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UNIFORM-IN-TIME WEAK ERROR ANALYSIS FOR
STOCHASTIC GRADIENT DESCENT ALGORITHMS VIA

DIFFUSION APPROXIMATION∗
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Abstract. Diffusion approximation provides weak approximation for stochastic gradient descent
algorithms in a finite time horizon. In this paper, we introduce new tools motivated by the backward
error analysis of numerical stochastic differential equations into the theoretical framework of diffusion
approximation, extending the validity of the weak approximation from finite to infinite time horizon.
The new techniques developed in this paper enable us to characterize the asymptotic behavior of
constant-step-size SGD algorithms near a local minimum around which the objective functions are
locally strongly convex, a goal previously unreachable within the diffusion approximation framework.
Our analysis builds upon a truncated formal power expansion of the solution of a Kolmogorov equation
arising from diffusion approximation, where the main technical ingredient is uniform-in-time bounds
controlling the long-term behavior of the expansion coefficient functions near the local minimum. We
expect these new techniques to bring new understanding of the behaviors of SGD near local minimum
and greatly expand the range of applicability of diffusion approximation to cover wider and deeper
aspects of stochastic optimization algorithms in data science.
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differential equation; backward Kolmogorov equation.
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1. Introduction
Stochastic gradient descent (SGD) is a prototypical stochastic optimization algo-

rithm widely used for solving large scale data science problems [1–6], not only for its
scalability to large datasets, but also due to its surprising capability of identifying
parameters of deep neural network models with better generalization behavior than
adaptive gradient methods [7–9]. The past decade has witnessed growing interests in
accelerating this simple yet powerful optimization scheme [10–15], as well as better un-
derstanding its dynamics, through the lens of either discrete Markov chains [16, 17] or
continuous stochastic differential equations [18–21].

This paper introduces new techniques into the theoretical framework of diffusion
approximation, which provides weak approximation to SGD algorithms through the
solution of a modified stochastic differential equation (SDE). Though numerous novel
insights have been gained from this continuous perspective, it was previously unclear
whether the modified SDEs can be adopted to study the asymptotic behavior of SGD,
since the weak approximation is only valid over a finite time interval. In the nonconvex
case, the approximation error blows up as time goes to infinity. For example, when
the coefficient functions are bounded, the SDEs share the behaviors of random walks in
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high dimension space, which are transient. One will lose control of the system quickly
as time goes on. In the strongly convex case, the problem remains open due to the
unbounded diffusivity in the SDEs. We show in this paper that it is possible to study
an approximate solution of the modified SDE for the latter case, which admits uniform-
in-time weak error bounds and can thus be used for investigating the long-term behavior
of SGD dynamics.

We concern ourselves in this paper with the problem of optimizing an empirical loss
function f :Rd→R

f (θ) =
1

Ns

Ns∑
i=1

`θ (zi,yi) (1.1)

where {(zi,yi)}Ns

i=1 are the training data (zi’s and yi’s are the data and labels, respec-
tively) and `θ (·,·) is the loss function with parameter θ to be learned. We will assume

local strong convexity for f through the individual loss functions {θ 7→ `θ (zi,yi)}Ns

i=1.
The true gradient of f takes the form

∇f (θ) =
1

Ns

Ns∑
i=1

∇θ`θ (zi,yi). (1.2)

The “stochastic gradient” considered in this paper are “mini-batches” subsampled from
the summands {∇θ`θ (zi,yi)} in (1.2), properly normalized so they provide an unbiased
estimate for the true gradient. More specifically, fix a batch size parameter B∈N,
1≤B≤Ns, and let ξ be a subset of B distinct elements uniformly sampled from the
integers {1,. ..,Ns} without replacement, we set

∇f (θ;ξ) :=
1

B

∑
j∈ξ

∇θ`θ (zj ,yj). (1.3)

Such constructed stochastic gradients are unbiased estimates of the true gradient in the
sense that Eξ [∇f (·;ξ)] =∇f .

Below, we will use x to mean the parameter θ and Xn to mean the discrete iterates
in SGD, as is standard in numerical analysis of SDEs. The notation “Ex” will be used
to mean expectation under the initial condition X(0) =x for SDE or X0 =x for the SGD
iterates. Also, Ξ will be used to denote the set of all possible values of ξ, and in the
situation described above, it is the set of all subsets of {1,2,. ..,Ns} with size B. The
iterative stochastic numerical scheme under consideration throughout this paper is

Xn+1 =Xn−η∇f (Xn;ξn), n= 0,1,. .. (1.4)

where η>0 is the constant step size and ∇f(·;ξn) is the stochastic gradient with ξn∈Ξ
being i.i.d.. We characterize the asymptotic distributional behavior of the iterates
{Xn}n≥0 as n approaches infinity, by adapting tools from backward error analysis of
stochastic numerical schemes [22–27] to modified SDEs arising from the diffusion approx-
imation [18–20]. So far, asymptotic analyses for the dynamics of (1.4) have been made
possible only through the Markov chain techniques [16, 17]. We also refer to [28, 29]
for some convergence analysis of stochastic gradient descent methods for continuous
time models. This paper is our first attempt at fully unleashing the rich and powerful
SDE techniques for studying stochastic numerical optimization schemes in large scale
statistical and machine learning.
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1.1. Main contribution: Long-time weak approximation for SGD via
SDE. The dynamics of discrete, iterative numerical algorithms can often be better
understood from their continuous time limit, typically described by ordinary differential
equations. This perspective has been proven fruitful in the analysis of many determin-
istic optimization algorithms [30–34]. An analogy of this type of continuous-time-limit
analysis for SGD algorithms is provided by the diffusion approximation [18,20]: in any
finite time interval, the distribution of Xn defined by the SGD dynamics (1.4) is close
to the distribution of the solution of the following SDE at time t=nη:

dX=−∇
[
f(X)+

1

4
η‖∇f(X)‖2

]
dt+

√
ηΣ(X)dW, (1.5)

where

Σ =Eξ [(∇f(·;ξ)−∇f)⊗(∇f(·;ξ)−∇f)]

is the covariance matrix of the random gradients, and W is the standard Brownian
motion [35]. In numerical SDE literature, SDE of type (1.5) is often referred to as the
stochastic modified equations; they play an important role in constructing high-order
numerical approximation schemes for invariant measures of ergodic SDEs (see, e.g.,
[24, 25]). In the context of data science, diffusion approximation has been used to gain
insights into online PCA [20], entropy-SGD [36, 37], and nonconvex optimization [21],
to name just a few.

Despite its effectiveness as a continuous analogy of stochastic numerical optimiza-
tion algorithms, the range of applicability of diffusion approximation is significantly
limited by its restricted validity in a finite time interval. In particular, this means that
the solution of the SDE (1.5) can be used to rigorously approximate only a finite number
(though very large) of SGD iterates (1.4), and thus can not be used in the same way as
Markov-chain-based theoretical analysis [16,38,39] to study the asymptotic behavior of
{Xn}n≥0 as n→∞. This paper aims at closing this theoretical gap by extending the
validity of diffusion approximation from finite- to infinite-time horizon. To the best of
our knowledge, this is the first work that studies the asymptotic distributional behavior
of SGD from an SDE perspective.

Our main technical contribution in this paper is to adopt the framework of weak
backward error analysis to the solution u=u(x,t) =Ex [ϕ(X(t))] of the following back-
ward Kolmogorov equation associated with SDE (1.5):

∂u

∂t
=−∇f ·∇u+η

(
−1

4
∇‖∇f‖2 ·∇u+

1

2
Tr
(
Σ∇2u

))
u(x,0) =ϕ(x)

(1.6)

where we recall that Ex stands for taking expectation under the initial condition
X(0) =x, Tr(A) stands for the trace of a square matrix A, Σ = Σ(x) is the covari-
ance matrix as in (1.5), and ∇u, ∇2u denote the gradient and Hessian of u=u(x,t)
with respect to the spatial variable x. The function ϕ :Rd→R is an arbitrary “observ-
able” of the stochastic dynamical system that characterizes properties of interest of the
iterates {Xn}n≥0. Weak error analysis concerns the behavior of {ϕ(Xn)}n≥0 for any
ϕ with sufficient regularity; for instance, by taking ϕ=f , we can study the asymptotic
oscillatory and/or concentration behavior of the objective values f (Xn) with respect to
the global minimum if standard convexity assumptions are imposed on f .

In a nutshell, backward error analysis is based on identifying the associated gener-
ator of a numerical scheme with the generator of a modified SDE, up to higher order
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terms in the powers of the step size η. This can be achieved, e.g., by formally expand-
ing the generator of the modified SDE into a power series of the step size, and then
determining the coefficients (which are functions of the space and time variables, but
not the step size η) of this power series using information from the numerical scheme;
it is then natural to expect that a proper truncation of this formal power series can be
used as a reasonable approximation for the iterates of the stochastic numerical scheme
(in the weak sense), even though the formal series may not converge (and thus the
solution of the SDE may not be a good approximation for the discrete iterates for all
time). As illustrated by many examples in the numerical analysis of ergodic SDEs (see,
e.g., [22–27] and the references therein), it turns out that the coefficient functions of the
formal power series capture—in a uniform-in-time fashion—the leading order behav-
ior of the discrete numerical scheme; this enables practitioners to draw conclusion on
the closeness between the invariant measure of the numerical scheme and the invariant
measure of the truncated formal series. In other words, though solutions of (1.6) can
not be used directly to capture the long-term behavior of SGD (1.4), we construct an
alternative, auxiliary function approximation of the solution of (1.6), which turns out to
be a superior weak approximation of (1.4) in the sense that the approximation error is
uniform-in-time and in higher powers of the step size η. The time-uniformity of such a
truncated formal series approximation enables us to study the asymptotic distributional
behavior of the iterates of (1.4), thus closing the gap in the theoretical analysis between
diffusion approximation and Markov-chain-based analysis. We provide an overview for
the main steps in our analysis in the next section.

1.2. Sketch of the main approach. We consider a formal expansion of the
solution u=u(x,t) =Ex [ϕ(X(t))] of (1.6) in a power series with respect to the step size
η>0:

u(x,t) =
∞∑
`=0

η`u` (x,t). (1.7)

For the ease of exposition, let us introduce short-hand notations L1,L2 for the differential
operators appearing in the right-hand side of (1.6):

L1 :=−∇f ·∇, L2 :=−1

4
∇‖∇f‖2 ·∇+

1

2
Tr
(
Σ∇2

)
(1.8)

with which (1.6) can be recast into

∂tu=L1u+ηL2u,

u(x,0) =ϕ(x).
(1.9)

Formally plugging (1.7) into (1.9) and equating terms corresponding to the same powers
of η, we can determine all coefficient functions un (x,t) from solving corresponding PDEs,
namely, for `= 0

∂tu0 =L1u0,

u0(x,0) =ϕ(x)
(1.10)

and for `≥1

∂tu`=L1u`+L2u`−1,

u`(x,0) = 0.
(1.11)
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Determining any u` can thus be done by inductively solving a sequence of first-order
PDEs (1.10)-(1.11). In fact, with some work we can establish exponential convergence
of each u` to its equilibrium state as t approaches infinity, provided that f is strongly
convex.

We then construct an approximation for u by truncating the formal series (1.7),
yielding

uN (x,t) =
N∑
`=0

η`u` (x,t). (1.12)

If the formal series (1.7) converges uniformly, uN is certainly a good approximation of
u up to an order O

(
ηN+1

)
error. The crux of our argument is that, even when the

convergence of (1.7) is not guaranteed, it turns out that we can still use
{
u1 (x,nη)

}
n≥0

as good approximation for {Ex [ϕ(Xn)]}n≥0 (recall that Ex represents the expectation

conditioned on the initial condition X0 =x); most notably, the O
(
η2
)

error in this ap-
proximation is bounded uniformly in n, allowing us to draw quantitative conclusions on
the asymptotic distributional behavior of Ex [ϕ(Xn)] from that of u1 (x,nη). Since u1

corresponds to a measure ν1 independent of the test function ϕ, our argument then jus-
tifies that the measure ν1 approximates the distribution of the SGD with second order
weak accuracy. It is very tempting to push this idea further by considering uN , N >1
in place of u1 and expecting it to better approximate Ex [ϕ(Xn)] up to higher orders of
error; however, our analysis indicates that in general

∣∣uN (x,nη)−Ex [ϕ(Xn)]
∣∣=O(η2

)
can no longer be improved by choosing N >1, even though uN could be a better ap-
proximation for the solution u of the backward Kolmogorov equation (1.6) when N >1.

The superior, uniform-in-time approximation of the truncated formal expansion to
Ex [ϕ(Xn)] is achieved by the fact that the coefficient functions u` are totally determined
by the local behavior of f and ϕ (i.e. behaviors on compact sets), whereas the solution
u of (1.6) depends on the global information and is thus harder to control. Due to
this locality, the local strong convexity of f then leads to the exponential decay of the
derivatives for the coefficient functions u`, which finally gives the uniform-in-time weak
approximation. This will become transparent after we establish Theorem 2.1. The
locality can be illustrated by a toy SDE example in one dimension with f (x) = 1

2x
2, and

Σ(x)≡1. Note that this SDE example is simply given to illustrate the roles of u` and
why they are local, while it is not necessarily the diffusion approximation of some SGD
iteration. In this example, SDE (1.5) corresponds to an Ornstein–Uhlenbeck process,
and the solution of (1.6) adopts the explicit integral representation

u(x,t) =
1√
2πS

∫
Rd

ϕ(w)exp

(
− (w−xe−(1+2η)t)2

2S

)
dw

=
1√
2π

∫
Rd

ϕ
(
xe−(1+2η)t+

√
Sy
)

exp(−y2/2)dy (1.13)

where

S=
η

2(1+2η)

(
1−e−2(1+2η)t

)
.

We can obtain a formal expansion of u(x,t) in terms of η using a Taylor expansion for
ϕ at xe−(1+2η)t in the integrand of (1.13). We keep 2m terms in the Taylor expansion
and note that all odd powers of

√
S vanish, which leads to the following expansion of
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error O
(
ηm+1

)
:

u(x,t) =
m∑
k=0

1

(2k)!
ϕ(2k)

(
xe−(1+2η)t

)
Sk · 1√

2π

∫
Rd

y2k exp(−y2/2)dy+O
(
ηm+1

)
.

The u`’s can then be obtained by further expanding the functions about η= 0 and
combining terms of equal powers. Clearly, such obtained u`’s in this expansion will
only depend on the derivatives of ϕ at xe−t; meaning that u`(x,t) only depends on the
behaviors of ϕ inside the ball with radius |x|, whereas for any x, u(x,t) depends on the
values of ϕ in the whole space. The formal series expansion is like the Taylor series
of the function u(x,t) with respect to η. As known, in general one can not expect the
Taylor series to converge to the original function unless the function is analytic, which
exactly resembles the difference between the solution of (1.6) and the truncated formal
series expansion (1.12): the latter maintains only the barely minimum local information
in the diffusion approximation for characterizing the asymptotic distributional behavior
of the dynamics of SGD (1.4).

Full details of our theoretical framework can be found in Section 2 and the appen-
dices.

1.3. Outline. In the remainder of this paper, we present our main theorems
and main proofs in Section 2, and validate our theory with numerical experiments in
Section 3. Technical lemmas and auxiliary results are deferred to the appendices. We
conclude this paper and propose future directions in Section 4.

2. Main results

We begin by stating the assumption that will be used throughout this paper (recall
that Ξ is the set of all possible values of the random parameters ξ).

Assumption 2.1. Without loss of generality, assume f has a local minimum at the
origin x∗= 0. Gradients of the random functions

{
f(·;ξ)∈C3(Rd) | ξ∈Ξ

}
provide unbi-

ased estimates for the gradient of f , i.e., Eξ [∇f (x;ξ)] =∇f (x) for all x∈Rd. Moreover,
we assume the following hold for the random functions. There exists R1>0 such that

(1) Each random function f (·;ξ) is γ-strongly convex in B(x∗,R1), i.e., f(·;ξ)− 1
2γ‖·‖

2

is convex for all ξ∈Ξ;

(2) The random gradients at x∗= 0 are bounded:

sup
ξ
‖∇f(0;ξ)‖≤ b<∞. (2.1)

for some b>0 and more over

R1>
16b

3γ
=:R0. (2.2)

Though our assumption on the individual f (·;ξ)’s appears to be strong, it is not
particularly restrictive for the most commonly encountered scenario of SGD applica-
tion where each random function f (·;ξ) is constructed from the same loss function
loss(yξ,g (zξ))≡ `θ(zξ,yξ), and the only source of randomness is in the random data
(zξ,yξ) sampled from an unknown data distribution. In this case, Assumption 2.1 can
be stated just once for the loss function, as done in [40]. Such an assumption on the
individual summands in the empirical loss function has also appeared previously in
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Markov-chain-based studies of stochastic gradient descent algorithms, e.g. Assump-
tion A4 in [16]. The boundedness assumption (2.1) is obviously satisfied if the loss
function `θ (zi,yi) is bounded at θ= 0 for all data (zi,yi).

In the remainder of this section, we divide our exposition of the main results into two
parts. Estimates establishing the exponential convergence of the coefficient functions
of the formal series expansion appear in Section 2.1, and their applications to studying
the asymptotic distributional behavior of SGD iterates appear in Section 2.2.

2.1. Formal series expansion. Under the local strong convexity assumption in
Assumption 2.1, the following two lemmas can be easily established. We defer the proofs
to Appendix A. In particular, the convergence in Wasserstein-2 distance in Lemma 2.2
is well-known (see, e.g., Proposition 1 in [16]); we include a simple proof in Appendix A
for completeness. In the rest of this paper, for any R>0, we denote B (0,R) for the
Euclidean ball of radius R centered at the origin (which is also the global minimum of
f by Assumption 2.1).

Lemma 2.1. Suppose Assumption 2.1 holds, and denote R0 = 16b/3γ. If R∈ (R0,R1],
set

η0 = min

{
1

2γ
,
3R

8b
,
3γR2/8−2bR

2γbR+b2

}
.

Then for any η≤η0 and X0 =x∈B(0,R), we have Xn∈B(0,R) for all n≥0. In other
words, under these assumptions the sequence generated by the SGD is uniformly bounded
in both n and ξ.

Lemma 2.2. Suppose Assumption 2.1 holds, and let µn denote the law of the
nth iterate Xn of SGD (1.4). Assume suppµ0⊂B(0,R) with R∈ (R0,R1] and denote
L= supξ sup‖x‖≤R‖∇2f(x;ξ)‖, where

∥∥∇2f (x;ξ)
∥∥ is the spectral norm (largest singular

value) of the Hessian matrix ∇2f (x;ξ). Then, when η is sufficiently small, µn converges
to a probability measure π under the Wasserstein-2 norm (W2-norm) at exponential rate

W2(µn,π)≤Cρn

for ρ= (1−2γη+η2L)1/2.

Remark 2.1. Clearly, for different local minima around which the loss functions are
locally strongly convex, the probability measure π will be different. Since the SDEs
in diffusion approximation have a nonzero transition probability connecting any two
points in space, the diffusion approximation cannot be uniform in time for such globally
nonconvex cases. Even for such globally nonconvex loss functions, our theory indicates
that the local information of diffusion approximation is enough to capture the long-time
behavior of SGD near the local minimum. To obtain global diffusion approximation for
such nonconvex cases, one has to modify the values of the loss function outside the
region where SGD can see.

We define the S(n) operator by

(S(n)ϕ)(x) :=Ex [ϕ(Xn)] =

∫
Rd

ϕ(y)µn(dy). (2.3)

Fixing any smooth test function ϕ, we denote

Un(x) :=S(n)ϕ(x). (2.4)
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We know from [20] that S is L∞-nonexpansive, and that {S(n)} is a semi-group gener-
ated by S such that

S(n) =Sn :=S ◦S ...◦S (n copies). (2.5)

Since convergence in Wasserstein distance implies weak convergence, Lemma 2.2
implies

lim
n→∞

Un=

∫
Rd

ϕdπ. (2.6)

However, this does not provide much precise and/or quantitative information regarding
how Un converges to

∫
Rdϕdπ. An important goal of this paper is to shed new lights

on the dynamics of µn as n→∞. Within the diffusion approximation framework, it
can be shown (see, e.g., [20]) that the semi-group evolution Un admits a weak second
order diffusion approximation over a finite time interval [0,T ], in the sense that for all
sufficiently smooth ϕ there holds

sup
n≤T/η

‖Un (·)−u(·,nη)‖L∞ ≤C(T,ϕ,η0)η2 (2.7)

for all η≤η0, where η0>0 is a constant, and u(x,t) =Ex [ϕ(X(t))] is the solution of
the backward Kolmogorov Equation (1.6). Roughly speaking, SDE (1.5) can be re-
garded as the weak approximation of the SGD (1.4) over any finite time interval [0,T ].
Unfortunately, the validity of this approximation for infinite time (T→∞) is unclear.
For nonconvex objective functions, it is known that the approximation can break down
quickly as T→∞. One obvious example is the situation described in Remark 2.1. For
globally and strongly convex objective functions (which generate confining dynamics
for SGD, according to Lemma 2.1), the validity of long-time diffusion approximation
is still in doubt due to the unboundedness diffusivity encoded in Σ. As motivated in
Section 1.2, we will switch gears and use a truncated formal series (1.12) in place of the
solution u of (1.6) to approximate Un, for all arbitrarily large n≥0.

Before stating the main technical result concerning the exponential convergence of
the u`’s in the formal asymptotic expansion, we introduce another notation to simplify
the exposition and proof: denote

Ik ={J = (j1,j2,. ..,jk) : 1≤ jk≤d}.

For J ∈ Ik, we denote

∂Ju :=∂j1 .. .∂jku.

We write J0≤J if ∂Ju is a partial derivative of ∂J0u, and J1 =J−J0 if ∂J =∂J0∂J1 .

Remark 2.2. The reason that we adopt the notation ∂J instead of the standard
multi-index notation ∂α where α= (α1,. ..,αd) with α1 + .. .+αd=k is mainly for the
sake of clarity and simplicity of exposition. First, this convention is widely used for
tensor analysis in physics and engineering. More importantly, in Appendix B where we
prove Theorem 2.1,

∑
J∈In+1

∂t(∂
Ju)2 naturally has a quadratic form associated with

the Hessian matrix ∇2f so that we can make use of the strong convexity. If we use ∂α

notation, we will have to multiply some weight factors wα such that
∑
|α|=kwα∂t(∂

αu)2

has the desired quadratic form.
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We are now ready to present our main estimates for the exponential rate of decay
for the coefficient functions in the formal series expansion (1.7). We will use P to denote
a generic polynomial whose concrete form may change from line to line. The number
of arguments for the polynomials will also be clear in the context, which we will not
emphasize.

Theorem 2.1. Assume Assumption 2.1 holds, η≤η0 and R∈ (R0,R1], for R0>0,
R1>0 and η0>0 defined as in Lemma 2.1. Recall that x∗= 0 is the unique minimum
of f .

(i) For an arbitrary test function ϕ∈C1(Rd), u0 satisfies

sup
x∈B(0,R)

|u0(x,t)−ϕ(0)|≤R‖ϕ‖C1(B(0,R))e
−γt. (2.8)

In addition, if ϕ∈Ck (B (0,R)) and f ∈Ck+1 (B (0,R)) for some integer k≥1, then

sup
J∈Ik

sup
x∈B(0,R)

|∂Ju0(x,t)|≤P
(
‖ϕ‖Ck(B(0,R)),‖f‖Ck+1(B(0,R))

)
e−γt. (2.9)

(ii) For any n≥1, if the test function ϕ∈C2n+1 (B (0,R)) and f ∈C2n+2 (B (0,R)),
then for any γ′<γ,

sup
x∈B(0,R)

|un(x,t)−ϕn|

≤P
(
‖ϕ‖C2n+1(B(0,R)),‖f‖C2n+2(B(0,R)),‖Σ‖C2n−1(B(0,R))

)
e−γ

′t, (2.10)

where

ϕn :=

∫ ∞
0

L2un−1(0,s)ds. (2.11)

In addition, if ϕ∈Ck+2n (B (0,R)) and f ∈Ck+1+2n (B (0,R)) for some k≥1, then
for any γ′′<γ,

sup
J∈Ik

sup
x∈B(0,R)

|∂Jun(x,t)|

≤P
(
‖ϕ‖Ck+2n(B(0,R)),‖f‖Ck+1+2n(B(0,R)),‖Σ‖Ck+2n−2(B(0,R))

)
e−γ

′′t. (2.12)

The proof of Theorem 2.1 is quite technical; we defer full details to Appendix B.
We state an immediate corollary of Theorem 2.1 to close this subsection.

Corollary 2.1. Under the same assumptions as in Theorem 2.1, the truncated
formal series uN defined in (1.12) “approximately satisfies” the backward Equation (1.6)
in the sense that

∂tu
N = (L1 +ηL2)uN −ηN+1L2uN . (2.13)

Consequently, if ϕ∈C2k+2N (B (0,R)) and f ∈C2k+1+2N (B (0,R)) for some k≥1, we
have

sup
x∈B(0,R)

|∂kt uN −(L1 +ηL2)kuN |≤C(N,R)e−γt/2ηN+1 (2.14)
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where C(N,R) =QN,k

(
‖ϕ‖C2k+2N (B(0,R)),‖f‖C2k+1+2N (B(0,R)),‖Σ‖C2k(B(0,R))

)
for some

polynomial QN,k.

It is clear from Theorem 2.1 that all the coefficient functions un(x,t) depend only
on the information of f and Σ inside the ball B(0,‖x‖), in the sense that the bound does
not change if we modify the values of ϕ, f , and a outside B(0,‖x‖). Thus un reflects
the “local information” of u. This is in stark contrast with the solution of (1.6) at x,
which inevitably depends on the values of ϕ outside B(0,‖x‖) due to the parabolicity
of the second order PDE (1.6). As explained in Section 1.2, this is due to the fact that
the un (x,t)’s are essentially the “Taylor expansion coefficients” of u with respect to
the step size. This is also the reason that we referred to (1.7) as only a formal series
expansion: in general the Taylor series need not converge to the original function. See
also the Ornstein–Uhlenbeck process example in Section 1.2 for a concrete example.

2.2. Dynamics of SGD with constant step size. In this subsection we
apply the results from Section 2.1 to study the asymptotic distributional behavior of
the SGD dynamics (1.4). Throughout the rest of this subsection, we always assume
that X0∈B(0,R) and R satisfies the condition of Lemma 2.1. The confining nature of
the dynamics allows us to choose very general functions as test functions, e.g., smooth
functions that grow exponentially as ‖x‖→∞, for the weak approximation results to
hold. This is because we can always modify the part of the test function outside of
B(0,R). More precisely, we have

Lemma 2.3. Under Assumption 2.1, given any test function ϕ∈Ck(Rd) for some
k∈N, we can choose ϕ̃∈Ck

(
Rd
)

compactly supported such that

‖ϕ̃‖Ck(Rd)≤C‖ϕ‖Ck(B(0,R))

and

Ex [ϕ(Xn)] =Ex [ϕ̃(Xn)], ∀x∈B(0,R).

Similarly, in the formal series expansion (1.7) for the diffusion approximation, replacing
ϕ with ϕ̃ does not change any of the coefficient functions u`(x,t),x∈B(0,R),`≥0.

Lemma 2.3 is a simple consequence of transport Equations (1.10)-(1.11). Notably,
we emphasize again that the locality of the coefficient functions u` (x,t) is in stark
contrast with the solution of the backward Kolmogorov Equation (1.6), since (1.6) has
diffusion effects which are global. Lemma 2.3 indicates we can focus on test functions
compactly supported near the local minimum we care about. The main result of this
paper is the following.

Theorem 2.2. Assume Assumption 2.1 holds, η≤η0 and R∈ (R0,R1], for R0>0,
R1>0 and η0>0 defined as in Lemma 2.1. If f(·;ξ)∈C7 (B (0,R)) and ϕ∈C6 (B (0,R)),
then u1 =u0 +ηu1 approximates the dynamics of SGD (1.4) with weak second order, in
the sense that there exists a positive constant C (ϕ,f,R) independent of n such that

sup
x∈B(0,R)

|Ex [ϕ(Xn)]−u1(x,nη)|≤C(ϕ,f,R)η2. (2.15)

Proof. By Lemma 2.3, we can assume without loss of generality that ϕ is com-
pactly supported and ‖ϕ‖Ck(Rd)≤Ck‖ϕ‖Ck(B(0,R)) for sufficiently large k. Let us recall
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the notation Un(x) =Ex [ϕ(Xn)] and that S :L∞
(
Rd
)
→L∞

(
Rd
)

forms the semi-group

S(n) =Sn. Thus,

Un+1(x) =E(Un(x−η∇f(x;ξ))) :=SUn(x).

Noticing that Un(x) =Snϕ(x) and ϕ(x) =uN (x,0), by a telescoping sum we have

Un(x)−uN (x,nη) =
n∑
j=1

Sn−j(SuN (x,(j−1)η)−uN (x,jη)).

By the fact that S is L∞ nonexpansive,

|Un(x)−uN (x,nη)|≤
n∑
j=1

‖SuN (x,(j−1)η)−uN (x,jη)‖L∞ . (2.16)

We fix N = 1 and for the sake of convenience, we introduce

tj := jη. (2.17)

By Corollary 2.1, it holds for t∈ [tj−1,tj ] that

u1(x,t) =u1(x,tj−1)+

∫ t

tj−1

(L1 +ηL2)u1(x,s)ds−η2

∫ t

tj−1

L2u1(x,s)ds. (2.18)

Substituting this expression of u1 into the right-hand side (and repeatedly for some
terms), one has

u1(x,t) =u1(x,tj−1)+(t− tn)L1u
1(x,tj−1)+η(t− tn)L2u

1(x,tj−1)

+
1

2
(t− tn)2L2

1u
1(x,tj−1)+η

∫ t

tj−1

∫ s

tj−1

(L2(L1 +ηL2)+L1L2)u1(x,τ)dτds

+

∫ t

tj−1

∫ s

tj−1

∫ τ

tj−1

L2
1(L1 +ηL2)u1dzdτds−η2

∫ t

tj−1

L2u1ds

−η2

∫ t

tj−1

∫ s

tj−1

(L1 +ηL2)L2u1dτds−η2

∫ t

tj−1

∫ s

tj−1

∫ τ

tj−1

L2
1L2u1dzdτds. (2.19)

Hence,∣∣∣u1(x,jη)−u1(x,(j−1)η)−η(L1 +ηL2)u1(x,(j−1)η)− η
2

2
L2

1u
1(x,(j−1)η)

∣∣∣
≤Cη3 sup

t∈[tj−1,tj ]

(
4∑
I=1

sup
x∈B(0,R)

(|∂Iu1|+ |∂Iu1|)

)
. (2.20)

By Theorem 2.1,∣∣∣u1(x,jη)−u1(x,(j−1)η)−η(L1 +ηL2)u1(x,(j−1)η)− η
2

2
L2

1u
1(x,(j−1)η)

∣∣∣
≤C(f,ϕ,R)η3e−γ(j−1)η/2. (2.21)
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In the meanwhile, applying Taylor expansion to
Su1(x,(j−1)η) =E

[
u1(x−η∇f(x,ξ)),(j−1)η

]
and applying Theorem 2.1 gives∣∣∣Su1(x,(j−1)η)−u1(x,(j−1)η)−η(L1 +ηL2)u1(x,(j−1)η)− η

2

2
L1u

1(x,(j−1)η)
∣∣∣

≤C(f,ϕ,R)η3e−γ(j−1)η/2. (2.22)

Combining (2.21) and (2.22), we have

|Su1(x,(j−1)η)−u1(x,jη)|≤C(f,ϕ,R)η3e−γ(j−1)η/2

and thus the right-hand size of (2.16) can be further bounded by

|Un(x)−u1(x,nη)|≤C(f,ϕ,R)η2

for some positive constant C(f,ϕ,R) independent of n. This completes the proof.

The key contribution of Theorem 2.2 is the extension of the range of applicability
of diffusion approximation (2.7) from finite time interval [0,T ] to infinite time. A di-
rect consequence is the following description of the “weak expansion” of the stationary
distribution of the dynamics (1.4).

Corollary 2.2. Under the same conditions as in Theorem 2.2, we have for all
n& 1

η log(1/η) that

sup
x∈B(0,R)

|Exϕ(Xn)−ϕ(0)|= sup
x∈B(0,R)

|Un(x)−ϕ(0)|≤C(ϕ,f,R)η

for some positive constant C (ϕ,f,R). Moreover, the probability measure in Lemma 2.2
satisfies ∣∣∣∣∫

Rd

ϕdπ−ϕ(0)−ηϕ1

∣∣∣∣≤Cη2,

where ϕ1 = limt→∞u1(x,t) =
∫∞

0
L2u0(0,s)ds is independent of x.

The conclusion follows immediately from noting that, for n&η−1 log(η−1),

|u1(x,nη)−ϕ(0)|= |u0(x,nη)+ηu1(x,nη)−ϕ(0)|≤C(f,ϕ,R)η.

In particular, if we choose ϕ=f , Corollary 2.2 tells us that SGD descends the value of
a strongly convex objective function to an O(η) neighborhood of the global minimum
in only O

(
η−1 log(η−1)

)
time. Measured in the time scale of diffusion approximation,

where t=nη in u1 (x,nη), this is equivalent to saying that the SGD dynamics reduces the
objective value to O(η) away from the global minimum within time nη=O(log(1/η)),
which is exponentially fast, as well known.

At last, we remark that if X0 starts with a measure µ0 instead of X0 =x, then∫
(u0 +ηu1)(t,x)µ0(dx) will approximate Eϕ(Xn) uniformly in time. We may further

rewrite the quantity as∫
Rd

(u0(x,t)+ηu1(x,t))µ0(dx) =

∫
Rd

ϕ(x)(ν0(dx)+ην1(dx)), (2.23)

with ν0,ν1 respectively satisfying (see Appendix C for a formal derivation):

∂tν0−∇·(∇fν0) = 0, ν0(0) =µ0, (2.24)
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and

∂tν1−∇·(∇fν1) =
1

4
∇·(∇‖∇f‖2ν0)+

1

2
∂ij(Σijν0), ν1(0) = 0. (2.25)

Theorem 2.2 then implies that ν1 :=ν0 +ην1 or ν0+ην1
M(ν0+ην1) approximates the distribution

of Xn with second weak order, where M(ν) means the total mass of ν:

M(ν) :=

∫
Rd

dν.

Remark 2.3. The weak order of approximation O
(
η2
)

in Theorem 2.2 is optimal in
the sense that no higher order approximation error can be achieved by choosing N >1 in
(1.12), although the formal truncated series uN may better approximate the Kolmogorov
Equation (1.6). This is because the diffusion approximation itself is only a weak second
order approximation for SGD [20, Theorem 2.2]. Higher order approximation for the
SGD dynamics requires higher derivatives of u in the PDE (1.6), but it no longer
describes a diffusion process (solutions of Itô equations).

3. Numerical experiments
In this section we demonstrate the approximation power of the truncated formal

series (1.12) with numerical experiments for some one-dimensional (d= 1) examples. We
consider SGD schemes

f (x;ξ) =f (x)+
ξ

2
x, x∈R (3.1)

where f :R→R is locally strongly convex near one of its local minima, and ξ is a
Rademacher random variable that assigns equal probability 1/2 to both −1 and +1.
Following the definitions in (1.8), we have explicitly

L1 =−f ′ (x)∂x, L2 =−1

2
f ′ (x)f ′′ (x)∂x+

1

8
∂2
x. (3.2)

The first two terms in the formal series expansion (1.7) can be determined by solving
the two first order PDEs sequentially: First solve

∂tu0 +f ′ (x)∂xu0 (x,t) = 0

u0(x,0) =ϕ(x)
(3.3)

to get

u0 (x,t) =ϕ(x0 (x,t)), (3.4)

where x0 (x,t) is the intercept of the characteristic line passing through (x,t)∈R×R+.
We then use (3.4) to solve

∂tu1 +f ′ (x)∂xu1 (x,t) =−1

2
f ′ (x)f ′′ (x)∂xu0 +

1

8
∂2
xu0

u1(x,0) = 0
(3.5)

which gives

u1 (x,t) =− 1

2
f ′ (x0 (x,t))ϕ′ (x0 (x,t))log

f ′ (x)

f ′ (x0 (x,t))
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+
1

8
f ′ (x0 (x,t))f

′′ (x0 (x,t))ϕ
′ (x0 (x,t))

∫ x

x0(x,t)

dξ

[f ′ (ξ)]
3

− 1

16
f ′ (x0 (x,t))ϕ

′ (x0 (x,t))

{
1

[f ′ (x0 (x,t))]
2 −

1

[f ′ (x)]
2

}

+
1

8
[f ′ (x0 (x,t))]

2
ϕ′′ (x0 (x,t))

∫ x

x0(x,t)

dξ

[f ′ (ξ)]
3 . (3.6)

Details of this computation can be found in Appendix D.

Example 3.1. We consider a simple example

f (x)=
1

2
x2− 1

2
x. (3.7)

The stochastic gradient updates are

Xn+1=Xn−η∇f (Xn;ξn)=(1−η)Xn−
η

2
(1−ξn)

where {ξn}n≥0 are i.i.d. standard Rademacher random variables. The limiting distri-

bution of this Markov chain is identical to that of X∞=η
∑∞

j=0θj (1−η)
j
where the

θj’s are i.i.d. Bernoulli(1/2) random variables. The infinite series converges whenever
η∈ (0,1), but the stationary distribution is drastically different for different values of
η [41, §2.5]: If η=1/2, X∞ is uniformly distributed on [0,1]; if 1/2<η<1, the distri-
bution of X∞ is singular (supported on a set of Lebesgue measure 0); if 0<η<1/2, for
some values of η the stationary distribution is singular, but it has also been established
that for almost all η∈ (0,1/2) the stationary distribution is absolutely continuous. We
are most interested in the regime η∈ (0,1/2) where η is small.

We choose several different test functions ϕ to verify the order of the weak approxi-
mation error between Un (x)=Ex [ϕ(Xn)] and u1=u0+ηu1 established in Theorem 2.2.
The results are summarized in Figure 3.1 and Figure 3.2.

2-4 2-3 2-2 2-1 20

10-2

10-1

100

2-4 2-3 2-2 2-1 20
10-1

100

101

102

Fig. 3.1. Log-log plots numerically verifying the weak second order diffusion approximation estab-
lished in Theorem 2.2, using example (3.7) and two different test functions ϕ. For each ϕ, we fix x=1
and nη=5, then let η vary in {2−4,2−3,2−2,2−1,20}. We use a Monte–Carlo simulation to evaluate
Un (x)=Ex [ϕ(Xn)], by averaging ϕ(Xn) over 108 independent trajectories starting from X0=x. The
slopes of the fitting lines are close to 2, which justify the second order approximation established in
Theorem 2.2.

Example 3.2. We now consider a more complicated example in which the gradient ∇f
is nonlinear. Set

f (x)=
1

2
x2+0.1x3 (3.8)
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Fig. 3.2. Visual comparison of u1 (x,nη) and Un (x) for ϕ(x)=sin(x) over (x,t)∈ [−4,4]× [0,2],
with η=0.01. Each Un (x) is evaluated over 104 independent trajectories generated from the gradient
dynamics associated with (3.7).
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Fig. 3.3. Log-log plots numerically verifying the weak second order diffusion approximation estab-
lished in Theorem 2.2, using example (3.8) and two different test functions ϕ. For each ϕ, we fix x=1
and nη=5, then let η vary in {2−4,2−3,2−2,2−1,20}. We use a Monte–Carlo simulation to evaluate
Un (x)=Ex [ϕ(Xn)], by averaging ϕ(Xn) over 108 independent trajectories starting from X0=x. The
slopes of the fitting lines are close to 2, which justify the second order approximation established in
Theorem 2.2.

and the stochastic gradient updates can be written as

Xn+1=Xn−η∇f (Xn;ξn)=(1−η)Xn−0.3ηX2
n−

η

2
ξ

where {ξn}n≥0 are i.i.d. standard Rademacher random variables. We choose the same
test functions ϕ as in Example 3.1. The results are summarized in Figure 3.3.

4. Conclusion
In this paper, we establish uniform-in-time weak error bounds for diffusion approxi-

mation of SGD algorithms, under the local strong convexity assumption for the objective
functions. To this end, we adapted the idea of backward error analysis in numerical
SDEs, and used a truncated formal series expansion with respect to the constant step
size for the backward Kolmogorov equation associated with the modified SDE—instead
of the solution itself—to approximate the SGD iterates for arbitrarily long time. This
enables us to draw quantitative conclusions for the weak asymptotic behavior of the
SGD iterates from estimates of the coefficient functions of the truncated formal ex-
pansion, which is the first result of this type for diffusion-approximation-based SGD
analysis. We believe the tools developed in this paper have great potential in gener-
alizing the range of applicability of diffusion approximation to many other stochastic
optimization algorithms in data science, such as SGD with non-constant step size and
momentum-based acceleration techniques.
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Appendix A. Proofs of technical lemmas in Section 2.1.
Proof. (Proof of Lemma 2.1.) By (1.4), we have

‖Xn+1‖2 =‖Xn‖2−2η (∇f(Xn;ξ)−∇f(0;ξ)) ·Xn+η2‖∇f(Xn;ξ)‖2−2η∇f(0;ξ) ·Xn

≤‖Xn‖2−2γη‖Xn‖2 +η2(b+γ|Xn|)2−2η∇f(0;ξ) ·Xn, (A.1)

where we applied the strong convexity of f(·;ξ) in the last inequality and the fact that

|∇f(Xn;ξn)|≤ |∇f(0;ξn)|+γ|Xn|≤ b+γ|Xn|.

When ‖Xn‖≤ R
2 , (A.1) can be further controlled by

‖Xn+1‖2≤ (1−2γη)
R2

4
+η2b2 +η2γbR+η2 γ

2R2

4
+ηbR.

Noting that − 1
2γηR

2 +η2 γ
2R2

4 ≤− 3
8γηR

2, we find

‖Xn+1‖2≤
R2

4
+γηR(−3R

8
+ηb)+ηb(ηb+R)

≤ R
2

4
+

3R

8
∗ 11R

8
<R2.

When R
2 ≤|Xn|≤R, we have

‖Xn+1‖2≤‖Xn‖2 +(−2γη+η2γ2) · R
2

4
+2γbRη2 +η2b2 +2ηbR

≤‖Xn‖2 +(2b− 3γR2

8
)η+η2(2γbR+b2)≤|Xn|2.

Thus the conclusion follows.

Proof. (Proof of Lemma 2.2.) Consider two copies of the chain

Yn+1 =Yn−η∇f(Yn;ξn), Zn+1 =Zn−η∇f(Zn;ξn). (A.2)

The two chains are coupled through the random variable ξn. This means that they pick
the same function to compute the gradient at every iteration n. Meanwhile, each chain
has the same asymptotic distributional behavior as the SGD. We then have

E‖Yn+1−Zn+1‖2 =E‖Yn−Zn‖2−2ηE[(Yn−Zn) ·(∇f(Yn,ξn)−∇f(Zn,ξn))]

+η2E‖∇f(Yn,ξn)−∇f(Zn,ξn)‖2 .

For the second term, we use conditional expectation to deduce that

E[(Yn−Zn) ·(∇f(Yn,ξn)−∇f(Zn,ξn))]

=E[(Yn−Zn) ·E[∇f(Yn,ξn)−∇f(Zn,ξn)|Ym,Zm,m≤n]]

=E[(Yn−Zn) ·(∇f(Yn)−∇f(Zn))]≥γE‖Yn−Zn‖2 .
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The last term is upper bounded by

η2E‖∇f(Yn,ξn)−∇f(Zn,ξn)‖2≤η2L2E|Yn−Zn|2.

Therefore, it follows that

E‖Yn+1−Zn+1‖2≤ (1−2γη+η2L2)E‖Yn−Zn‖2 .

Now, if η<2γ/L2, then 0<1−2γη+η2L2<1. We claim that under this choice of η,
the law of Xn is a Cauchy sequence under the W2 norm. In fact, for any ε>0, we can
pick m>0 such that (2R)2(1−2γη+η2L2)m<ε2/4. For n≥m, we pick Y0 to have the
same distribution as X0 and Z0 to have the same distribution as Xn−m. Then, Ym has
the same distribution as Xm while Zm has the same distribution as Xn. Moreover,

E‖Ym−Zm‖2≤ (1−2γη+η2L2)mE‖Y0−Z0‖2<ε2/4. (A.3)

It follows that (
E‖Ym−Zm‖2

)1/2

<ε/2.

We recall that the Wasserstein-2 distance is given by

W2(µ,ν) =

(
inf

γ∈Π(µ,ν)

∫
Rd×Rd

|x−y|2dγ
)1/2

, (A.4)

where Π(µ,ν) means the set of all the joint distributions γ whose marginal distributions
are µ and ν respectively. Since the joint distribution of (Ym,Zm) is in Π(µn,µm), one
finds W2(µn,µm)<ε/2. This means that µn is a Cauchy sequence, and it holds for some
probability distribution π that

lim
n→∞

W2(µn,π) = 0.

Finally, we obtain from (A.3) that

W2(µn,µm)≤ (1−2γη+η2L2)m/2
√
E‖Y0−Z0‖2≤C(1−2γη+η2L)m/2,

where C is independent of m,n (the second moment of Xn−m is uniformly bounded).
The conclusion follows from taking the limit n→∞.

Appendix B. Proof of the exponential decay estimates.
Proof. (Proof of Theorem 2.1.) The genesis of the exponential decay rates of

the u`’s can be traced back to the following simple yet important observation: Suppose
y(t) satisfies

ẏ=−∇f(y) (B.1)

with y(0) =x, then ‖y(t)‖ is a non-increasing function and

‖y(t)‖≤‖y(0)‖e−γt. (B.2)

We now begin our proof. First by the method of characteristics [42, Theorem 5.34],
one notices that u0 satisfies

∂tu0 +∇f(x) ·∇u0 = 0, (B.3)
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u0(x,0) =ϕ(x). (B.4)

Let y be the function in (B.1) with y(0) =x∈B(0,R). And for any given T >0, t∈ [0,T ],
define z(t) :=y(T − t). Then it follows that

u0(z(t),t) =ϕ(z(0)), ∀t∈ [0,T ].

Consequently, we have u0(x,t) =ϕ(y(t)), ∀t>0. Hence,

|u0(x,t)−ϕ(0)|≤‖∇ϕ‖L∞(B(0,R))|y(t)|≤R‖ϕ‖C1(B(0,R))e
−γt.

For the estimate of derivatives, we use induction. When k= 1, following from Equa-
tions (B.3) and (B.4), we have

∂t‖∇u0‖2 =−2∇u0 ·∇2f ·∇u0−∇f ·∇‖∇u0‖2 and ‖∇u0(x,0)‖2 =‖∇φ(x)‖2 .

Since f is strongly convex,

∂t‖∇u0‖2≤−2γ‖∇u0‖2−∇f ·∇‖∇u0‖2 . (B.5)

Recall y(t) which was defined in equation (B.1) and z(t) =y(T − t). By chain rule,
equation (B.5) yields that d

dt‖∇u0(z(t),t)‖2≤−2γ‖∇u0(z(t),t)‖2, which by Grönwall’s
inequality further yields

‖∇u0(z(t),t)‖≤e−γt‖∇u0(z(0),0)‖≤e−γt‖∇ϕ(z(0))‖, ∀t∈ [0,T ].

This then yields

‖∇u0(x,t)‖≤e−γt‖∇ϕ(y(t))‖≤‖∇ϕ‖L∞(B(0,R))e
−γt

≤‖ϕ‖C1(B(0,R))e
−γt, ∀t>0,x∈B(0,R).

Hence inequality (2.9) is verified for k= 1. By induction, we assume for any k≤m,
inequality (2.9) holds. Next we study the case for k=m+1. For J ∈ Im+1, we differen-
tiate equation (B.3) by ∂J and get ∂t∂

Ju0 +∂J(∇f ·∇u0) = 0. Then multiplying both
sides by ∂Ju0 and summing over all J ∈ Im+1 gives

∂tv=−2
∑

J∈Im+1

d∑
i=1

∂Ju0∂
J(∂if∂iu0),

where v=
∑
J∈Im+1

(∂Ju0)2. We note that the right-hand side can be splitted into the
sum of three terms according to the general Leibniz rule in calculus. And then the
above equation becomes

∂tv≤−2(n+1)γv−∇f ·∇v−2
d∑
i=1

∑
J∈Im+1

∂Ju0

∑
J0≤J,|J0|≥2

∂J0∂if∂
J−J0∂iu0. (B.6)

Here is a brief explanation of the above inequality (B.6). For k∈{1,·· · ,m+1}, jk ∈
{1,·· · ,d}, putting the first order derivative ∂jk on ∂if and ∂J−{jk} on ∂iu0, we would
obtain

−2
∑

J∈Im+1

m+1∑
k=1

d∑
i,jk=1

∂Ju0∂jk∂if∂
J−{jk}∂iu0,
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which is a quadratic form associated with the Hessian matrix ∇2f . This also explains
why we do not use the traditional definition of multi-index in our paper (the question
related to Remark 2.2). By the strong convexity of f , the above term is bounded above
by

−2
∑

J∈Im+1

m+1∑
k=1

d∑
i,jk=1

γ(∂J−{jk}∂iu0)2,

which can be further bounded above by −2(m+1)γv. Putting all the J th derivatives on
∂iu0 yields the second term −∇f ·∇v. For the third term, we only need to consider the
remaining terms due to the Leibniz rule. Hence the validity of (B.6) has been proved.

For the last term in (B.6), we use Young’s inequality and the induction assumption,
then derive that

∂tv≤−2mγv−∇f ·∇v+P
(
‖ϕ‖Cm(B(0,R)),‖f‖Cm+2(B(0,R))

)
e−2γt.

We also note that |v(x,0)|≤‖ϕ‖Cm+1(B(0,R)), for x∈B(0,R). Hence we get

v(z(t),t)≤P
(
‖ϕ‖Cm+1(B(0,R)),‖f‖Cm+2(B(0,R))

)
e−2γt, ∀t∈ [0,T ].

This then gives

v(x,t)≤P
(
‖ϕ‖Cm+1(B(0,R)),‖f‖Cm+2(B(0,R))

)
e−2γt, ∀t>0.

Hence result (2.9) is proved.
Now we start to study un. The equation which un satisfies is the following

∂tun+∇f ·∇un=L2un−1,

un(x,0) = 0.

Based on this, we could write down a formula for un,

un(x,t) =

∫ t

0

L2un−1(y(s),t−s)ds. (B.7)

Here we recall that y satisfies Equations (B.1) with y(0) =x∈B(0,R) and thus (B.2).
Consider n= 1. For convenience, we denote

g(x,t) =L2u0(x,t).

Intuitively, the limiting behavior of u1(x,t) is determined by g(0,t). We now verify this.
Recalling the definition of the operator L2 (1.8), we have

sup
x∈B(0,R)

(|g(x,t)|+ |∇g(x,t)|)≤C
(
‖f‖C3(B(0,R)) +‖Σ‖C1(B(0,R))

)
‖u0‖C3(B(0,R))

≤P
(
‖ϕ‖C3(B(0,R)),‖f‖C4(B(0,R)),‖Σ‖C1(B(0,R))

)
e−γt,

(B.8)

where the last inequality followed from (2.9). It follows that supx∈B(0,R) |u1(x,t)| is
uniformly bounded in t. Moreover, we further split u1 as

u1(x,t) =

∫ t

0

g(0,t−s)ds+

∫ t

0

(g(y(s),t−s)−g(0,t−s))ds. (B.9)
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The second term is controlled directly by (B.8) as∣∣∣∣∫ t

0

(g(y(s),t−s)−g(0,t−s))ds
∣∣∣∣≤∫ t

0

‖∇g(·,t−s)‖L∞(B(0,R))|y(s)|ds

≤C
∫ t

0

e−γ(t−s)e−γsds

=Cte−γt≤Ce−γ
′t,

where C=P
(
‖ϕ‖C3(B(0,R)),‖f‖C4(B(0,R)),‖Σ‖C1(B(0,R))

)
for some polynomial P and

the last inequality followed from te−γt≤C(γ′)e−γ
′t for any γ′<γ.

Regarding the first term in (B.8), we know that it converges to

ϕ1 =

∫ ∞
0

g(0,s)ds,

with the exponential rate. Hence, overall, we have

|u1(x,t)−ϕ1|≤P
(
‖ϕ‖C3(B(0,R)),‖f‖C4(B(0,R)),‖Σ‖C1(B(0,R))

)
e−γ

′t. (B.10)

For the derivatives of u1, we notice that

∂t‖∇u1‖2 =−2∇u1 ·∇2f ·∇u1−∇f ·∇‖∇u1‖2 +2
d∑
j=1

∂ju1∂j(L2u0). (B.11)

Also we notice that

sup
x∈B(0,R)

|∂j(L2u0(x,t))|≤C
(
‖f‖C3(B(0,R)) +‖Σ‖C1(B(0,R))

)
‖u0‖C3(B(0,R)).

We use this in (B.11), and for the first term we use strong convexity of f as well, then
get

∂t‖∇u1‖2≤−2γ‖∇u1‖2−∇f ·∇‖∇u1‖2

+2
d∑
j=1

|∂ju1| P
(
‖ϕ‖C3(B(0,R)),‖f‖C4(B(0,R)),‖Σ‖C1(B(0,R))

)
e−γt.

We then apply Young’s inequality to further get that, for any γ′′<γ, there exists a
polynomial P in ‖ϕ‖C3(B(0,R)), ‖f‖C4(B(0,R)) and ‖Σ‖C1(B(0,R)) such that

∂t‖∇u1‖2≤−2γ′′‖∇u1‖2−∇f ·∇‖∇u1‖2

+P
(
‖ϕ‖C3(B(0,R)),‖f‖C4(B(0,R)),‖Σ‖C1(B(0,R))

)
e−2γt.

Hence it holds that

sup
x∈B(0,R)

‖∇u1(x,t)‖≤P
(
‖ϕ‖C3(B(0,R)),‖f‖C4 ,‖Σ‖C1(B(0,R))

)
e−γ

′′t. (B.12)

For the higher derivatives of u1, the analysis goes similarly as that of u0. We also
use induction here. Assume for any k≤m, (2.12) holds. For k=m+1, we denote
w=

∑
J∈Im+1

(∂Ju1)2 and get

∂tw≤−2(m+1)γw−∇f ·∇w−2
d∑
i=1

∑
J∈Im+1

∂Ju1

∑
J0≤J,|J0|≥2

∂J0∂if∂
J−J0∂iu1
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+2
∑

J∈Im+1

(∂Ju1)∂J
(
L2u0

)
≤−2γw−∇f ·∇w+P

(
‖ϕ‖Cm+3(B(0,R)),‖f‖Cm+4(B(0,R)),‖Σ‖Cm+1B(0,R)

)
e−2γ′′t.

From this we get

sup
x∈B(0,R)

w(x,t)≤P
(
‖ϕ‖Cm+3(B(0,R)),‖f‖Cm+4(B(0,R)),‖Σ‖Cm+1(B(0,R))

)
e−2γ′′t.

This shows that (2.12) is true for n= 1, k=m+1. Hence (2.12) holds for all derivatives
of u1.

The analysis for n≥2 is similar to the case n= 1 and can be performed using
induction. This completes the proof.

Appendix C. Formal derivation of the equations of the measures. In this
section, we aim to derive the Equations (2.24)-(2.25) in a formal way. Observe that ν0 is
a probability measure so the equation of ν0 can be derived from the empirical measure
1
N

∑
iδ(x−Xi(t)) where each Xi satisfies the transport Equation (B.1). However, this

cannot be generalized to the equation of ν1. Hence we adopt another different formal
derivation as follows.

According to u(x,t) =Exϕ(X(t)), we expect u0 to be written as

u0(x,t) =

∫
Rd

ϕ(y)G0(dy,t;x).

According to the definition of ν0, one has

ν0(·,t) =

∫
Rd

G0(·,t;x)µ0(dx),

and thus G0(dy,t;x) means the Green’s function for the evolution of ν0 with initial
condition X(0) =x, or δ(·−x). By the equation of u0(x,t), it is easy to find that G0

satisfies

∂tG0(·,t;x)+∇f(x) ·∇xG0(·,t;x) = 0. (C.1)

Due to the Markovian property of the dynamics, we can easily infer that the measure
ν0 satisfies

ν0(·,t) =

∫
Rd

G0(·,t−s;y)ν0(dy;s) =:I(0)
t−sν0(·;s). (C.2)

Here, I(0)
t−s is the evolution operator. Using (C.1), one finds

∂t

∫
Rd

G0(·,t−s;x)ν0(dx;s)+

∫
Rd

ν0(dx;s)∇f(x) ·∇xI(0)
t−sδ(·−x) = 0

or

∂tν0(·,t)−
∫
Rd

∇x ·
(
∇f(x)ν0(dx;s)

)
I(0)
t−sδ(·−x) = 0.

Since I(0)
t−s is independent of x, the second term is then reduced to

−
∫
Rd

∇x ·
(
∇f(x)ν0(dx;s)

)
I(0)
t−sδ(·−x) =−I(0)

t−s

∫
Rd

∇x ·
(
∇f(x)ν0(dx;s)

)
δ(·−x)

=−I(0)
t−s∇·(∇fν0(·;s)).



184 UNIFORM-IN-TIME WEAK ERROR FOR SGD VIA DIFFUSION APPROXIMATION

Taking t→s, one obtains the equation for ν0.
Similarly, let G1(·,t;x) satisfy the following inhomogeneous equation

∂tG1(·,t;x)+∇f(x) ·∇xG1(·,t;x) =−1

4
∇‖∇f‖2 ·∇xG0(·,t;x)+

1

2
Tr(Σ∇2

xG0(·,t;x)),

G1(·,0;x) = 0.

(C.3)

Then, we have

u1(x,t) =

∫
Rd

ϕ(y)G1(y,t;x)dy, (C.4)

and

ν1(·,t) =

∫
Rd

G1(·,t;x)µ0(dx). (C.5)

By the linearity, one has

ν1(·,t) =

∫
Rd

G1(·,t−s;x)ν0(dx,s)+I(0)
t−sν1(·,s). (C.6)

The first term arises from (C.5) with zero initial data while the second term is from
the homogeneous part with initial data ν1(·,s). Setting t→ t−s in (C.3), multiplying
ν0(dx,s) and integrating, one has

∂t

∫
Rd

G1(·,t−s;x)ν0(dx,s)−
∫
Rd

G1(·,t−s;x)∇·(∇f(x)ν0(dx,s))

=I(0)
t−s

(
1

4
∇·(∇‖∇f‖2ν0)+

1

2
∂ij(Σijν0)

)
.

Clearly, the second term I(0)
t−sν1(·,s) satisfies

∂tI(0)
t−sν1(·,s)−∇·(∇fI(0)

t−sν1(·,s)) = 0.

Adding up the above two equations and taking t→s yields

∂tν1−∇·(∇fν1) =
1

4
∇·(∇‖∇f‖2ν0)+

1

2
∂ij(Σijν0).

Remark C.1. The generalization to νn for n≥2 is more involved and the equation
for νn is similar to ν1. The key relation is some analogue of (C.6), given by νn(·,t) =∑n
m=0

∫
Gm(·,t−s;x)νn−m(dx,s) due to linearity. (In fact, one may also expand the

Fokker-Planck equation for the diffusion approximation in terms of η to obtain the
equations for νn. However, this type of derivation does not give the inisight into the
dynamics.)

Appendix D. Computations for the numerical examples. In this appendix
we include detailed computations used in the numerical examples in Section 3, where
the domain is assumed to be one-dimensional (d= 1). Note that u0 is determined by
the initial value problem

∂tu0 +f ′ (x)∂xu0 (x,t) = 0,

u0(x,0) =ϕ(x).
(D.1)
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The equation of the characteristic lines is

dx

dt
=f ′ (x(t)) (D.2)

which gives

t=

∫ t

0

dx(t)

f ′ (x(t))
=

∫ x

x0(x,t)

dξ

f ′ (ξ)
(D.3)

where x0 =x0 (x,t) is the intercept of the characteristic line passing through the point
(x,t)∈R×R≥0. Therefore,

u0 (x,t) =ϕ(x0 (x,t)). (D.4)

Using implicit differentiation rules, one can easily deduce from (D.3) that

∂tx0 (x,t) =−f ′ (x0 (x,t)), ∂xx0 (x,t) =
f ′ (x0 (x,t))

f ′ (x)

with which one easily verifies that (D.4) is the solution of the initial value problem
(D.1).

Furthermore, u1 is determined by the initial value problem

∂tu1 +f ′ (x)∂xu1 (x,t) =L2u0 (x,t),

u1(x,0) = 0.
(D.5)

Without loss of generality, we will assume Σ = 1
4 , which is the variance of a Bernoulli

random variable with parameter p= 1/2. Using (D.4) and (1.8), we have

L2u0 (x,t) =− 1

2
f ′ (x)f ′′ (x)∂xu0 (x,t)+

1

8
∂2
xu0 (x,t)

=− 1

2
f ′ (x0 (x,t))ϕ′ (x0 (x,t))f ′′ (x)+

1

8

∂

∂x

[
f ′ (x0 (x,t))

f ′ (x)

]
ϕ′ (x0 (x,t))

+
1

8

[
f ′ (x0 (x,t))

f ′ (x)

]2

ϕ′′ (x0 (x,t))

in which the middle term in the right-hand side can be further expanded into

1

8
ϕ′ (x0 (x,t))

f ′ (x)f ′′ (x0 (x,t))∂xx0 (x,t)−f ′ (x0 (x,t))f ′′ (x)

[f ′ (x)]
2

=
1

8
ϕ′ (x0 (x,t))

f ′ (x0 (x,t))[f ′′ (x0 (x,t))−f ′′ (x)]

[f ′ (x)]
2 .

The equation of characteristic lines for (D.5) is the same as (D.3). Using the boundary
condition u1 (x,0) = 0, we have

u1 (x(t),t) =

∫ t

0

L2u0 (x(t),t) dt

=− 1

2
f ′ (x0)ϕ′ (x0)

∫ t

0

f ′′ (x(t)) dt+
1

8
f ′ (x0)ϕ′ (x0)

∫ t

0

f ′′ (x0)−f ′′ (x(t))

[f ′ (x(t))]
2 dt

+
1

8
[f ′ (x0)]

2
ϕ′′ (x0)

∫ t

0

dt

[f ′ (x(t))]
2

=:(I)+(II)+(III),
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where we adopted the simplifying notation x0≡x0 (x(t),t) for the constant along the
characteristic line x=x(t). By means of (D.2), we can further simplify the three terms
on the right-hand side:

(I) =−1

2
f ′ (x0)ϕ′ (x0)

∫ x

x0

d

dξ
logf ′ (ξ) dξ=−1

2
f ′ (x0)ϕ′ (x0)log

f ′ (x)

f ′ (x0)
,

(II) =
1

8
f ′ (x0)ϕ′ (x0)

∫ x

x0

f ′′ (x0)−f ′′ (ξ)
[f ′ (ξ)]

3 dξ,

(III)=
1

8
[f ′ (x0)]

2
ϕ′′ (x0)

∫ x

x0

dξ

[f ′ (ξ)]
3 .

Therefore,

u1 (x,t) =− 1

2
f ′ (x0 (x,t))ϕ′ (x0 (x,t))log

f ′ (x)

f ′ (x0 (x,t))

+
1

8
f ′ (x0 (x,t))ϕ′ (x0 (x,t))

∫ x

x0(x,t)

f ′′ (x0 (x,t))−f ′′ (ξ)
[f ′ (ξ)]

3 dξ

+
1

8
[f ′ (x0 (x,t))]

2
ϕ′′ (x0 (x,t))

∫ x

x0(x,t)

dξ

[f ′ (ξ)]
3 . (D.6)

Alternatively, we can also write u1 in the following equivalent form:

u1 (x,t) =− 1

2
f ′ (x0 (x,t))ϕ′ (x0 (x,t))log

f ′ (x)

f ′ (x0 (x,t))

+
1

8
f ′ (x0 (x,t))f ′′ (x0 (x,t))ϕ′ (x0 (x,t))

∫ x

x0(x,t)

dξ

[f ′ (ξ)]
3

− 1

8
f ′ (x0 (x,t))ϕ′ (x0 (x,t))

∫ x

x0(x,t)

f ′′ (ξ)

[f ′ (ξ)]
3 dξ

+
1

8
[f ′ (x0 (x,t))]

2
ϕ′′ (x0 (x,t))

∫ x

x0(x,t)

dξ

[f ′ (ξ)]
3

=− 1

2
f ′ (x0 (x,t))ϕ′ (x0 (x,t))log

f ′ (x)

f ′ (x0 (x,t))

+
1

8
f ′ (x0 (x,t))f ′′ (x0 (x,t))ϕ′ (x0 (x,t))

∫ x

x0(x,t)

dξ

[f ′ (ξ)]
3

− 1

16
f ′ (x0 (x,t))ϕ′ (x0 (x,t))

{
1

[f ′ (x0 (x,t))]
2 −

1

[f ′ (x)]
2

}

+
1

8
[f ′ (x0 (x,t))]

2
ϕ′′ (x0 (x,t))

∫ x

x0(x,t)

dξ

[f ′ (ξ)]
3 . (D.7)
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