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Abstract. Solving the stationary nonlinear Fokker--Planck equations is important in appli-
cations and examples include the Poisson--Boltzmann equation and the two-layer neural networks.
Making use of the connection between the interacting particle systems and the nonlinear Fokker--
Planck equations, we propose solving the stationary solution by sampling from the N -body Gibbs
distribution. This avoids simulation of the N -body system for a long time and the requirement of
uniform propagation of chaos from direct simulation of the particle systems. While the sampling
strategy could be used for any given temperature, we establish the convergence of the Gibbs measure
to the stationary solution when the interaction kernel is bounded (not necessarily continuous) and
the temperature is high enough. Numerical experiments are performed for the Poisson--Boltzmann
equation and the two-layer neural networks to validate the method and the theory.

Key words. McKean--Vlasov equation, Gibbs distribution, mean-field limit, random batch
Monte Carlo method
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1. Introduction. The nonlinear Fokker--Planck equations describe the evolution
of laws for the McKean--Vlasov processes [47, 21], which often describe the evolution
of distributions under the self-consistent mean field [31]. A famous example is the
Poisson--Nernst--Planck (PNP) model, which describes the motion of charged chem-
ical species in a fluid medium and is important in electrochemistry [6, 19]. In this
paper, our focus is on solving the stationary solutions of the nonlinear Fokker--Planck
equations. For a single species, the dynamic nonlinear Fokker--Planck equation may
be written as

\partial t\rho =\nabla \cdot 
\bigl( 
\rho (\nabla U +\nabla (W \ast \rho ))

\bigr) 
+ \beta  - 1\Delta \rho ,(1.1)

and thus the stationary equation we are concerned with is given by

\nabla \cdot 
\bigl( 
\rho (\nabla U +\nabla (W \ast \rho ))

\bigr) 
+ \beta  - 1\Delta \rho = 0.(1.2)

Here, U : \BbbR d \rightarrow \BbbR is some external potential field, W : \BbbR d \times \BbbR d \rightarrow \BbbR is a symmetric
(i.e., W (x, y) = W (y,x)) interacting potential, \rho is the species distribution, \beta is the
inverse temperature. Throughout this paper, the operation \ast is defined as
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250 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

W \ast \rho :=
\int 
\BbbR d

W (x, y)\rho (y)dy(1.3)

with the standard convolution as a special case when W (x, y) = W (x  - y). The
multispecies case can be similarly written out. For example, if there are two species,
the stationary equations could be written as

\nabla \cdot 
\bigl( 
\rho 1 (\nabla U1 +\nabla (W1 \ast \rho 1) +\nabla (Wc \ast \rho 2))

\bigr) 
+ \beta  - 1\Delta \rho 1 = 0,(1.4)

\nabla \cdot 
\bigl( 
\rho 2 (\nabla U2 +\nabla (W2 \ast \rho 2) +\nabla (Wc \ast \rho 1))

\bigr) 
+ \beta  - 1\Delta \rho 2 = 0.

Here, Ui's are the external potentials for the two species, Wi's are the interaction
potentials within the species, and Wc is the cross species interaction, Wi's and Wc

are assumed to be symmetric. See section 4 for the details.
The nonlinear Fokker--Planck equations are naturally associated with the inter-

acting particle systems at the microscopic level, which are ubiquitous in applications
such as molecular dynamics [20], flocking and swarming [11, 13], chemotaxis [29],
clustering [28], and consensus [50]. The models consisting of exchangeable particles
(one species) may be described by the first order interacting particle systems, i.e., for
i= 1, . . . ,N ,

dXi = - \nabla U(Xi)dt - 
1

N  - 1

N\sum 
j=1,j \not =i

\nabla 1W (Xi,Xj)dt+

\sqrt{} 
2

\beta 
dBi.(1.5)

\nabla 1W (x, y) means the derivative of W w.r.t. the first augment x. The particle systems
for multispecies could be similarly written out; see section 4 for details. Here, we will
call the label Xi the ``position"". The concrete significance may be other quantities
(for example, Xi represents the opinion in the opinion dynamics and may represent
the velocity in the homogeneous Landau equation). The processes Bi \in \BbbR d are N
independent standard Brownian motions. The initial data X0

i 's are i.i.d. sampled
from some distributions. There are many models that are described by the second
order interacting particle systems if the ``velocity"" is also considered (see section 2.4).
In some applications, the first order systems arise as the zero-inertia/overdamped
limit of the second order Langevin systems. As remarked in section 2.4, when we
consider the stationary distributions, the second order systems are not very special.
In this work, we will consider first order systems as the primary examples.

The factor 1/(N  - 1) indicates that we focus on the regime (by choosing suitable
units for physical quantities) where the interaction energy is comparable to the ex-
ternal energy, and the total mass of the particles is of order 1. This scaling is crucial
for the connection between the particle system (1.5) and the nonlinear Fokker--Planck
equation (1.1). In this regime, as N \rightarrow \infty , one particle is expected to feel a mean field
given by  - \nabla U - \nabla (W \ast \rho ), and the motions of two given particles move independently.
The phenomenon that the motions of certain particles tend to be independent copies
under the mean field is known as the ``propagation of chaos"". The term ``propaga-
tion"" means that the chaotic configuration is kept from the initial time t = 0. This
is the classical mean field limit, and this regime may be called the mean field regime.
The nonlinear Fokker--Planck equations (1.1) thus describe the mean field limits of
the interacting particle systems. The rigorous justification of the mean field limit and
the propagation of chaos could date back to Kac and McKean [38, 47]; see [15, 55]
for some classical works and see [8] for a review. Currently, this is still a popular
research topic, especially for singular potentials [54, 33, 5]. Most of these results are
for finite time T . In various practical applications, such as the Poisson--Boltzmann
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SOLVE STATIONARY NONLINEAR FP VIA SAMPLING 251

(PB) equation [23, 9] and the two-layer neural network [48], we are more interested
in the stationary solution of the nonlinear Fokker--Planck equations. In fact, the PB
equation describes the stationary form of the PNP model. Classical discretization
using finite difference or finite element may not be convenient for irregular domain
and suffer from curse of dimensionality. A popular approach is to simulate the corre-
sponding interacting particle systems and approximate the solution of the nonlinear
PB equation by particle densities [40]. This requires the simulation for sufficiently
long time to reach equilibrium. Moreover, theoretically, this needs the uniform propa-
gation of chaos, which needs a lot of additional requirements [45, 26, 25]. These results
often need the potentials to be convex in some sense [26, 45, 46] or to be considered
on torus [25] and thus are limited in applications.

We are then motivated to adopt an alternative approach, where we refrain from
directly simulating the N -particle systems, and instead to do sampling from the N -
body Gibbs distribution of the particle systems. Then the samples can be regarded
as the approximation to the stationary solutions. Hence, the main idea of this paper
is solving the stationary solution by sampling from the N -body Gibbs distribution.
In this sense, the requirement of the uniform-in-time of propagation of chaos has
been changed to the requirement of the ergodicity of the sampling methods, which
is relatively easier to obtain as one can design the sampling dynamics with mixing
properties. Moreover, the justification of the convergence from the stationary Gibbs
distribution to the nonlinear Fokker--Planck equations may avoid the strong require-
ments of the uniform propagation of chaos and the result here is valid in \BbbR d. There
are some existing results on the convergence of the N -body Gibbs measure to the
corresponding limit. Arous and Brunaud [1] and Arous and Zeitouni [2] used the
relative entropy to study the convergence of the Gibbs distribution in the mean-field
limit. The proof is based on the Laplace asymptotics and requires the continuity and
boundedness of the free energy functional. Moreover, they assumed the interaction
kernel to be continuous and required information on the second variation of the free
energy functional. Provided that the interaction kernel W is bounded and continuous,
using the standard large deviation principle, one can also establish the convergence
of the empirical measure to the minimizer of mean field free energy without the sec-
ond variation of the free energy, but there is not explicit convergence rate given (see,
for example, the discussion in [7]). When W is not continuous, the large deviation
argument fails.

In this paper, similar to [1, 2] and inspired by the recent works for propagation
of chaos [32, 34, 54], we will use the tool of relative entropy to gauge the discrepancy
between the joint law and the tensor product of N copies of the stationary solution.
Based on the approach in [32, 34, 54] and a symmetrization technique, we prove that
if \beta is small enough (temperature is large enough), both the first marginal distribu-
tion and empirical measure for the N -body Gibbs measure converge to the unique
stationary distribution of the nonlinear Fokker--Planck equation as N \rightarrow \infty . Our
proof does not rely on the continuity of W and we need only boundedness of W .
More importantly, the dependence on the interaction kernel and the temperature in
the bound of the rescaled relative entropy can be made explicit and thus an explicit
rate of convergence can be given. In addition, we also establish the results for mul-
tiple species cases. The results can thus be used to justify the validity of solving the
stationary nonlinear Fokker--Planck equations using sampling algorithms. We remark
that the method, in principle, can be used for any temperature though which solution
the N -body Gibbs distribution converges to is unclear when there is phase transition.
Moreover, the sampling method does not have be exact and we actually allow some
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252 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

bias that is within the tolerance. In the numerical examples in this paper, we will use
the Random Batch Monte Carlo method (RBMC) [43], which has been shown to be
efficient in practice with some bias introduced by the random batch strategy.

The rest of this paper is organized as follows. Section 2 is devoted to the intro-
duction of the basic properties of the N -body Gibbs measure for the particle system
(1.5) and the stationary solution to the nonlinear Fokker--Planck equation (1.1). In
section 3, we show the convergence of the N -body Gibbs measure to the stationary
solution of the nonlinear Fokker--Planck equation for one species, which illustrates
our main methodology and lays the foundation of sampling for solving the nonlinear
Fokker--Planck equations. In section 4, we consider the multispecies cases. The con-
vergence is proved for the two-species case as the typical example. In section 5, we
perform numerical experiments for two typical applications, namely, the PB equations
and the two-layer neural network, where sampling from theN -body Gibbs distribution
is performed using RBMC. Conclusions follow in section 6.

2. Setup and properties of the Gibbs measure and stationary solutions.
In this section, we first collect some basic facts and properties for the Gibbs measure
of the interacting particle systems in section 2.1 and the stationary solution of the
nonlinear Fokker--Planck equation (1.1), namely (1.2) in section 2.2. Then, the idea
of sampling to solve the stationary nonlinear Fokker--Planck equations is explained
in section 2.3. We perform a discussion on the second order systems in section 2.4.
For the clarity of the presentation, we focus only on the one species case here. The
multispecies case will be studied in section 4.

2.1. The Gibbs measure of the interacting particle system. The inter-
acting particle system (1.5) is associated with the following energy functional:

EN (x1, . . . , xN ) =

N\sum 
i=1

U(xi) +
1

(N  - 1)

\sum 
1\leq i<j\leq N

W (xi, xj)(2.1)

=

N\sum 
i=1

U(xi) +
1

2(N  - 1)

\sum 
i,j:i \not =j

W (xi, xj).

Note that we do not call this ``Hamiltonian"" as called in other literature because this
is a functional of the spatial variables only without the conjugate variables (i.e., the
momentum). Then, (1.5) can be written as

dXi = - \nabla Xi
EN dt+

\sqrt{} 
2

\beta 
dBi,(2.2)

or, in terms of X := (X1, . . . ,XN ) and \bfitB := (B1, . . . ,BN ),

dX = - \nabla XEN dt+
\sqrt{} 

2/\beta d\bfitB .(2.3)

Remark 2.1. If we think that each particle has weight 1/N , as considered in [7]
the energy may be given by

\~EN (x1, . . . , xN ) =
1

N

N\sum 
i=1

U(xi) +
1

N(N  - 1)

\sum 
1\leq i<j\leq N

W (xi, xj).(2.4)

With this scaling, the (scaled) inverse temperature \~\beta should be like \~\beta = N\beta to be
consistent with (2.2) (the time should be rescaled as well). Another different scaling
has been used in [39], where the energy used is roughly NEN =N2 \~EN .
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SOLVE STATIONARY NONLINEAR FP VIA SAMPLING 253

The joint distribution of (X1, . . . ,XN ) is known to satisfy the following N -body
Fokker--Planck equation [4]:

\partial t\rho N =\nabla x \cdot (\nabla xEN \rho N ) + \beta  - 1\Delta x\rho N ,(2.5)

where the derivative is taken with respect to x := (x1, . . . , xN ). This linear Fokker--
Planck is also connected to the following free energy for the N -body system:

\scrF N (\rho N ) :=

\int 
\BbbR Nd

EN\rho Ndx+ \beta  - 1

\int 
\BbbR Nd

\rho N log\rho N dx.(2.6)

Physically, this is the total energy plus the entropy. Equation (2.5) is the gradient
flow of (2.6) under the Wasserstein distance. We recall that the W2 gradient flow of
the free energy functional F is given by [37]:

\partial t\rho =\nabla \cdot 
\biggl( 
\rho \nabla \delta F

\delta \rho 

\biggr) 
.(2.7)

Based on this, the following is standard.

Lemma 2.2 (Gibbs distribution). Suppose that exp( - \beta EN ) \in L1(\BbbR Nd). Then,
the N -body system (1.5) has a unique invariant probability measure, which is the N -
body Gibbs measure given by

\rho N (x) = \=Z - 1
N exp( - \beta EN )(2.8)

= \=Z - 1
N exp

\left(   - \beta 
\left(  \sum 

i

U(xi) +
1

2(N  - 1)

\sum 
i,j:i\not =j

W (xi, xj)

\right)  \right)  ,

where \=ZN is the normalizing factor such that the integral of \rho N is 1. This is the
unique minimizer of the free energy (2.6).

It is clear that any (local) minimizer of \scrF N is a stationary solution of (2.5) (but
not vice versa). It is easy to verify that (2.8) is a stationary solution of (2.5). Any
stationary distribution \~\rho N must have a full support in \BbbR Nd and be absolutely contin-
uous with respect to the Lebesgue measure [4, Corollary 3.5.8]. The uniqueness of the
stationary solution follows then from [4, Theorem 4.1.11]. This then implies that the
free energy has a unique minimizer, which is clear because the free energy functional
\scrF N is convex with respect to the linear structure.

2.2. The stationary solution of the nonlinear Fokker--Planck equation.
In this subsection, we investigate the stationary solution of the nonlinear Fokker--
Planck equations. Similar to the N -particle case, the nonlinear Fokker--Planck equa-
tion (1.1) is associated with the mean-field free energy

\scrF (\rho ) :=
\int 
\BbbR d

U\rho dx+
1

2

\int 
\BbbR d

\rho (W \ast \rho )dx+ \beta  - 1

\int 
\BbbR d

\rho log\rho dx.(2.9)

In fact, it is the gradient flow of \scrF under the W2 distance. As is well-known, the
mean-field free energy may exhibit phase transitions and could have multiple local
minimizers, and the global minimizers may not be unique either [12].

For any local minimizer, taking variation subject to \rho \geq 0 and
\int 
\rho dx= 1, one has

\delta \scrF 
\delta \rho 

=U +W \ast \rho + \beta  - 1(log\rho + 1) = const(2.10)
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254 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

on the support of \rho . One can further verify that the support of the minimizer is full
(see the appendix of [48]). These results can also be derived formally using the KKT
conditions [10]. Hence, any minimizers of \scrF satisfies the following relation:

\rho =Z - 1 exp( - \beta (U +W \ast \rho )),(2.11)

where Z is the normalizing constant, and can be verified to be a stationary solution
of (1.1) and thus a solution to (1.2).

2.3. Sampling to solve the stationary nonlinear Fokker--Planck equa-
tion. We aim to connect the Gibbs measure (2.8) with the solution to (1.2) so that
we can do sampling from (2.8) to solve the stationary Fokker--Planck equation. Our
goal in this work is then to identify the convergence of (2.8) to one of the stationary
solution to (1.2) in the form of (2.11) in a certain sense.

To make the meaning precise, consider the k-marginal of \rho N defined as

\rho N,k(x1, . . . , xk) =

\int 
\BbbR (N - k)d

\rho N (x1, . . . , xk, dxk+1, . . . , dxN )(2.12)

and the empirical distribution

\mu N :=
1

N

N\sum 
i=1

\delta (\cdot  - Xi), (X1,X2, . . . ,XN )\sim \rho N .(2.13)

We aim to show that \rho N,1 and \mu N converge to \rho in a certain sense. As can be imagined,
when there is a phase transition so that the local minimizers of \scrF are not unique, while
the N -body system has a unique Gibbs measure, there could be intrinsic difficulty.
Our result is that when the temperature is large enough, the stationary solution of
the form (2.11) is unique and the convergence can be quantified. The approach in
section 3 is to use the relative entropy to do the quantitative estimate.

In particular, using the relative entropy, one can conclude that \rho N,1 converges to
\rho in total variation norm with rate 1/

\surd 
N and \mu N converges to \rho in H - \alpha , \alpha > d/2 in

expectation. See sections 3 and 4 for details. In practical applications, we combine
these two to obtain the following algorithm.

Clearly, \=\mu N is the average of Ns empirical measures. One may do some postpro-
cessing to make this distribution more smooth. Clearly,

\| \=\mu N  - \rho \| H - \alpha \leq 1

Ns

Ns\sum 
m=1

\| \mu (m)
N  - \rho \| H - \alpha .

Algorithm 2.1. Sampling to solve the stationary nonlinear Fokker--Planck equation.
1: Set N \geq 2 and Ns \geq 1.
2: Draw Ns samples from \rho N using certain sampling methods (e.g., some Markov

chain Monte Carlo methods like Metropolis--Hastings (MH) or RBMC).
3: Collect all Xi's from all the Ns samples to obtain N \times Ns points in \BbbR d.
4: Use the NNs points to form a density approximation of \rho using

\=\mu N =
1

NNs

NNs\sum 
j=1

\delta (\cdot  - Xj).(2.14)
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SOLVE STATIONARY NONLINEAR FP VIA SAMPLING 255

Here, \mu 
(m)
N means the empirical measure for the mth sample. Since the typical rate

of convergence for \mu N to \rho is N - 1/2, this is also N - 1/2. In applications, sometimes
we care about the convergence of some quantity of the form

\int 
\varphi (\cdot )d\=\mu N . This is again

the weak convergence and we expect that the rate is again N - 1/2 like the law of large
numbers.

We also remark that the algorithm and the proof later in sections 3 and 4 can be
applied to cases when x is in bounded domains (like torus and bounded domain with
reflection boundary condition). See section 5.1 for one example.

2.4. Discussion on the second order interacting particle systems. If the
``velocity"" is considered, the models for the interacting particle systems are described
by the second order systems. For example, for the Langevin system, the particle
system may be given by the following for i= 1, . . . ,N :

dXi = Vi dt,(2.15)

dVi = - \gamma Vi dt - \nabla U(Xi)dt - 
1

N  - 1

N\sum 
j=1,j \not =i

\nabla 1W (Xi,Xj)dt+

\sqrt{} 
2\gamma 

\beta 
dBi.

This particle system is also associated with the energy functional (2.1). In fact, it can
be written as

dX = V dt,(2.16)

dV = - \gamma V dt - \nabla XEN dt+

\sqrt{} 
2\gamma 

\beta 
d\bfitB .

Remark 2.3. If we consider the rescaled energy functional in Remark 2.1, and
each particle has mass 1/N , one may obtain

dX = V dt,

1

N
dV = - \~\gamma V dt - 1

N
\nabla XEN dt+

\sqrt{} 
2\~\gamma 
\~\beta 
d\bfitB .

Now, we need \~\beta =N\beta and \~\gamma N = \gamma to be consistent with (2.15). The regime considered
is the one where the total mass is 1, the temperature is low, and the friction coefficient
is also small.

Using (2.16), it is not difficult to verify that the invariant measure is given by

\pi (dx,dv)\propto exp

\biggl( 
 - \beta 
\biggl( 
EN +

| v| 2

2

\biggr) \biggr) 
dxdv.

The Gibbs measure for the second order systems is just the Gibbs measure of the first
order system tensored by the Maxwellian distribution in the velocity space. From the
sampling viewpoint, we only have to focus on the Gibbs measure of the first order
systems.

Similarly, the second order nonlinear Fokker--Planck equation may be written as

\partial tf = - \nabla x \cdot (vf) +\nabla v \cdot 
\bigl( 
f(\gamma v+\nabla U +\nabla (W \ast x f))

\bigr) 
+ \beta  - 1\gamma \Delta vf,(2.17)

where \ast x means the convolution in the spatial variable, i.e.,

(W \ast x f)(x) =
\int 
\BbbR d

\int 
\BbbR d

W (x, y)f(y, v)dvdy
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256 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

for distribution f in the phase space. One can find that if \rho (x) is a solution to (1.2),
then \rho (x)e - \beta | v| 2/2 is a stationary solution to (2.17). In fact, there is a one-to-one
correspondence between invariant measures of the first and second order Fokker--
Planck equations (1.1) and (2.17). Hence, the (non)-uniqueness and phase transition
properties of the stationary solutions of (2.17) can be deduced from the results of
(1.1) [16]. Furthermore, the convergence of (2.17) towards an invariant measure is
also studied using free-energy approach in [17]. Hence, if we choose to solve stationary
equations in the form of (2.17) by sampling, we do not have to distinguish the first
order and second order systems.

In some applications, there may be coupling between the space and velocity vari-
ables. Then, the invariant measure is no longer of the product form. Nevertheless,
one may view (Xi, Vi) as a new particle, and the convergence of the Gibbs measure
to the solution of the stationary nonlinear Fokker--Planck equation can be similarly
studied as in section 3 or 4.

3. Convergence of the stationary solutions for one species. In this sec-
tion, we study the convergence of the Gibbs measure directly using the relative entropy
as mentioned in the introduction [32, 34, 44]. This may allow weaker assumptions on
W . Compared to many results in literature [32, 34, 44, 57], our result is valid in \BbbR d.

To start with, we recall some basic notations. Let \scrP (E) denote the set of prob-
ability measures on a generic Polish space E. The relative entropy (KL divergence)
between two probability measures \mu and \nu on Polish space E is defined as

\scrH (\mu | \nu ) =

\left\{   
\int 
E

log
d\mu 

d\nu 
d\mu if \mu \ll \nu ,

\infty else,

where d\mu 
d\nu denotes the Radon--Nikodym derivative of \mu with respect to \nu . Let \scrP sym(E

N )
denote the set of symmetric probability measures on the product space EN , that is,
for any Borel set A=A1 \times \cdot \cdot \cdot \times AN \subset EN and any permutation \sigma of \{ 1, . . . ,N\} , the
probability measure \mu N satisfies \mu N (A) = \mu N (\sigma (A)), where \sigma (A) =A\sigma (1)\times \cdot \cdot \cdot \times A\sigma (N).
For two probability measures \mu ,\nu \in \scrP (Ek), the scaled (normalized) relative entropy
is given by

\scrH k(\mu | \nu ) =
1

k
\scrH (\mu | \nu ).(3.1)

The scaled relative entropy satisfies the following useful monotonicity property [27, 34].

Lemma 3.1. For any probability density \rho N \in \scrP sym(EN ) and \rho \in \scrP (E). Then,

\scrH k(\rho N,k | \rho \otimes k)\leq \scrH N (\rho N | \rho \otimes N ), 1\leq k\leq N.

Here \rho N,k \in \scrP (Ek) is the k-marginal of \rho N defined as

\rho N,k(x1, . . . , xk) =

\int 
E(N - k)

\rho N (x1, . . . , xk, dxk+1, . . . , dxN ),

while \rho \otimes k \in \scrP (Ek) is given by \rho \otimes k(x1, . . . , xk) =
\prod k

i=1 \rho (xi).

Next, we state our main result.

Theorem 3.2. Suppose that the interacting kernel W \in L\infty (\BbbR d,\BbbR d), and assume
U is an external potential with exp( - \beta EN ) \in L1(\BbbR Nd) so that the N-body Gibbs
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SOLVE STATIONARY NONLINEAR FP VIA SAMPLING 257

distribution \rho N in (2.8) is well-defined. Then, if \beta < (2
\surd 
2e\| W\| \infty ) - 1, for a minimizer

\rho of the free energy \scrF , there exists C independent of N and N0 > 0, s.t.

\scrH N (\rho N | \rho \otimes N )\leq C

N
\forall N >N0.(3.2)

Remark 3.3. By going over the proof of Theorem 3.2, the dependence of C on the
interaction kernel and the temperature can be made explicit. For example, we may
choose c\sim 2

(1+\theta ) , where \theta = 2
\surd 
2e\| W\| \infty \beta , then

C = - log(1 - c\theta )

(c - 1)
\sim 1 + \theta 

1 - \theta 
log

1 + \theta 

1 - \theta 
.

This result indicates that \scrH N (\rho N | \rho \otimes N )\rightarrow 0 as N \rightarrow \infty under the assumptions
of Theorem 3.2. Due to the indistinguishability assumption on the particles, their
joint law is invariant under relabelling of the particles. That is, \rho N together with
\rho N,k are symmetric. It follows from Lemma 3.1 that \rho N,k \rightharpoonup \rho \otimes k, which is indeed the
propagation of chaos at equilibrium. Specifically, the first marginal of the invariant
Gibbs measure (the law of a single particle) weakly converges to the limit law, i.e.,
\rho N,1 \rightharpoonup \rho as N \rightarrow \infty .

As a direct consequence of Theorem 3.2, the minimizer of the mean-field free
energy \scrF is unique for the \beta considered here. In the case where there is phase sepa-
ration for the limit mean-field equation, so the stationary solutions are not unique at
low temperatures, which stationary solution the N -body distribution would converge
to is an interesting question (recall that the N -body Gibbs distribution is unique).
Sampling from the N -body distribution can be viewed as a method for solving this
solution. The selection principle for the stationary solution by this strategy is left
for future study and it may be related to the large deviation principle as for the
Hamilton--Jacobi equation in [22].

Our approach to prove this result has three steps. First, calculate the relative
entropy between \rho N and \rho \otimes N using the characterizations of invariant N -body Gibbs
measure and the stationary solution to nonlinear Fokker--Planck equation. Then con-
trol the relative entropy by resorting to the Fenchel--Young's inequality. Finally, a
uniform in N bound is established for the exponential random fluctuation for the
interactions. The key observation here is to introduce a symmetrized version of the
fluctuation for the interaction. Compared to the studies of Gibbs measure using the
large deviation principle [7] or the Laplace method [2], we need the boundedness of
the interaction kernel, but we do not require it to be continuous.

While in the time-dependent studies [44, 34], a common approach is to bound
the derivative of the relative entropy, and then Gr\"onwall inequality gives \scrH N (\rho N | 
\rho \otimes N )(t) \leq eCT t

\bigl( 
1
N +\scrH N (\rho N | \rho \otimes N )(0)

\bigr) 
for finite time horizon (0, T ]. To further ob-

tain uniform-in-time propagation of chaos, the uniform logarithmic Sobolev inequality
[26, 25] and the convexity of the potentials [45, 46] are required. For example, in [26,
Theorem 9], the uniform logarithmic Sobolev inequality is proved with assumptions
including the one-particle conditional log-Sobolev inequality (e.g. when U is supercon-
vex), and most importantly, a translation of Zegarlinski's uniqueness condition stating
that the product of the Lipschitz spectral gap of one particle and the L\infty norm of the
Hessian \nabla 2

x,yW is smaller than 1. Meanwhile, in [46, Theorem 5.1] when there is no
confinement potential (U = 0), the interaction potential W is assumed to be symmet-
ric and uniformly convex. While in [45], W is even, convex, with polynomial growth
and U is uniformly convex. We do not consider the uniform propagation of chaos, and
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258 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

instead focus on the stationary case and give a convergence of the invariant Gibbs
measure to the stationary solution directly. Compared to these results, we need only
\| W\| \infty <\infty and no other regularity assumptions on W . It would be an interesting
question whether one could combine the convergence of the stationary distribution
and finite time propagation of chaos to get some uniform-in-time convergence results
under weaker assumptions compared to the uniform-in-time propagation of chaos.

As mentioned above, to prove Theorem 3.2, we need some auxiliary lemmas. The
first is a type of Fenchel--Young's inequality and has been written out explicitly in
[34, Lemma 1].

Lemma 3.4. For any two probability densities \rho and \~\rho on E and some test function
\Phi \in L1(\rho ), one has that \forall \eta > 0,\int 

E

\Phi \rho dx\leq 1

\eta 

\biggl( 
\scrH (\rho | \~\rho ) + log

\int 
E

e\eta \Phi \~\rho dx

\biggr) 
.

Next, we need the following lemma.

Lemma 3.5. Consider the random variable

B = (W \ast \rho )(X1) - W (X1,X2) + (W \ast \rho )(X2) - 
\int 
\BbbR d

\rho (W \ast \rho )dx,(3.3)

where X1,X2 are i.i.d. from some probability distribution \rho . If there exists \alpha > 0 such
that limp\rightarrow \infty \alpha  - p\| B\| pLp(\rho ) \leq 1, then for \eta <

\surd 
2/(e\alpha ), one has

limsup
N\rightarrow \infty 

\int 
\BbbR Nd

exp

\Biggl( 
\eta 

N\sum 
i=1

\Biggl( 
W \ast \rho (xi)

(3.4)

 - 1

2(N  - 1)

\sum 
j:j \not =i

W (xi, xj) - 
1

2

\int 
\BbbR d

\rho (W \ast \rho )dx

\Biggr) \Biggr) 
\rho \otimes N dx1 \cdot \cdot \cdot dxN <\infty .

Lemma 3.5 is reminiscent of the following ``large deviation estimate"" by Jabin
and Wang [34, Therorem 4] using combinatoric techniques.

Lemma 3.6. Consider \rho \in \scrP (E) and \phi (x, y) satisfies \gamma := C(supp\geq 1 \| supy | \phi 
(\cdot , y)| \| Lp(\rho )/p)

2 < 1 with a universal constant C. Assume that \phi satisfies the following
cancellations: \int 

E

\phi (x, y)\rho (x)dx= 0 \forall y,
\int 
E

\phi (x, y)\rho (y)dy= 0 \forall x.

Then

sup
N\geq 2

\int 
EN

exp

\Biggl( 
1

N

N\sum 
i,j=1

\phi (xi, xj)

\Biggr) 
\rho \otimes Ndx\leq 2

1 - \gamma 
<\infty .

It is tempting to apply Lemma 3.6 with

\phi (x, y) = (W \ast \rho )(x) - 1

2
W (x, y) - 1

2

\int 
\BbbR d

\rho (W \ast \rho )dx.

It is easily found that
\int 
\BbbR d \phi (x, y)\rho (x)dx= 1

2

\int 
\BbbR d \rho (W \ast \rho )dx - 1

2 (W \ast \rho )(y) and
\int 
\BbbR d \phi (x, y)

\rho (y)dy= 1
2 (W \ast \rho )(x) - 

1
2

\int 
\BbbR d \rho (W \ast \rho )dx do not cancel out.
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Our key observation in this work is that if we introduce a symmetric version of
the above function

\phi (x, y) =
1

2
(W \ast \rho )(x) + 1

2
(W \ast \rho )(y) - 1

2
W (x, y) - 1

2

\int 
\BbbR d

\rho (W \ast \rho )dx,(3.5)

then \phi satisfies the two cancellation conditions in Lemma 3.6, and Lemma 3.5 can be
established. Here, with this observation, we would like to accommodate the martingale
proof in [44, Lemma 4.3] to the new case here. We remark that the results in [44,
Lemma 4.3] are weaker than Lemma 3.6 but the conditions needed could be explicit
in the proof and might be generalized to other cases in the future.

Proof of Lemma 3.5. Let X1, . . . ,XN be i.i.d. samples from \rho . Let \scrF k = \sigma (X1, . . . ,
Xk).

Define

Dk =
k - 1\sum 
j=1

\Bigl( 
(W \ast \rho )(Xj) - W (Xj ,Xk)

\Bigr) 
+ (k - 1)(W \ast \rho )(Xk) - (k - 1)

\int 
\BbbR d

\rho (W \ast \rho )dx.

It can be verified that \BbbE (Dk| \scrF k - 1) = 0 and

N\sum 
k=1

Dk = (N  - 1)

N\sum 
k=1

(W \ast \rho )(Xk) - 
\sum 

k,j:k>j

W (Xj ,Xk) - 
N(N  - 1)

2

\int 
\BbbR d

\rho (W \ast \rho )dx.

The estimate (3.4) then becomes \BbbE exp( \eta 
N - 1

\sum N
k=1Dk).

Applying the Marcinkiewicz--Zygmund type inequality (see [51, Therorem 2.1]),
one has \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

N\sum 
k=1

Dk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

Lp

\leq (p - 1)

N\sum 
k=1

\| Dk\| 2Lp , p\geq 2.

Define

Bk
j = (W \ast \rho )(Xj) - W (Xj ,Xk) + (W \ast \rho )(Xk) - 

\int 
\BbbR d

\rho (W \ast \rho )dx.

Since \BbbE (Bk
j | Xk) = 0, Dk =

\sum k - 1
j=1 B

k
j , one can apply the Marcinkiewicz--Zygmund type

inequality again to obtain that

\| Dk\| 2Lp \leq (p - 1)

k - 1\sum 
j=1

\| Bk
j \| 2Lp , p\geq 2.

Consequently,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
N\sum 

k=1

Dk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Lp

\leq (p - 1)

\sqrt{}    N\sum 
k=1

k - 1\sum 
j=1

\| Bk
j \| 2Lp = (p - 1)

\sqrt{} 
N(N  - 1)

2
\| B\| Lp , p\geq 2.

Using this estimate and \BbbE 
\sum N

k=1Dk = 0, one has

\BbbE exp

\Biggl( 
\eta 

N  - 1

N\sum 
k=1

Dk

\Biggr) 
\leq 1 +

\sum 
p\geq 2

\eta p(p - 1)p\| B\| pLp

p!

\biggl( 
N

2(N  - 1)

\biggr) p
2

.
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260 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

Hence, it follows from the Stirling's formula that

\BbbE exp

\Biggl( 
\eta 

N  - 1

N\sum 
k=1

Dk

\Biggr) 
\leq 1 +

\infty \sum 
p=2

1\surd 
2\pi p

\Biggl( 
\eta e(p - 1)\| B\| Lp

p

\sqrt{} 
N

2(N  - 1)

\Biggr) p

<\infty ,

when \eta <
\surd 
2/(e\alpha ) for N large enough. Specifically, \alpha can be chosen to be \| B\| L\infty if

B is bounded.

Now, we prove Theorem 3.2.

Proof of Theorem 3.2. Recall the stationary solution \rho to the nonlinear Fokker--
Planck equation in (2.11). One has

\rho \otimes N =

N\prod 
i=1

\rho (xi) =Z - N exp

\Biggl( 
 - \beta 

\Biggl( 
N\sum 
i=1

U(xi) +

N\sum 
i=1

(W \ast \rho )(xi)

\Biggr) \Biggr) 
.

According to Lemma 2.2, the N -body Gibbs measure can be rewritten as

\rho N =Z - 1
N exp

\left(   - \beta 
\left(  \sum 

i

U(xi) +
1

2(N  - 1)

\sum 
i\not =j

W (xi, xj) +
N

2

\int 
\BbbR d

\rho (W \ast \rho )dx

\right)  \right)  ,

where ZN = \=ZN exp( - N\beta 
2

\int 
\BbbR d \rho (W \ast \rho ) dx). Direct computation reveals that

\scrH (\rho \otimes N | \rho N ) =

\int 
\BbbR dN

\rho \otimes N log
\rho \otimes N

\rho N
dx= log

\biggl( 
Z - N

Z - 1
N

\biggr) 
.

Then, the nonnegativity of the relative entropy yields the relation

 - N logZ + logZN \geq 0.(3.6)

On the other hand,

\scrH (\rho N | \rho \otimes N ) =

\int 
\BbbR dN

\rho N log\rho N dx - 
\int 
\BbbR dN

\rho N log\rho \otimes N dx

=

\int 
\BbbR dN

\rho N

\left(   - logZN - \beta 

\left(  N\sum 
i=1

U(xi) +
1

2(N - 1)
\sum 
i \not =j

W (xi, xj)+
N

2

\int 
\BbbR d

\rho (W \ast \rho )

\right)  \right)  dx
 - 
\int 
\BbbR dN

\rho N

\Biggl( 
 - N logZ  - \beta 

\Biggl( 
N\sum 
i=1

U(xi) +

N\sum 
i=1

(W \ast \rho )(xi)

\Biggr) \Biggr) 
dx

= N logZ  - logZN + \beta 

\int 
\BbbR dN

\rho N\Phi dx\leq \beta 

\int 
\BbbR dN

\rho N\Phi dx,

where

\Phi (x1, . . . , xN ) = - 1

2(N  - 1)

\sum 
i,j:i \not =j

W (xi, xj) +

N\sum 
i=1

(W \ast \rho )(xi) - 
N

2

\int 
\BbbR d

\rho (W \ast \rho )dx.

(3.7)

Obviously, we do not know the properties of \rho N and would much prefer having
expectations with respect to the tensorized law \rho \otimes N . Applying Lemma 3.4 with
\eta = c\beta , one has\int 

\BbbR dN

\Phi \rho N dx\leq 1

c\beta 

\biggl( 
\scrH (\rho N | \rho \otimes N ) + log

\int 
\BbbR dN

exp(c\beta \Phi )\rho \otimes N dx

\biggr) 
.(3.8)
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Hence, for c > 1, we can get

\scrH (\rho N | \rho \otimes N )\leq 1

c - 1
log

\int 
\BbbR dN

exp(c\beta \Phi )\rho \otimes N dx.

Applying Lemma 3.5, since \| B\| L\infty \leq 4\| W\| L\infty <\infty (note that B is the random
variable defined in (3.3)), we find that when

\beta <
1

2
\surd 
2e\| W\| \infty 

,

there exists c > 1 and N0 > 0 such that

\scrH (\rho N | \rho \otimes N )\leq C

c - 1
\forall N >N0.

Like in [32, 44], our result also needs the assumption that the interaction kernel
W is bounded. More specifically, the proof of Lemma 3.5 requires limp\rightarrow \infty \| B\| Lp to
be almost bounded, which is not true for general singular kernels.

Besides, we can obtain the convergence in the total variation norm or the Wasser-
stein metric under the same condition. The results follow from the monotonicity
property, the Csisz\'ar--Kullback--Pinsker inequality [56] for the TV norm and the Ta-
lagrand transportation inequality for the Wasserstein distance [3].

Corollary 3.7. For \beta < (2e
\surd 
2\| W\| \infty ) - 1 and N large enough, for any fixed k,

\| \rho N,k  - \rho \otimes k\| TV \leq 
\sqrt{} 

2\scrH (\rho N,k | \rho \otimes k)\leq 
\sqrt{} 

2k

N
\scrH (\rho N | \rho \otimes N )\lesssim 

\sqrt{} 
k

N
.

A similar result holds for the Wasserstein distance

W1(\rho N,1, \rho )\lesssim 

\sqrt{} 
1

N
.

The following estimate concerns the convergence from the empirical measure
\mu N = 1

N

\sum N
i=1 \delta (x  - Xi) of particle system (1.5) at steady state to \rho in H - \alpha , for

\alpha > d/2. Together with the tightness, this can imply the weak convergence of the
empirical measures, justifying using sampling to compute the stationary nonlinear
Fokker--Planck equations.

Corollary 3.8. For each \alpha > d/2, there exists constant C depending only on \alpha 
such that

\BbbE \| \mu N  - \rho \| 2H - \alpha \leq 
C

N

for \beta small enough and N large enough.

Proof. The proof is the whole space version of [57, Lemma 2.6].
Since the Dirac measure belongs to H - \alpha (\BbbR d) for \alpha > d/2, \mu N  - \rho \in H - \alpha (\BbbR d).

Denote \Psi = \| \mu N  - \rho \| 2H - \alpha , then

\Psi =

\int 
\BbbR d

\bigl( 
1 + | \xi | 2

\bigr)  - \alpha | \widehat (\mu N  - \rho )(\xi )| 2d\xi .

Here, \^f represents the Fourier transform of f . Since \Psi < \infty , applying Lemma 3.4
with \eta \leftarrow \eta N ,

\BbbE \Psi =

\int 
\BbbR dN

\Psi \rho N dx\leq 1

\eta 

\biggl( 
\scrH N (\rho N | \rho \otimes N ) +

1

N
log

\int 
\BbbR dN

exp(N\eta \Psi )\rho \otimes N dx

\biggr) 
.
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Let C\alpha =
\int 
\BbbR d(1 + | \xi | 2) - \alpha d\xi , then the Jensen's inequality gives

exp(N\eta \Psi )\leq 
\int 
\BbbR d

\bigl( 
1 + | \xi | 2

\bigr)  - \alpha 

C\alpha 
exp

\Bigl( 
N\eta C\alpha | \widehat (\mu N  - \rho )(\xi )| 2

\Bigr) 
d\xi .

Define

\phi (x, y) =

\biggl( 
ei\xi \cdot x  - 

\int 
\BbbR d

ei\xi \cdot x\rho (x)dx

\biggr) \biggl( 
e - i\xi \cdot y  - 

\int 
\BbbR d

e - i\xi \cdot y\rho (y)dy

\biggr) 
.

Since \phi satisfies the two cancellations and

| \widehat (\mu N  - \rho )(\xi )| 2 = 1

N2

\sum 
i,j

Re [\phi (Xi,Xj)] ,

Lemma 3.6 implies that for \eta small enough (depending on \alpha and W ), \exists C depends
on \alpha , s.t.

sup
\xi 

sup
N\geq 2

\int 
\BbbR dN

exp (N\eta C\alpha \langle \phi ,\mu N \otimes \mu N \rangle )\rho \otimes Ndx\leq C.

Together with Theorem 3.2, one then concludes that

\BbbE \| \mu N  - \rho \| 2H - \alpha \leq 
C

N
.

Again, we do not need W and U be to continuous any more and we have the rate
of convergence. The rate 1/

\surd 
N is widely considered to be optimal for the convergence

of empirical measures as it corresponds to the stochastic fluctuations.
As a next corollary, we consider the fluctuation measure

\scrG N =
\surd 
N(\mu N  - \rho )

around the mean field limit. Corollary 3.8 suggests

limsup
N\rightarrow \infty 

\BbbE \| \scrG N\| 2H - \alpha \leq C for \alpha > d/2,(3.9)

when \beta is small enough. Here, we consider the interaction fluctuation where W does
not necessarily belong to H\alpha with \alpha > d/2.

Corollary 3.9. For \beta < (2e
\surd 
2\| W\| \infty ) - 1 there exists N0 > 0 such that

sup
N>N0

\BbbE \langle W (x, y),\scrG \otimes 2
N \rangle <\infty .(3.10)

Proof. It can be computed that

\langle W (x, y),\scrG \otimes 2
N \rangle =

1

N

N\sum 
i,j=1

W (Xi,Xj) - 2

N\sum 
i=1

(W \ast \rho )(Xi) +N

\int 
\BbbR d

\rho (W \ast \rho )dx.

This is essentially  - 2\Phi with \Phi given in (3.7). The only difference is that the self-
interactions W (Xi,Xi) are also considered and there is 1/N here while 1/(N  - 1)
there. The difference is clearly tiny. Using the same proof for Theorem 3.2, the result
follows.

In [14], they also tried to study the fluctuation of the Gibbs measure. There,
they assumed (3.10), while we can see that (3.10) actually holds when the interaction
kernel is bounded (not necessarily continuous).
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4. Convergence for the multispecies case. In this section, we consider the
multispecies case, which is actually common in applications. For example, in electro-
chemistry, we often want to find the distributions of different charged chemical species
in a fluid medium. To make the presentation clean, we consider only two species, while
the general case can be treated similarly. [18] also studied the propagation of chaos
and invariant measures for a two-species case of McKean--Vlasov diffusions, but there
is no quantitative convergence towards stationary solution.

4.1. The problem setup. We will assume that there are N particles for each
species. The particles for the first species are labelled by Xi, 1 \leq i \leq N while the
particles for the second species are labelled by Yj , 1 \leq j \leq N . The equations of the
motion using the overdamped Langevin may be given by

dXi = - 

\left(  \nabla U1(Xi) +
1

N  - 1

N\sum 
k=1,k \not =i

\nabla iW1(Xi,Xk) +
1

N

N\sum 
j=1

\nabla iWc(Xi, Yj)

\right)  dt(4.1)

+

\sqrt{} 
2

\beta 
dB1i(t), i= 1, . . . ,N,

dYj = - 

\left(  \nabla U2(Yj) +
1

N  - 1

N\sum 
\ell =1,\ell \not =j

\nabla jW2(Yj , Y\ell ) +
1

N

N\sum 
i=1

\nabla jWc(Yj ,Xi)

\right)  dt

+

\sqrt{} 
2

\beta 
dB2j(t), j = 1, . . . ,N.

Here, U1,U2 are the external potentials for the two species, W1 is the interaction
potential within the first species, W2 is the interaction potential within the second
species, and Wc is the cross species interaction. The Brownian motions B1,i,B2,j

are all independent. For the charged chemical species, one may have W1(x, y) =
z21\Phi (x - y), W2(x, y) = z22\Phi (x - y), and Wc(x, y) = z1z2\Phi (x - y), where zi's are the
valence of the ions and \Phi is the Coulomb potential. Typically, z1 = 1 and z2 =  - 1.
We assume that all the interaction potentials are symmetric while the asymmetric
case can be similarly treated. Then, one has

\nabla xWc(x, y) = - \nabla xWc(y,x).

It is not hard to find that the corresponding nonlinear Fokker--Planck equations
are given by

\partial t\rho 1 =\nabla x \cdot 
\bigl( 
\rho 1(\nabla xU1 +\nabla xW1 \ast \rho 1 +\nabla xWc \ast \rho 2)

\bigr) 
+ \beta  - 1\Delta x\rho 1,(4.2)

\partial t\rho 2 =\nabla y \cdot 
\bigl( 
\rho 2(\nabla yU2 +\nabla yW2 \ast \rho 2 +\nabla yWc \ast \rho 1)

\bigr) 
+ \beta  - 1\Delta y\rho 2.

The stationary equations are thus (1.4).
The energy functional for the system (4.1) is

EN (x,y) =

N\sum 
i=1

U1(xi) +

N\sum 
i=1

U2(yi) +
1

2(N  - 1)

N\sum 
i,j=1,i\not =j

W1(xi, xj)(4.3)

+
1

2(N  - 1)

N\sum 
i,j=1,i\not =j

W2(yi, yj) +
1

N

N\sum 
i,j=1

Wc(xi, yj),
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264 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

where x = (x1, . . . , xN ) and y = (y1, . . . , yN ). Similar to the one species case, the
equations (4.1) are actually

d

\biggl( 
X
Y

\biggr) 
= - \nabla (x,y)EN (X,Y )dt+

\sqrt{} 
2

\beta 
d\bfitB ,(4.4)

so that the Gibbs distribution is given by

\rho N (x,y) = \=Z - 1
N exp( - \beta EN (x,y)).(4.5)

The nonlinear Fokker--Planck equation has the free energy

\scrF (\rho 1, \rho 2) =
\int 
\BbbR d

U1\rho 1dx+

\int 
\BbbR d

U2\rho 2dy

(4.6)

+
1

2

\int 
\BbbR d\times \BbbR d

W1(x,x
\prime )\rho 1(x)\rho 1(x

\prime )dxdx\prime +
1

2

\int 
\BbbR d\times \BbbR d

W2(y, y
\prime )\rho 2(y)\rho 2(y

\prime )dydy\prime 

+

\int 
\BbbR d\times \BbbR d

Wc(x, y)\rho 1(x)\rho 2(y)dxdy+ \beta  - 1

\int 
\BbbR d

\rho 1 log\rho 1 dx+ \beta  - 1

\int 
\BbbR d

\rho 2 log\rho 2 dy.

The equation can be viewed as the W2 gradient flow in the space \scrP (\BbbR d) \times \scrP (\BbbR d),
namely

\partial t\rho 1 =\nabla x \cdot 
\biggl( 
\rho 1\nabla x

\delta \scrF 
\delta \rho 1

\biggr) 
, \partial t\rho 2 =\nabla y \cdot 

\biggl( 
\rho 2\nabla y

\delta \scrF 
\delta \rho 2

\biggr) 
.

By a similar argument, a stationary pair (\rho 1, \rho 2) satisfies

\rho 1(x) =Z - 1
1 exp

\bigl( 
 - \beta (U1(x) + (W1 \ast \rho 1)(x) + (Wc \ast \rho 2)(x))

\bigr) 
,(4.7)

\rho 2(y) =Z - 1
2 exp

\bigl( 
 - \beta (U2(y) + (W2 \ast \rho 2)(y) + (Wc \ast \rho 1)(y))

\bigr) 
,

where Zi's are normalizing constants.
Our approach to investigate the convergence is based on the observation that the

Gibbs distribution is symmetric about (Xi, Yi) and thus we will look at the conver-
gence to the joint distribution \rho 1(x)\rho 2(y)dxdy \in \scrP (\BbbR d\times \BbbR d). Using this idea, one may
view Pi \equiv (Xi, Yi) as a grand particle. The interaction energy 1

NWc(Xi, Yi) can then
be treated as the self-interaction. This can be formally reduced to the one species
case. This viewpoint, however, cannot identify the independence between x and y in
the mean field limit explicitly.

Remark 4.1. This coupling strategy can be extended to multispecies system with
different interactions and species with different number of particles as long as they
scale simultaneously in the mean field limit. Namely, if the particle number of the
mth species is Nm = amN with fixed am \in \BbbN + for m= 1, . . . ,M , then we can collect
am particles from the mth species, and consider the

\sum M
m=1 am particles as a whole.

Therefore, one can still pass theN \rightarrow \infty limit with suitably defined interactions among
the N grand particles. See section 5.1 for an example. However, if the numbers of
different species tend to infinity at different rates, our approach is no longer applicable.

4.2. The convergence result and the sketch of the proof. We will use the
treatment in the above section to obtain the quantitative convergence. In particular,
we have the following claim.
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Theorem 4.2. Suppose that the interaction potentials are bounded and

\beta 2
\surd 
2e (2\| Wc\| \infty +max(\| W1\| \infty ,\| W2\| \infty ))< 1.(4.8)

Let (\rho 1, \rho 2) be a stationary pair and define \rho 1\rho 2(dx,dy) := \rho 1(x)\rho 2(y)dxdy. Then for
N large enough, one has

\scrH N (\rho N | (\rho 1\rho 2)\otimes N )\leq C

N
.(4.9)

The proof is similar to the proof of Theorem 3.2. Here, we list out the key
ingredients and omit the details. By noting that

(\rho 1\rho 2)
\otimes N = (Z1Z2)

 - N exp

\Biggl( 
 - \beta 

\Biggl( 
N\sum 
i=1

(U1(xi) + (W1 \ast \rho 1)(xi) + (Wc \ast \rho 2)(xi))

(4.10)

+

N\sum 
j=1

(U2(yj) + (W2 \ast \rho 2)(yj) + (Wc \ast \rho 1)(yj))

\Biggr) \Biggr) 
,

we rewrite the \rho N in (4.5) as

\rho N =Z - 1
N exp

\Biggl( 
 - \beta 

\Biggl( 
EN (x,y) +

N

2

\int 
\BbbR d

W1 \ast \rho 1(x)\rho 1(x)dx(4.11)

+
N

2

\int 
\BbbR d

W2 \ast \rho 2(y)\rho 2(y)dy+N

\int 
\BbbR d

Wc \ast \rho 2(x)\rho 1(x)dx

\Biggr) \Biggr) 
.

The difference between \=ZN and ZN is a constant depending on N but not on x,y.
It is similarly computed that

\scrH ((\rho 1\rho 2)\otimes N | \rho N ) = log

\biggl( 
(Z1Z2)

 - N

Z - 1
N

\biggr) 
\geq 0,

and

\scrH (\rho N | (\rho 1\rho 2)\otimes N ) = log

\biggl( 
Z - 1
N

(Z1Z2) - N

\biggr) 
+ \beta 

\int 
\BbbR Nd\times \BbbR Nd

(\Phi 1(x) + \Phi 2(y)

+ \Phi c(x,y))\rho N (dx,dy),

where

\Phi 1(x) =

N\sum 
i=1

(W1 \ast \rho 1)(xi) - 
1

2(N  - 1)

\sum 
i \not =j

W1(xi, xj) - 
N

2

\int 
\BbbR d

\rho 1(W1 \ast \rho 1)dx,

\Phi 2(y) =

N\sum 
j=1

(W2 \ast \rho 2)(yj) - 
1

2(N  - 1)

\sum 
i\not =j

W2(yi, yj) - 
N

2

\int 
\BbbR d

\rho 2(W2 \ast \rho 2)dy,

\Phi c(x,y) =

N\sum 
i=1

\bigl( 
(Wc \ast \rho 2)(xi) + (Wc \ast \rho 1)(yi)

\bigr) 
 - 1

N

\sum 
i,j

Wc(xi, yj) - N
\int 
\BbbR d

\rho 1(Wc \ast \rho 2)dx.
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266 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

The treatment of \Phi 1 and \Phi 2 are the same as in Lemma 3.5. In particular, using
Lemma 3.4, one has

\beta 

\int 
\BbbR Nd\times \BbbR Nd

(\Phi 1(x) +\Phi 2(y))\rho N (dx,dy)\leq 1

c
\scrH (\rho N | (\rho 1\rho 2)\otimes N )

+
1

c
log

\biggl( \int 
exp (c\beta (\Phi 1 +\Phi 2)) (\rho 1\rho 2)

\otimes N (dx,dy)

\biggr) 
.

The integral of the exponential can be split into two integrals. Hence, the conditions
are similar for this to be finite.

The cross term \Phi c is much simpler. In fact, we do not need the symmetrization
technique in (3.5). Set

\phi c(x, y) = (Wc \ast \rho 2)(x) + (Wc \ast \rho 1)(y) - Wc(x, y) - 
\int 
\BbbR d

\rho 1(Wc \ast \rho 2)dx

such that
\sum 

i,j \phi c(xi, yj) =N\Phi c. One finds that \phi c satisfies the required cancellation
conditions. Repeating the proof of Lemma 3.5 with

Bk
j = \phi c(Xj , Yk) + \phi c(Xk, Yj),

one finds the following fact.

Lemma 4.3. Suppose that Wc \in L\infty and for \eta < 1/(4
\surd 
2e\| Wc\| \infty ), one has

sup
N\geq 2

\int 
\BbbR Nd\times \BbbR Nd

exp

\left(  \eta 
1

N

\sum 
i,j

\phi c(xi, yj)

\right)  (\rho 1\rho 2)
\otimes N (dx,dy)<\infty .

Here, the limsup is replaced by supN\geq 2 because there is no discrepancy between

N  - 1 and N . Moreover, the coefficient is now 4
\surd 
2 instead of 2

\surd 
2 because in con-

struction of the martingale difference Bk
j , there are more terms.

The condition (4.8) is required because we use

\beta 

\int 
\BbbR Nd\times \BbbR Nd

\Phi c(x,y)\rho N (dx,dy)\leq 1

c\prime 
\scrH (\rho N | (\rho 1\rho 2)\otimes N )

+
1

c\prime 
log

\biggl( \int 
exp(c\prime \beta \Phi c)(\rho 1\rho 2)

\otimes N

\biggr) 
and need 1/c+ 1/c\prime < 1.

5. Numerical experiments. According to Theorems 3.2 and 4.2 and Corol-
lary 3.8, both the one marginal of the N -body Gibbs measure and the empirical
measure constructed from the samples converge to the solution of the stationary
Fokker--Planck equation. This then justifies our motivation to use sampling methods
to solve the stationary nonlinear Fokker--Planck equations. Upon adequately sam-
pling from the N -body Gibbs measure (2.8), one can obtain a good approximation to
the solution of the stationary Fokker--Planck equation.

To sample from the Gibbs distribution like (2.8), standard Markov Chain Monte
Carlo method, such as the Langevin Monte Carlo [52] or the direct Metropolis--
Hastings (MH) algorithm [49] are not convenient as W could be singular and the com-
plexity for moving one particle is \scrO (N). The Random Batch Monte Carlo (RBMC)
method proposed in [43] can overcome these two difficulties, where the singularity is
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treated by a kernel splitting strategy while the complexity is reduced to \scrO (1) by a
random batch strategy [35].

By using the sampling methods, the requirement of the uniform-in-time prop-
agation of chaos for the direct simulation has been changed to the requirement of
the mixing property of the designed Markov chain Monte Carlo. We would like to
emphasize that we have assumed there is one sampling method that can sample from
the N -body Gibbs distribution, which may have a bias within the tolerance. In the
numerical experiments here, we have chosen the RBMC for which the rigorous proof
of the ergodicity is not known yet. We would like to point out that RBMC is just an
example of the sampling methods, so the study of the RBMC is not a central issue
of the strategy proposed in this paper. The RBMC has turned out to be efficient in
practice if the designed Langevin dynamics have good mixing property, and this is
why we chose it. About the random batch strategy, we remark that the extra noise
could introduce large error by changing the critical temperature for systems with
phase transition [24]. Nevertheless, the ergodicity and the error of some Langevin
methods with random batches have been proved in related papers [42, 41, 30].

Let us briefly describe RBMC here. We decompose the singular interacting po-
tential W into W = W (1) +W (2), where W (2) is singular and of short range while
W (1) is the remaining part which is smooth and often of long range. Then, W (1) is
used in the Langevin dynamics step, while W (2) is used in the Metropolis rejection
step. Regarding the complexity, consider only the interactions within a randomly
selected mini batch [35], the Langevin step is \scrO (1). Besides, Metropolis rejection step
is also practically \scrO (1) since W (2) is local. The RBMC method is summarized in
Algorithm 5.1 and the details can be found in [43].

In this section, we will first consider the Poisson--Boltzmann (PB) equation where
two types of ions are considered. Note that the interaction kernel is not bounded so

Algorithm 5.1. Random Batch Monte Carlo method.

1: Split W =W (1) +W (2). Generate N initial particles Xi, i= 1, . . . ,N . Choose
m\geq 1, batch size p > 1, number of iterations in the burn in phase and sampling
phase Nb,Ns.

2: for n= 1 :Nb +Ns do
3: Randomly select a particle Xi with uniform probability.
4: for k= 1 :m do
5: Choose \xi k (random set not containing i), zk \sim N(0, Id), \tau k > 0.

Xi =Xi  - 

\left(  \nabla U(Xi) +
1

p - 1

\sum 
j\in \xi k

\nabla 1W
(1)(Xi,Xj)

\right)  \tau k +

\sqrt{} 
2\tau k
\beta 

zk.

6: end for
7: Compute the acceptance ratio using cell list or other data structures:

a(X\ast 
i ,Xi) =min

\left\{   1, exp

\left(   - \beta \sum 
j:j \not =i

\Bigl( 
W (2)(X\ast 

i ,Xj) - W (2)(Xi,Xj)
\Bigr) \right)  \right\}   .

Accept X\ast 
i with probability a(X\ast 

i ,Xi).
8: end for
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268 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

the theory will not apply but the numerical results still agree with the theory. As a
second example, we look at using sampling for training the two-layer neural networks.

5.1. The Poisson--Boltzmann equation. The PB equation [23, 9] is a clas-
sical implicit solvent model describing the electric potential at equilibrium, widely
used in electrochemistry. Consider a charged colloid \Omega immersed in some symmetric
monovalent electrolyte. Then the ions (two types with valences z+ = 1, z - = - 1) will
concentrate close to the surface of \Omega and form a screening layer. At equilibrium, the
charge distribution outside the charged surface is given by the Boltzmann distribution,
i.e.,

\rho + \propto exp( - \beta \phi ), \rho  - \propto exp(\beta \phi ).

Here \phi denotes the electric potential. The concentration of both anions and cations
are \rho \infty in the far field. The potential then satisfies

 - \varepsilon \Delta \phi =

\Biggl\{ 
\rho \infty (e - \beta \phi  - e\beta \phi ), x\in \Omega c,

\rho f , x\in \Omega .

Here \varepsilon is the dielectric constant. The equation in \Omega c is the PB equation.
To do simulation, we truncate the external solution into bounded domain DL =

B(0,L)\setminus \Omega and prescribe a Neumann boundary condition

 - \partial \phi 

\partial n
= 0, x\in \partial B(0,L).

It has been shown that this approximation problem converges to the PB equation for
L large enough [40].

Unlike the direction simulation approach in [40], we solve the PB equation by
sampling method here. Consider the corresponding particle system where the inter-
action potential between the particles is the Coulomb potential. Given the free charge
\rho f , we adjust the total charge of the cations Q+ so that the total charge of the anions
satisfy

Q+  - Q - +

\int 
\Omega 

\rho fdx= 0.

We choose a numerical charge unit q such that the numbers of numerical cations and
anions are given, respectively, by

N+ =

\biggl\lceil 
Q+

z+q

\biggr\rceil 
, N - =

\biggl\lceil 
Q - 

| z - | q

\biggr\rceil 
.

Note that here N+ \not =N - but if we decrease q, N+ and N - will increase proportionally
so that the proof in section 4 can be applied similarly. Let W be the fundamental
solution to

 - \varepsilon \Delta W = \delta .

Then the external potential is given by U = \rho f \ast W and the Gibbs distribution can
be written as

\rho N \propto exp

\Biggl( 
 - \beta 

\Biggl( \sum 
i

ziU(xi) +
1

2

\sum 
i \not =j

zizjqW (xi  - xj)

\Biggr) \Biggr) 
1\{ xi\in DL,1\leq i\leq N\} ,(5.1)
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where zi is the valence of ith particle, N = N+ + N - , the cations and anions are
numbered together. Note that the Gibbs free energy used is scaled by 1/q so that
the mean field limit exists, consistent with Remark 2.1. In fact, if we consider the
corresponding overdamped Langevin equation, one has

dXi = - zi

\Biggl( 
\nabla U(xi) +

\sum 
j \not =i

zjq\nabla W (xi  - xj)

\Biggr) 
dt+

\sqrt{} 
2\beta  - 1dBi + dRi,

where dRi is the reflection at the boundary (see [40]). The formal mean field limit is

\partial t\rho + =\nabla \cdot 
\bigl( 
\rho +(\nabla U +\nabla W \ast \rho +  - \nabla W \ast \rho  - )

\bigr) 
+ \beta  - 1\Delta \rho +, x\in DL,

\partial t\rho  - = - \nabla \cdot 
\bigl( 
\rho  - (\nabla U +\nabla W \ast \rho +  - \nabla W \ast \rho  - )

\bigr) 
+ \beta  - 1\Delta \rho  - , x\in DL.

This is the system of PNP equations, with the equilibrium to be the PB equation.
For the one-dimensional (1D) case, W (x) = (2\varepsilon ) - 1| x| , and \nabla W is bounded, the

theory above can be applied. In fact, though the domain here is bounded, the proof
can be performed without difficulty. For the three-dimensional (3D) case, W (x) =

1
4\pi \varepsilon | x| , the theory above does not apply. If we use this potential directly in the Gibbs
distribution, it is not integrable due to the singularity between one anion particle and
one cation particle. One technique to avoid this attraction is adding some hard sphere
repulsive potential such as the Lennard-Jones potential [36] given by

ULJ(r) = 4\epsilon 

\biggl[ \Bigl( \sigma 
r

\Bigr) 12
 - 
\Bigl( \sigma 
r

\Bigr) 6\biggr] 
,(5.2)

where \epsilon is the depth of the potential well (i.e., the strength of Lennard-Jones po-
tential), \sigma is the finite distance at which the interparticle potential is zero. The
parameters \epsilon , \sigma vanish in the mean field limit so that the effect of the Lennard-Jones
does not appear in the PB equation. Another approach is to take a cutoff of W that
vanishes as N \rightarrow \infty . For example,

\=W (r) =

\left\{       
1

8\pi \varepsilon rN

\biggl( 
3 - r2

r2N

\biggr) 
, 0< r < rN ,

1

4\pi \varepsilon r
, r > rN ,

where rN =N - \gamma (d) for some \gamma (d) > 0. Clearly, | \=W | \leq 3
8\pi \varepsilon rN

= 3
8\pi \varepsilon N

\gamma . \=W converges
to W as N \rightarrow \infty . Either with the hard sphere potential or the cutoff, the Gibbs
measure in three dimensions then can be normalized to a probability measure. Though
our theory does not apply due to the singularity, we can still test the performance
numerically nevertheless.

For the 1D case, the particles can be imagined as charged sheets in three dimen-
sions and the Green's function does not blow up at x = 0. there is no need to do
splitting in the RBMC. That means we run a particle using the random minibatch
version of a Langevin equation and then accept the proposal totally. This is, in fact,
a modified version of the stochastic gradient Langevin dynamics (SGLD) [58], but we
are allowed to move several particles only in each iteration. When the particles fall
out of the domain considered, we do simple reflection.

In Figure 1(a), we present the sampling results for solving the 1D PB equation.
The particles are all put in (1,L) with L = 15 in the experiment and a free charge
Qf is put at x= 0 (for the 1D case, the location of the free charge in ( - \infty ,1) is not
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270 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

Fig. 1. Solving the 1D PB equation using sampling. (a) The density distribution obtained
by RBMC sampling method versus finite difference method. The parameters are detailed in the
context. (b) The mean square weak error versus particle number for positive charge (number for
negative charge is scaled proportionally). The 1/2 rate is observed.

important). Here, \varepsilon = 1, Qf = 1, Q+ = 1, Q - = 2, and N+ = 800 so that q = 0.00125.
We move one particle each iteration in RBMC with the batch size is p= 2, step size
\tau = 0.01, steps per iteration m= 20, and the number of iterations in the burn in phase
and sampling phase are Nb = 5e6 and Ns = 1e6.

In Figure 1(b), we show the relative weak error of the sampling method versus
the particle number of cations N+ used in the Gibbs distribution. In one experiment,
for each given N+, we collect samples every 500 iterations in the sampling phase (i.e.,
Ntot = NNs/500 particles) to approximate \BbbE 

\int 
\varphi d\mu N for the empirical measure \mu N

and compute

err :=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\varphi (x)\rho (x)dx - 1

Ntot

Ntot\sum 
i=1

\varphi (xi)

\bigm| \bigm| \bigm| \bigm| \bigm| /
\int 

\varphi (x)\rho (x)dx.(5.3)

The reference solution \rho is computed by the finite difference method as explained in
[40]. The test function used is \varphi (x) = x2 and the errors for the positive and negative
particles are computed separately and we repeat the experiments for M = 32 times
to get the mean square weak error (MSWE)

MSWE=

\sqrt{} \sum 
err2+ +

\sum 
err2 - 

2M
.(5.4)

The results are shown for N+ = 25,50,100,200,400,800,1600. Again, Nb = 5e6 and
Ns = 1e6, and m = N/15 in RBMC. Clearly, the convergence rate is 1/2 which is
consistent with the result \| \mu N  - \rho \| H - \alpha \sim N - 1/2.

For the 3D case, to run the RBMC algorithm, we let r= | x| and split the singular
Coulomb potential as

W (1)(r) =

\left\{       
1

4\pi \varepsilon 

\biggl[ 
 - 1

r2c
(r - rc) +

1

rc

\biggr] 
, 0< r\leq rc,

1

4\pi \varepsilon 

1

r
, r > rc,
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Fig. 2. Solving 3D PB equation by RBMC sampling. The Lennard-Jones potential is used to
overcome the singularity of 3D Coulomb potential.

and

W (2)(r) =

\left\{   
1

4\pi \varepsilon 

\biggl[ 
1

r
+

1

r2c
(r - rc) - 

1

rc

\biggr] 
, 0< r\leq rc,

0, r > rc.

In Figure 2, we present the simulation results for \varepsilon = 0.01, Qf = 10\varepsilon centered at
the origin, Q+ = 10. Here, \rho \pm (r) are the 3D densities such that

\int 
\rho +(r)4\pi r

2dr=Q+.
The cell is B(0,1) and Qf is put at the origin. The domain is truncated at L= 10. In
the RBMC sampling method, we use N+ = 100 particles for cations so that q = 0.1.
The cut-off radius of the Coulomb potential is chosen as rc = 0.1, while the zero and
strength of Lennard-Jones potential ULJ is \sigma = rc = 0.1 and \epsilon = 0.01, respectively.
We move one particle each step with batch size p = 2, steps per iteration m = 9,
step size \tau = 0.01. Also, when particles fall out of the domain, a simple reflection is
performed. The numbers of iterations in the burn-in phase and the sampling phase are
Nb = 5\times 105 and Ns = 5\times 107. To compute the density distributions at equilibrium, we
collect the samplers every 1000 iterations in the sampling phase. Hence, the samplers
used for cations and anions are NsN+/1000 = 5\times 106 and NsN - /1000 = 5.05\times 106,
respectively. Clearly, we can see from Figure 2 that the RBMC sampling result
matches well with the reference solution, given by the finite difference method as
mentioned in [40].

5.2. Two-layer neural networks. Following [48, 53], we consider in this sub-
section the supervised learning task to fit data of the form \{ (x, y)\} using a two-layer
neural network of the following form:

\^y(x;\bfittheta ) =
1

N

N\sum 
i=1

\sigma \ast (x;\theta i).(5.5)

Here, \^y(x;\bfittheta ) represents the output of the network for input x, and \sigma \ast (x;\theta i) is a neuron
with parameter \theta i. Often

\sigma \ast (x, \theta ) = c\sigma (wTx+ b), \theta = (c,w, b),(5.6)
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272 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

and \bfittheta = (\theta 1, \theta 2, . . . , \theta N ). Hence, the model (5.5) is a two-layer neural network with
the hidden layer to be x \mapsto \rightarrow wTx+ b, and the output layer is (\sigma i) \mapsto \rightarrow 1

N

\sum 
i ci\sigma i after

the activation. The mean square loss function is given by

R(\bfittheta ) =
1

2
\BbbE x,y| \^y(x;\bfittheta ) - y| 2.(5.7)

If we are given P training data \{ (xi, yi)\} , then

1

2
\BbbE x,y| \^y(x;\bfittheta ) - y| 2 = 1

2P

P\sum 
j=1

| \^y(xj ;\bfittheta ) - yj | 2.(5.8)

If we have the task for fitting the distribution of the data, the expectation is then
taken over the population distribution, which is the law of (x, y) as P \rightarrow \infty . We will
use \BbbE to mean the expectation over (x, y), either over the training data or over the
population distribution.

An important observation in [48, 53] is that the loss function can also be written
as

R(\bfittheta ) =
1

2N2

\sum 
i,i\prime 

W (\theta i, \theta 
\prime 
i) +

1

N

N\sum 
i=1

U(\theta i) +
1

2
\BbbE | y| 2 =:E(\mu N ) +C,(5.9)

where

E(\mu ) :=

\int 
U\mu (d\theta ) +

1

2

\int 
W (\theta , \theta \prime )\mu (d\theta )\mu (d\theta \prime ), \mu N =

1

N

N\sum 
i=1

\delta (\cdot  - \theta i),(5.10)

and U and W are given, respectively, by

U(\theta ) = - \BbbE [y\sigma \ast (x, \theta )], W (\theta , \theta \prime ) =\BbbE [\sigma \ast (x;\theta )\sigma \ast (x;\theta 
\prime )].(5.11)

This indicates that the loss function is, in fact, an energy functional of the empirical
measure of the parameters of the neurons.

The noisy stochastic gradient descent (SGD) algorithm is often used to train the
neuron networks [48]

\theta k+1
i = \theta ki  - \lambda sk\theta 

k
i + sk(yk  - \^yk)\nabla \theta i\sigma \ast (xk;\theta 

k
i ) +

\sqrt{} 
2sk/\beta z

k
i ,(5.12)

where zki \sim \scrN (0, ID) where D is the dimension of \theta i, \^yk = \^y(x;\bfittheta \bfitk ). Here, \lambda \theta ki comes
from an \ell 2-regularization [48]. Note that the coefficient used here is slightly different
from there, now sk directly represents the learning rate. This update rule is clearly
an approximation of

\theta k+1
i = \theta ki  - \lambda sk\theta 

k
i  - sk\nabla \theta i(NR(\bfittheta \bfitk )) +

\sqrt{} 
2sk/\beta z

k
i ,

where only one sample (xk, yk) is used to replace the expectation over the distribution
of the data in R(\theta ), and this is the mini-batch idea in SGD. Of course, several samples
could be used. Note that the rescaled loss (or energy functional) NR(\bfittheta \bfitk ) is used
consistent with Remark 2.1. This is the discretization of

d\theta i = - \lambda \theta i  - \nabla \theta i(NR(\bfittheta ))dt+
\sqrt{} 

2\beta  - 1 dBi.
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Clearly, the mean field limit of this interacting particle system would be the following
nonlinear Fokker--Planck equation:

\partial t\rho =\nabla \theta \cdot (\rho \nabla \theta \Psi \lambda ) + \beta  - 1\Delta \theta \rho ,(5.13)

where

\Psi \lambda =U(\theta ) +

\int 
W (\theta , \theta \prime )\rho (d\theta \prime ) +

\lambda 

2
| \theta | 2 = \delta 

\delta \rho 

\biggl( 
E(\rho ) + \lambda 

\int 
| \theta | 2

2
\rho (d\theta )

\biggr) 
.

This mean field limit has been justified in a probabilistic sense in [48]. Clearly, for
the N -neuron system, the stationary distribution is

\rho N \propto exp

\left(   - \beta 
\left(  \sum 

i

\biggl( 
U(\theta i) +

\lambda 

2
| \theta i| 2

\biggr) 
+

1

N

\sum 
i,j

W (\theta i, \theta j)

\right)  \right)  .(5.14)

As proved in [48], the stationary solution of the nonlinear Fokker--Planck equation
(5.13) is close to the global minimizer of the two-layer neural networks with infinite
width, and has nearly zero training loss.

We thus conclude with the following corollary.

Corollary 5.1. Suppose that W is bounded under suitable choices of activation
functions and the domains for \theta . When \beta is not very big, as the width of neural
network N \rightarrow \infty , the empirical measure \mu N converges to the stationary solution \rho in
H - s for s >D/2 almost surely. Moreover, the neural network converges to the nearly
optimal predictor

\int 
\sigma \ast (x, \theta )\rho (d\theta ) for all x.

The second part is actually a consequence of Corollary 3.9. In practice, training
a very wide network requires more memory. Moreover, it is challenging to reach a
true ``steady state"" during training. The above result then suggests that we may
do sampling from the N -body Gibbs measure to approximate the nearly optimal
predictor.

Let us consider a typical regression task. Here, measurement of the output value
is taken after each input, with measurement errors following a Gaussian distribution.
The goal is to predict new outputs for a new input. Consider the following data which
are generated by

yi = sin(3x) + \varepsilon i, \varepsilon i \sim \scrN (0,0.2), x\sim U [0,1].(5.15)

We use the two-layer neural network model above to fit the data to approximate the
model y = f(x) = sin(3x). Here, we use the sigmoid function \sigma (x) = 1

1+e - x in (5.6).
The network width is chosen as N = 64.

The noisy SGD update (5.12) is applied with \lambda = 0 for optimization. The time
step (or learning rate) sk = 10 and \beta = 2000. For sampling, we apply RBMC with-
out splitting. Hence, the algorithm becomes almost the same with SGLD or the noisy
SGD, with the difference that we are allowed to update a few neurons in each iteration.
The stepsize is the same as above. In the RBMC, the warm-up phase and sampling
phase are Nb = 10000 and Ns = 20000. In other words, we take NNs = 1.28\times 106 sam-
ples for the empirical distribution of \theta . The steady-state distribution is reconstructed
using the empirical distribution:

\~y(x;\bfittheta ) =\BbbE [\sigma \ast (x;\bfittheta )]\approx 
1

M

M\sum 
i=1

\sigma \ast (x;\theta i).(5.16)
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274 LEI LI, YIJIA TANG, AND JINGTONG ZHANG

Fig. 3. Training the two-layer neural networks by sampling.

Table 1
Neural network errors.

errsgd errs

Training set 0.0478 0.0409
Test set 0.0490 0.0420

Figure 3 illustrates the numerical results. The result by sampling (red dashed
line) is closer to the true curve y = f(x) compared to the SGD training result (blue
dotted line). It exhibits better training and generalization errors. This is clearly
expected as we used more samples for \theta and the results by sampling can be thought
as the average of Ns networks with width N = 64.

Table 1 shows the errors of the neural network. The ``errsgd"" refers to the average
of Ns runs of the SGD mean square errors defined in (5.8), while ``errs"" corresponds
to the mean square error (5.8) of the empirical distribution. Clearly, the error of the
predictor constructed by sampling is smaller.

6. Conclusions. Compared to some direct simulation methods like in [40], we
have proposed in this work to solve the stationary nonlinear Fokker--Planck equation
by sampling from the N-body Gibbs measure, which could be acceptable if some
efficient sampling methods based on random batch strategy (e.g., the RBMC) are
used. On the theoretical side, we have established the convergence in the mean
field limit from the N-body Gibbs measure to the solution of the nonlinear Fokker--
Planck equation using relative entropy mainly following the strategy in [34, 44] with a
symmetrization technique for the interaction terms. Compared to earlier results using
relative entropy based on Laplace asymptotics [1, 2], we do not need the continuity of
the interaction kernel and continuity of the free energy functional. On the numerical
side, the method has been mainly tested on the Poisson--Boltzmann equation and
satisfactory results have been obtained.

For future work, extension to more singular kernels (like the 3D Coulomb po-
tential) could be considered. How to compute a particular stationary solution when
the uniqueness is not available is also an important question, which is related to the
interesting phase transition problems.
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