect to the Lebesgue measure. However, the

data distribution ρ0 is often singular (which may concentrate on some low-dimensional

manifolds). The point is that one can always find a distribution ρ̃0, which is absolutely

continuous with respect to Lebesgue measure to approximate ρ0. In specific tasks,

we only have samples from ρ0 for optimization. The training process later can learn

a velocity field that automatically generates the approximation ρ̃0 that is absolutely

continuous with respect to the Lebesgue measure [18].
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4. Convergence of Monte Carlo approximation in the large data limit

In practical applications, one only has access to data samples from ρ0 to train the

optimal velocity field. Hence, the loss functional (2.12) in the OT-Flow is not known

exactly, where the expectation is replaced by the Monte Carlo method (empirical mean

over the samples). Our goal in this part is to investigate the convergence of minimizers

as the data size N increases to infinity, provided sufficient approximation capability of

neural networks. We will neglect the error brought by training process and assume that

the minimization problem can be solved exactly for convenience.

The research on the asymptotic behavior of minimizers in the large data limit is cru-

cial in machine learning. It helps us gain a better understanding of the influence on the

minimizers resulted from approximating loss functional by using data samples. As long

as we are capable of providing an accurate estimation of the bound to control the error

beyond the training sets, then we can guarantee some reliability on the generalisation

of the neural network minimizers.

4.1. Setup and the Monte Carlo approximation

We first introduce some notations to define the finite dimensional spaces for the

deep neural networks (see [26, 27] for similar discussions). A deep neural network

u : Rd → Rd′ with L layers is of the following form:

u(x; θ) := FL ◦ σ ◦ FL−1 ◦ · · · ◦ σ ◦ F1(x). (4.1)

The map u(·; θ) is characterized by the hidden layers Fk, which are affine maps of the

form

Fkx = Wkx+ bk, where Wk ∈ Rdk+1×dk , bk ∈ Rdk+1 , (4.2)

and σ is the activation function which we assume to be Lipschitz continuous. We

use θ to represent collectively all the parameters of the network, namely {Wk, bk},

k = 1, . . . , L. The network is trained using an optimizer such as stochastic gradient

descent (SGD) [24] or ADAM [20] commonly. In this paper, we will discuss the case of

a multi-layer perceptron, but the results of convergence only rely on the approximation

properties of the network, regardless of its precise architecture.

We denote the set of all functions u which can be given by networks with a given

structure (fixed depth L and width in each layer) of the form (4.1) as

VN =
{

u : D → Rd′ | There exists a network (4.1) such that u(x) = u(x; θ)
}

. (4.3)

Let d1 be the dimension of θ. Then, for each θ ∈ Rd1 , there is a corresponding u ∈ VN

such that u(x) = u(x; θ).

Lemma 4.1. Assume D is a bounded domain and the neural network space VN is fixed.

If the activation function σ is assumed to be continuous, then given a sequence of network

parameters {θn}
∞
n=1 that converges to θ in Rd1 , u(x; θn) converges to u(x; θ) uniformly, or

lim
n→∞

sup
x∈D

|u(x; θn)− u(x; θ)| = 0. (4.4)
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Proof. By the specific form of the neural networks, it is clear that u is continuous

with respect to (x, θ). If θn → θ, then there exists R > 0 such that

sup
n

|θn| ≤ R, |θ| ≤ R.

Since the set D×B(0, R) is compact (bounded closed set in finitely dimensional space),

then u is uniformly continuous on D ×B(0, R). By the uniform continuity, it is easy to

see that u(·; θn) converges uniformly to u(·; θ) for D bounded.

Let us come back to the optimization problem for the OT-Flow problem (2.2). To

solve this, one seeks the optimal field v using the neural networks (as mentioned, one

may parametrize a scalar function Φ using the networks and set v = −∇Φ). We will

enforce the neural network for v to satisfy

v(x, t) · n = 0, x ∈ ∂D. (4.5)

This condition may be obtained by post-processing of the output of the neural network.

Using the network for v, one may find the trajectory of a particle t 7→ z(x, t) by solving

(1.2). Using the flow map (trajectory), our goal is then to solve the following problem:

min
v∈VN

J, (4.6)

where J is given as in (2.12). The training of the algorithm assumes knowledge of data

only at a finite set of points {xi}
N
i=1. Then, the expectation is replaced by the Monte

Carlo approximation

JN :=
1

N

N
∑

i=1

[

C(xi, T ) +
2

α
L(xi, T )

]

. (4.7)

This formulation is then used to train v (find the optimal parameter θ ∈ Rd1).

We are then concerned with the convergence as the number of data goes to infinity.

However, studying the convergence of v is not convenient. Instead, the loss in (2.12)

naturally defines a function

Fv(x) =
1

2
|z(x, T )|2 − ℓ(x, T ) +

1

α

∫ T

0
|v(z(x, t), t)|2dt+

d

2
log(2π), (4.8)

for a given velocity field v, where ℓ and z can be solved from ODE system (1.2). We

will then investigate the convergence of Fv for the trained v. For this purpose, consider

the set of all functions Fv with all possible v

FN := {Fv : v ∈ VN }. (4.9)

The OT-Flow problem then corresponds to

min
Fv∈FN

E(Fv) :=

∫

D
Fv(x)ρ0(dx), (4.10)

where Fv denotes the loss functional for velocity v, ρ0 is the data distribution.
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The discrete loss functional can be defined as follows:

min
Fv∈FN

EN (Fv) =
1

N

N
∑

i=1

Fv(xi). (4.11)

Our goal is to investigate the convergence of the optimizers for (4.11) to that for (4.10)

as N → ∞.

The unboundedness of the parameters space still brings trouble. In practice, pa-

rameter clipping is a commonly employed technique in neural networks aimed at pre-

venting the function u(x; θ) from exploding. Define the clipping parameter space

ΘR :=
{

θ ∈ Rd1 : |θ| ≤ R
}

. (4.12)

With the clipped parameters, the function Fv defined in (4.8) has good features as

stated below.

Lemma 4.2. Assume D is a bounded domain. Fix the structure of the neural network

space VN with the activation function σ to be twice continuously differentiable such that

the condition (4.5) is satisfied. Suppose the parameters θ ∈ ΘR for some fixed large R > 0.

Then v(x, t; θ) is Lipschitz continuous and the Hessian ∇2v is bounded in the sense that

sup
x∈D,θ∈ΘR

∣

∣

∣

∣

∂2v

∂xi∂xj

∣

∣

∣

∣

< ∞, ∀i, j. (4.13)

Consequently, Fv is uniformly bounded and uniformly Lipschitz continuous with respect to

x (uniform for θ ∈ ΘR ).

Proof. Since the architecture of the neural networks is fixed as in (4.2), both D
and ΘR are bounded, the Lipschitz continuity of v(x, t; θ) and the boundedness of the

Hessian ∇2v are straightforward since σ is twice continuously differentiable, due to the

fact that continuous functions on compact sets are bounded.

For the velocity field v, since v(x, t) is Lipschitz continuous and the boundary con-

dition (4.5) holds, then z(x, T ) is Lipschitz continuous with respect to x. Moreover,

z(x, T ) is bounded. In fact, by the classical ODE theory, there is one and only one so-

lution curve passing through each point since v is Lipschitz. We find that the solution

curve passing through a point x0 ∈ ∂D stays on ∂D due to the boundary condition.

More specifically, parameterize the boundary ∂D by γ(s) using the arc length param-

eter s : [−δ, δ] → Rd for some δ > 0. Consider a curve of the force x(t) = γ(s(t)),
then

x′(t) = τ(s)s′(t),

where τ is a unit tangent vector. Since v(x, t) · n = 0, one finds that the equation

x′(t) = v
(

x(t), t
)

⇔ s′(t) = v
(

γ(s(t)), t
)

· τ
(

s(t)
)

.

This is a well-defined ODE for s. Solving this ODE gives a solution t 7→ s(t) and thus

giving a curve x(t) = γ(s(t)) solving the ODE ẋ = v(x(t), t). By the uniqueness of the
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solutions, there is no solution curve passing through ∂D to the exterior of the domain.

Hence, z(x, t) ∈ D, ∀t ∈ [0, T ], which implies z(x, T ) is bounded. Hence, we conclude

that |z(x, T )|2/2 is Lipschitz continuous with respect to x, and the Lipschitz constant is

uniform for θ ∈ ΘR.

We recall that ℓ satisfies the equation

∂tℓ(x, t) = ∇ · v(x, t; θ), ℓ(x, 0) = 0.

Since ∇2v is bounded, tr(∇v) is Lipschitz continuous, which leads to the uniform Lips-

chitz continuity of ℓ(x, T ).

The Lipschitz continuity of
∫ T
0 |v(z(x, t), t)|2/2 dt is a direct result of the Lipschitz

continuity of v and Lipscthitz continuity of z(·; t). The constant is uniform in θ. Hence,

Fv(·; θ) is uniformly Lipschitz continuous with respect to x.

Lastly, the uniform boundedness of Fv is straightforward as we have shown that

z(x, t) is uniformly bounded and v is continuous.

With the clipped parameters and the help of Lemma 4.2, we will the investigate

the convergence of the optimizers for (4.11) to that for (4.10) as N → ∞ in the next

section.

4.2. Large data limit

In this subsection, we explore the limit behavior of the minimizers as the sample size

N tends to ∞, i.e., provided sufficient data samples, for fixed structure of the neural

networks and clipped parameters with θ ∈ ΘR. Although we neglect the effect of error

brought by the approximation of the minimization problem (through, for example,

stochastic gradient methods), the research on the behaviour of the minimizers as N →
∞ is beneficial to understanding how machine learning algorithms work. If one can

establish a bound to control the generalization error beyond the training sets, it offers

theoretical stability and reliability for the generalization of the neural networks.

Suppose that we have a collection of data samples {Xi}
N
i=1 taking values in D,

which are i.i.d. sampled from the data distribution ρ0. Here, we would like to inves-

tigate the limit as N → ∞. Since the samples are random samples, we put this into

a probabilistic framework. In particular, by the Kolmogorov extension theorem [37],

there is a probability space (Ω,F ,P) for the i.i.d. sampled D-valued random variables

{Xi}
∞
i=1, with a common law ρ0 ∈ P(D). The corresponding optimization problem

(4.11) becomes a probabilistic problem

min
Fv∈FN

EN,ω(Fv) :=
1

N

N
∑

i=1

Fv

(

Xi(ω)
)

=

∫

D
Fv(x)ρN,X(ω)(dx). (4.14)

Here,

ρN =
1

N

N
∑

i=1

δXi(ω) (4.15)
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is the empirical measure and ω ∈ Ω means one elementary event (a concrete realization

of the N samples). The following is obvious.

Lemma 4.3. The problem (4.14) always has a solution FN,ω ∈ VN .

This holds because the parameter space ΘR is a compact set and the functional is

continuous in θ when we fix X1, · · · ,XN .

Since the samples are i.i.d. sampled from ρ0, one has

E[EN,ω(Fv)] =

∫

D
Fv(x)ρ0(dx). (4.16)

Moreover, by the Law of Large numbers [38, 39], the empirical measure (4.15) con-

verges weakly to ρ0. Here, we cite a stronger result for the convergence of empirical

measures under W1 distance.

Lemma 4.4. Assume D ⊂ Rd is a bounded domain. Let µ ∈ P(D). Consider an i.i.d.

sequence (Xk)k≥1 of µ-distributed random variables and the empirical measure µN :=

(
∑N

k=1 δXk
)/N . Then there exist a constant C such that for all N ≥ 1,

E [W1 (µN , µ)] ≤ CN−1/d. (4.17)

Note that D is a bounded domain, thus µ has q-th order moments for all q. Then

this is a direct result of [14, Theorem 1] by setting p = 1 and q ≫ 1.

Applying Lemma 4.4 to our problem, we conclude that.

Corollary 4.1. Let X1,X2, · · · be a sequence of i.i.d. random variables with common law

ρ0. Consider the empirical measure in (4.15). Then

lim
N→∞

W1(ρN , ρ0) → 0 (4.18)

as N → +∞ almost surely.

With the preparation above, we now show for a.s. ω ∈ Ω, the sequence of the

minimizers FN,ω has convergent subsequences and the limits would be a global min-

imizer of the continuous OT-Flow problem (4.10). The tool we use here is again the

Γ-convergence. Moreover, due to the simple structure of the fixed neural network, we

can obtain much stronger results compared to previous section.

Theorem 4.1. Assume D is a bounded domain with smooth boundary and fix the neural

network space VN . Consider Fv ∈ FN and θ ∈ ΘR. Then the following holds:

(i) Almost surely, the functional EN,ω(Fv) in (4.14) is Γ-convergent to the functional

E(Fv) in (4.10), where the convergence of Fv is the uniform convergence in Cb(D).

(ii) Consider the minimizer FN,ω ∈ VN to (4.14). Then, for almost surely ω ∈ Ω, any

subsequence of the sequence FN,ω has a convergent subsequence, with the limit FN
ω

being a global minimizer to (4.10), and it holds that

lim
N→∞

EN,ω (FN,ω) = E
(

FN
ω

)

= inf
ϕ∈FN

E(ϕ). (4.19)
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We remark that the topology for Fv ∈ FN is not important due to the correspon-

dence to θ ∈ ΘR, which is a subset of a finite dimensional space.

Proof of Theorem 4.1. (i) This is in fact straightforward. For any FN that converges

uniformly to F , and since ρN (defined in (4.15)) converges weakly converges to ρ0,

thus

lim
N→∞

∫

D
FNρN (dx)

= lim
N→∞

∫

D
(FN − F )ρN (dx) + lim

N→∞

∫

D
FρN (dx)

=

∫

D
Fρ0(dx). (4.20)

The first term here goes to zero because

∣

∣

∣

∣

∫

D
(FN − F )ρN (dx)

∣

∣

∣

∣

≤ ‖FN − F‖ → 0.

The second term converges due to the weak convergence of ρN almost surely by Corol-

lary 4.1.

(ii) First, for each FN,ω ∈ VN , we denote its corresponding neural network param-

eters in ΘR as θN,ω. Since |θN,ω| ≤ R, the sequence {θN,ω} has a subsequence that

converges to some θNω . We denote the corresponding neural network function of θNω as

FN
ω . By Lemma 4.1, FN,ω has a subsequence {FNk ,ω} that uniformly converges to FN

ω .

By the Γ-convergence in part (i), FN
ω is in fact a global minimizer of (4.10)

E
(

FN
ω

)

= inf
ϕ∈FN

E(ϕ). (4.21)

To show the claim that the optimal value of the loss function also converges, our core

idea is to prove the following inequalities for any convergent subsequence with limit

FN
ω ∈ VN :

E
(

FN
ω

)

≤ lim inf
N→∞

EN,ω (FN,ω) ≤ lim sup
N→∞

EN,ω (FN,ω) ≤ inf
ϕ∈FN

E(ϕ). (4.22)

Due to (4.21), the limit in fact exists along this subsequence. Then, for any subse-

quence, there is a further subsequence such that the loss function value converges to

infϕ∈FN
E(ϕ), which is the same limit. Hence, the whole sequence converges.

Next, we show (4.22). By the uniform convergence of the functions, it is clear

(similar to (4.20)) that

lim inf
N→∞

EN,ω (FN,ω) = E
(

FN
ω

)

.

For the second inequality, the minimising property of FN,ω implies that

EN,ω (FN,ω) ≤ EN,ω(F ) for all F ∈ VN .
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Next, take a sequence (Fn)n in FN that realises the inf in (4.22), i.e.,

lim
n→∞

E(Fn) = inf
ϕ∈FN

E(ϕ).

We recall the dual description of the W1 distance [35]

W1(µ, ν) = sup
ϕ:‖ϕ‖lip≤1

∫

ϕd(µ − ν),

where ‖ · ‖lip means the largest Lipschitz constant for the function. It then follows that

∫

D
Fnd(ρN − ρ0) ≤ CL ·W1(ρN , ρ0),

where CL is the upper bound of Lipschitz constant for all functionals in FN indicated

in Lemma 4.2. By Lemma 4.1, W1(ρN , ρ0) → 0 when N → ∞ almost surely. Thus,

lim sup
N→∞

EN,ω (FN,ω) ≤ lim sup
N→∞

EN,ω (Fn) = E(Fn)

holds for all n. Then we have

lim sup
N→∞

EN,ω(FN,ω) ≤ inf
n

E(Fn) = inf
ϕ∈FN

E(ϕ).

The proof is thus complete.

4.3. Training the optimal velocity field

To enhance the approximation ability of neural networks, we can increase the com-

plexity of neural networks and relax the clipping constant R for parameters. Then the

classical theory of universal approximation [4,9] ensures that we can select a sequence

of neural network space {Vℓ} and clipping parameter space {ΘRℓ
} with increasing clip-

ping constant Rℓ → ∞, such that for each v ∈ L1([0, T ];L2(ρt)), there exists a vℓ ∈ Vℓ

such that
∫ T

0

∫

D
|v − vℓ|

2ρtdxdt → 0 as ℓ → ∞, (4.23)

which indicates that with increasing complexity of architecture, neural network will

gradually have enough express capability to approximate the theoretical solutions of

the OT problem.

In real training, one can let ℓ → ∞ and N → ∞ simultaneously. With delicately

selected optimizers and hyperparameters, OT-Flow can find a minimizer close to the

theoretical solution of problem (2.2). Moreover, as α → ∞, the neural network mini-

mizers of OT-Flow with different α will converges to classical OT problem solutions as

we mentioned in Section 3.
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5. Conclusion and discussion

In summary, we have conducted two primary convergence analyses for OT-Flow,

one of the deep generative models. The first part employs Γ-convergence to establish

the convergence of minimizers from OT-Flow to classical OT as the regularization coef-

ficient α → ∞. The second part leverages the liminf-limsup framework to demonstrate

the convergence of minimizers as the number of training samples N → ∞. Further-

more, if we provide the neural network with sufficient approximation capability, the

minimizers of OT-Flow will theoretically converges to classical OT ones. Our work en-

hances the understanding of the convergence properties of CNFs models with regular-

ization, providing theoretical assurances for stability during training. Future research

directions may involve applying similar methodologies to develop convergence analy-

ses for other deep generative models, such as DPMs, and generative models associated

with optimal control.
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