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Abstract. We study in this work convolution groups generated by completely mono-

tone sequences related to the ubiquitous time-delay memory effect in physics and en-

gineering. In the first part, we give an accurate description of the convolution inverse

of a completely monotone sequence and show that the deconvolution with a completely

monotone kernel is stable. In the second part, we study a discrete fractional calcu-

lus defined by the convolution group generated by the completely monotone sequence

c(1) = (1, 1, 1, . . .), and show the consistency with time-continuous Riemann-Liouville

calculus, which may be suitable for modeling memory kernels in discrete time series.

1. Introduction. Many models have been proposed for the ubiquitous time-delay

memory effect in physics and engineering: the generalized Langevin equation model for

particles in heat bath ([7,18]), linear viscoelasticity models for soft matter ([2,12]), linear

dielectric susceptibility model [1,15] for polarization to name a few. In these models, the

response due to memory is given by the one-side convolution
∫ t

0
g(t− s)v(s) ds following

linearity, time-translation invariance and causality [11, Chap. 1], where g is the memory

kernel and v is the source of memory. Causality means that the output cannot precede

the input so that g(t) = 0 for t < 0. The Tichmarsh’s theorem states that the Fourier

transform G(ω) of g is analytic in the upper half plane, and that the real and imaginary

parts of G satisfy the Kramers-Kronig relation [11, 16]. Based on the principle of the

fading memory [12], we consider g to be completely monotone, which by the Bernstein

theorem can be expressed as the superposition of (may be infinitely many) decaying

exponentials (see [14, 17] for more details). If the kernel g is given by the algebraically

decaying completely monotone kernels g = θ(t)
Γ(γ) t

γ−1 where θ(t) is the Heaviside step
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190 LEI LI AND JIAN-GUO LIU

function and γ ∈ (0, 1), we are then led to the fractional integrals and the corresponding

fractional derivatives, which have already been used widely in engineering for modeling

memory effects [4].

In practice, the data we collect are at discrete times and we have the one-sided discrete

convolution a∗c (see equation (2.2)). The convolution kernel c is a completely monotone

sequence (see Definition 2.1) if it is the value of g at the discrete times [17]. If c is

completely monotone, it is shown in [10] that there exist c(r), r ∈ R, such that c(r)∗c(s) =
c(r+s) and c(1) = c, i.e. there exists a convolution group generated by the completely

monotone sequence. If 0 � r � 1, c(r) is completely monotone. Further, c(0) = δd :=

(1, 0, 0, . . .), is the convolution identity. The most interesting sequence is c(−1), the

convolution inverse, which can be used for deconvolution. Since the data are discrete, it

would also be interesting to define discrete fractional calculus using the one-sided discrete

convolution.

In this short note, we first investigate the convolution inverse of a completely mono-

tone sequence c in Section 2. We show that the �1 norm is bounded and the deconvolution

is stable in any �p space. Based on this, some preliminary ideas are explored for deconvo-

lution. In Section 3, we define a discrete fractional calculus using a discrete convolution

group generated by the completely monotone sequence c(1) = (1, 1, 1, . . .) and show that

it is consistent with the time-continuous Riemann-Liouville calculus (see (3.1)).

2. Deconvolution for a completely monotone kernel. In this section, we in-

vestigate the property of convolution inverse of a completely monotone sequence and

deconvolution with completely monotone sequences.

Definition 2.1. A sequence c = {ck}∞k=0 is completely monotone if (I − S)jck � 0

for any j � 0, k � 0 where Scj = cj+1.

A sequence is completely monotone if and only if it is the moment sequence of a

Hausdorff measure (a finite nonnegative measure on [0, 1]) ([17]). Another description is

given as follows ([10, 13]):

Lemma 2.2. A sequence c is completely monotone if and only if the generating function

Fc(z) =
∑∞

j=0 cjz
j is a Pick function that is analytic and nonnegative on (−∞, 1).

Note that a function f : C+ �→ C (where C+ denotes the upper half plane, not

including the real line) is Pick if it is analytic such that Im(z) > 0 ⇒ Im(f(z)) � 0.

Consider the one-sided convolution equation

a ∗ c = f, (2.1)

where the convolution kernel c is a completely monotone sequence and c0 > 0. The

discrete convolution is defined as

(a ∗ c)k =
∑

n1�0,n2�0

δn1+n2

k an1
cn2

, (2.2)
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and δnm is the Kronecker delta. This convolution is associative and commutative. Let

Fc(z) be the generating function of c:

Fc(z) =

∞∑
n=0

cnz
n. (2.3)

Then, Fa∗c(z) = Fa(z)Fc(z). Given c, the convolution inverse c(−1) is the sequence

that satisfies c ∗ c(−1) = c(−1) ∗ c = δd := (1, 0, 0, . . .). The generating function of

the convolution inverse c(−1) is 1/Fc(z). If we find the convolution inverse of c, the

convolution equation (2.1) can be solved.

2.1. The convolution inverse. Now, we present our results about the convolution in-

verse:

Theorem 2.3. Suppose c is completely monotone and c0 > 0. Let c(−1) be its convo-

lution inverse. Then, Fc(−1) is analytic on the open unit disk, and thus the radius of

convergence of its power series around z = 0 is at least 1. c
(−1)
0 = 1/c0 and the sequence

(−c
(−1)
1 ,−c

(−1)
2 , . . .) is completely monotone. Furthermore, 0 � −

∑∞
k=1 c

(−1)
k � 1

c0
.

Proof. The first claim follows from that Fc(z) has no zeros in the unit disk [10].

By Lemma 2.2, Fc(z) is Pick and it is positive on (−∞, 1). Fc(−∞) = 0 if the

corresponding Hausdorff measure does not have an atom at 0 (i.e. the sequence c is

minimal. See [17, Chap. IV. Sec. 14] for the definition). Since Fc(−∞) could be zero,

we consider

Gε(z) =
1

ε
− 1

ε+ Fc(z)
, ε > 0.

It is easy to verify that Gε is a Pick function, analytic and nonnegative on (−∞, 1).

Suppose Gε is the generating function of d = (dε0, d
ε
1, . . .). By Lemma 2.2, this sequence

is completely monotone. Then,

Hε(z) =
1

z
[Gε(z)−Gε(0)] =

Fc(z)− Fc(0)

z(ε+ Fc(0))(ε+ Fc(z))
,

is the generating function of the shifted sequence (dε1, . . .), which is completely monotone.

Hence, Hε is also a Pick function, nonnegative and analytic on (−∞, 1).

Taking the pointwise limit of Hε as ε → 0, we find the limit function

H(z) =
Fc(z)− Fc(0)

zFc(0)Fc(z)
(2.4)

to be nonnegative on (−∞, 1). By the expression of H, it is also analytic since Fc(z) is

never zero on C \ [1,∞). Finally, since Im(Hε(z)) � 0 for Im(z) > 0, then Im(H(z)),

as the limit, is nonnegative. It follows that the sequence corresponding to H is also

completely monotone. If c is in �1, 0 < H(1) = Fc(1)−Fc(0)
Fc(0)Fc(1)

< 1
c0
. If Fc(1) = ‖c‖1 = ∞,

we fix z0 ∈ (0, 1), and then for any z ∈ (z0, 1), we have 0 < H(z) � Fc(z)
zFc(0)Fc(z)

= 1
z0c0

.

H(z) is increasing in z since the sequence corresponding to H is completely monotone

and therefore nonnegative. Letting z → 1−, by the monotone convergence theorem, we

have H(1) � 1
z0c0

. Taking z0 → 1, H(1) � 1
c0
.
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192 LEI LI AND JIAN-GUO LIU

Further, H(z) is the generating function of −(c
(−1)
1 , c

(−1)
2 , . . .) since 1/Fc(z) is the

generating function of c(−1) = (c
(−1)
0 , c

(−1)
1 , . . .). The second claim therefore follows. �

As a corollary of Theorem 2.3, we find that the deconvolution with a completely

monotone sequence is stable:

Corollary 2.4. Equation (2.1) can be solved stably. In particular, ∀f ∈ �p, there exists

a unique a ∈ �p such that a ∗ c = f and ‖a‖p � 2
c0
‖f‖p.

The claim follows directly from the fact that ‖c−1‖1 � 2/c0 and Young’s inequality.

We omit the proof.

2.2. Computing convolution inverse and deconvolution. To solve the convolution equa-

tion (2.1), we can use the algorithm in [10] to find the convolution group c(r). Then, the

solution is computed as a = c(−1) ∗ f . The algorithm for c(r) reads

• Determine the canonical sequence b that satisfies (n+ 1)cn+1 =
∑n

k=0 cn−kbk.

• Compute c(r) by (n+ 1)c
(r)
n+1 = r

∑n
k=0 c

(r)
n−kbk.

For a completely monotone sequence, the canonical sequence satisfies bk � 0 ([5]). If

c0 = 1, computing the canonical sequence is straightforward

bn = (n+ 1)cn+1 −
n−1∑
k=0

cn−kbk. (2.5)

Note that Fb(z) = F ′
c(z)/Fc(z). If c0 = 1, c

(−1)
0 = 1 and |c(−1)

n+1 | � 1
n+1

∑n
k=0 |c

(−1)
n−1 |bk.

It’s clear by induction that |c(−1)
n+1 | � cn+1. For general c0, we can apply the above

argument to c/c0 and have the pointwise bound: |c(−1)
k | � 1

c20
|ck|.

Now, let us show a simple example to illustrate the deconvolution with completely

monotone sequences. Every completely monotone sequence is the moment sequence of

a Hausdorff measure. Fix M as a big integer and denote h = 1/M . xi = (i − 1/2)h.

Consider the discrete measures

CM =
{
μ : μ = h

M∑
i=1

λiδ(x− xi), λi � 0
}
. (2.6)

The weak star closure (〈μ, f〉 =
∫
[0,1]

fdμ where f ∈ C[0, 1]) of
⋃

M�1 CM is the set of all

Hausdorff measures. Due to this fact, we can generate completely monotone sequences

using

dn =

M∑
i=1

hλix
n
i , n = 0, 1, 2, . . . , (2.7)

where λi > 0 are generated randomly (for example uniformly from [0, 1]).

In Fig. 1 (a), we have a sequence which is of square shape; in Fig. 1 (b), we plot the

convolution between the sequence in (a) and the completely monotone sequence obtained

using (2.7). Fig. 1 (c) shows the solution a ∗ c = f by convolving the sequence in Fig.

1(b) with c(−1). The original sequence is recovered accurately.

If the sequence c is no longer completely monotone, the generating function of c(−1)

may have a small radius of convergence and an iterative method may be desired to
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Fig. 1. A simple example of deconvolution

solve (2.1). Consider approximating the sequence c by a completely monotone sequence

d = {dn} of the form in equation (2.7). Writing d in matrix form, we have

d =
1

m
Aλ = Aη, (2.8)

where η = 1
mλ. A simple iterative method then reads:

ap+1 = f ∗ d(−1) − ap ∗ [(c− d) ∗ d(−1)], p = 0, 1, 2, . . . , (2.9)

where a0 is arbitrary. Clearly, the iteration converges if ‖(c−d)∗d(−1)‖1 < 1. A sufficient

condition is therefore

‖d(−1)‖1‖c− d‖1 � 2

‖η‖1
‖c−Aη‖1 < 1, (2.10)

because d is completely monotone and d0 = ‖η‖1. As long as we can find a solution η to

this optimization problem, the iterative method can be applied to solve the convolution

equation (2.1).

3. A discrete convolution group and discrete fractional calculus. In this

section, we introduce a special discrete convolution group generated by a completely

monotone sequence and define discrete fractional calculus. We show that the discrete

fractional calculus is consistent with the Riemann-Liouville fractional calculus ([4, 6, 8])

with appropriate time scaling. The discrete convolution group proposed may be suitable

for modeling memory effects in discrete time series.

The traditional Riemann-Liouville fractional calculus for a function in C1[0, T ), T > 0

with index |α| � 1 is defined as

(Jαf)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ(α)

∫ t

0
(t− s)α−1f(s)ds, α > 0,

f(t), α = 0,
1

Γ(1+α)
d
dt

∫ t

0
f(s)

(t−s)|α| ds, α ∈ (−1, 0),

f ′(t), α = −1.

(3.1)

In [8], a slightly different Riemann-Liouville calculus is proposed. The new definition

introduces some singularities at t = 0 such that the resulted Riemann-Liouville calculus

forms a group. However, for t > 0, the modified definition of a smooth function agrees

with the traditional definition.
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194 LEI LI AND JIAN-GUO LIU

To motivate the discrete fractional calculus, we take a grid ti = ik : i = 0, 1, 2, . . .

where k is the step size. Evaluating f at the grid points yields a sequence a = {ai}∞i=0,

ai = f(ik). Using numerical approximations ([9]) for the fractional calculus, we find the

following sequence for fractional integral Jγ , 0 < γ � 1:

(cγ)j =
1

γΓ(γ)
((j + 1)γ − jγ).

Then, Jγf ≈ kγcγ ∗ a. The sequences {cγ} do not form a convolution semi-group.

However, each sequence generates a convolution group. Let {c(α)γ : α ∈ R} be the group

generated by cγ , with c
(γ)
γ = cγ . It is desirable that {c(α)γ : α ∈ R} can be used to define

discrete fractional calculus.

We focus on the case γ = 1 and we have c(1) := c
(α)
1 = (1, 1, . . .), with generating

function F1(z) = (1 − z)−1. The convolution group generated by c(1) is denoted by

c(α) := c
(α)
1 : α ∈ R and the generating function is Fα(z) = (1 − z)−α, ∀α ∈ R. c(α), 0 <

α � 1 are completely monotone.

Definition 3.1. For a sequence a = (a0, a1, . . .), we define the discrete fractional

operators Iα : RN �→ RN as a �→ Iαa := c(α) ∗ a.
Clearly, {Iα : α ∈ R} form a group.

3.1. Consistency with the time continuous fractional calculus. In this subsection, we

show that the discrete fractional calculus is consistent with Riemann-Liouville fractional

calculus if |α| � 1.

Given a function time-continuous function f(t), we pick a time step k > 0 and define

the sequence a with ai = f(ik) (i = 0, 1, 2, . . .). We consider

Tαf = kαIαa. (3.2)

We now show that for t > 0 (Tαf)n converges to Jαf(t) as k = t/n → 0+:

Theorem 3.2. Suppose f ∈ C2[0,∞). Fix t > 0, and define k = t/n. Then, |(Tαf)n −
(Jαf)(t)| → 0 as n → ∞ for |α| � 1.

We first introduce some useful lemmas and then prove this theorem. The following is

from [3]:

Lemma 3.3. The m-th term of c(α) has the following asymptotic behavior as m → ∞:

c(α)m ∼ mα−1

Γ(α)

(
1 +

α(α− 1)

2m
+O(

1

m2
)

)
, (3.3)

for α �= 0,−1,−2, . . ..

Lemma 3.4. For |α| < 1, let Am =
∑m

i=0 c
(α)
i be the partial sum of c(α) and R be the

convolution between c(α) and (1, 2, . . .). Then, as m → ∞, we have:

Am =
mα

Γ(1 + α)

(
1 +O(

1

m
)

)
, Rm =

m∑
i=0

(m− i)c
(α)
i =

m1+α

Γ(2 + α)

(
1 +O(

1

m
)

)
. (3.4)

Proof. α = 0 is trivial. Suppose α �= 0. A = {Am}∞m=0 is the convolution between

c(α) and c(1) and A = c(α+1) by the group property. Similarly, since c(2) = (1, 2, 3, . . .),

R := {Rm}∞m=0 = c(α+2). Applying Lemma 3.3 yields the claims. �
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Proof of Theorem 3.2. Below, we only show the consistency and we are not trying to

find the best estimate for the convergence rate.

α = 0, (T0f)n = f(t) and the claim is trivial.

Case 1 (α > 0). If α = 1, (Tαf)n =
∑n

m=0 kf(t − mk). It is well known that

|(Tαf)n −
∫ t

0
f(s)ds| = O(k).

Consider 0 < α < 1. Let n � 1, 1 � M � n and tM = (M − 1)k. We break the

summation for (Tαf)n at m = M and apply Lemma 3.3 for the terms with m � M :

(Tαf)n = kα
M−1∑
m=0

c(α)m f((n−m)k) + kα
n∑

m=M

mα−1

Γ(α)
f((n−m)k) + O(Mα−1kα).

Since f((n−m)k) = f(t)− f ′(ξ)mk and f(t− s) = f(t)− f ′(ξ̃)s, by Lemma 3.4,

∣∣∣kα M−1∑
i=0

c(α)m f((n−m)k)− 1

Γ(α)

∫ tM

0

f(t− s)sα−1ds
∣∣∣

� |f(t)|
∣∣∣kα M−1∑

m=0

c(α)m − tαM
Γ(1 + α)

∣∣∣
+ sup |f ′|Mkα+1

M−1∑
m=0

c(α)m + C sup |f ′|
∫ tM

0

sαds

� C(Mα−1kα +M1+αk1+α).

Finally, by the error for rectangle rule for quadrature,∣∣∣∣∣kα
n∑

m=K

mα−1

Γ(α)
f((n−m)k)−

∫ t

tM

f(t− s)

Γ(α)
sα−1ds

∣∣∣∣∣
� Ck sup

s∈(tM ,t)

d

ds
(f(t− s)sα−1) � C(Mk)α−2k.

Choosing M ∼ k−1/2, we find Mα−1kα ∼ k(1+α)/2, (Mk)1+α ∼ k(1+α)/2 and Mα−2kα−1

∼ kα/2. Then, as k → 0,∣∣∣∣(Tαf)n − 1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

∣∣∣∣ � C(k(1+α)/2 + kα/2) → 0.

Case 2 (−1 � α < 0). If α = −1, c(α) = (1,−1, 0, 0, . . .). It is then clear that:

(T−1f)n = k−1(f(nk)− f((n− 1)k)) = f ′(nk) +O(k) = J−1f(t) +O(k).

Consider that α ∈ (−1, 0) and γ = |α|. The continuous Riemann-Liouville fraction

derivative (3.1) equals

(J−γf)(t) =
f(0)

Γ(1− γ)
t−γ +

1

Γ(1− γ)

∫ t

0

f ′(s)

(t− s)γ
ds

=
f(t− k/b)

kγ
+

1

Γ(1− γ)

[∫ t

t−k/b

f ′(s)

(t− s)γ
ds− γ

∫ t

k/b

f(t− s)

sγ+1
ds

]
,
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196 LEI LI AND JIAN-GUO LIU

where b is chosen such that bγ = Γ(1− γ) = −γΓ(−γ) � 1. Since

k−γf(t)− k−γf(t− k/b) = O(k1−γ)

and ∫ t

t−k/b

f ′(s)

(t− s)γ
ds = O(k1−γ),

we find

|(T−γf)n − (J−γf)(t)| (3.5)

�
∣∣∣ 1
kγ

n∑
i=1

c
(−γ)
i f((n− i)k) +

γ

Γ(1− γ)

∫ t

k/b

f(t− s)

sγ+1
ds
∣∣∣+O(k1−γ).

We first show that the right hand side of (3.5) goes to zero for constant and linear

functions. By the first equation of (3.4) in Lemma 3.4 and noting bγ = −γΓ(−γ), we

have

k−γ
n∑

i=1

c
(−γ)
i = k−γ

(
n−γ

Γ(1− γ)
− 1

)
+O

(
1

(nk)γn

)
=

1

Γ(−γ)

∫ t

k/b

1

sγ+1
ds+O(k).

(3.6)

Hence, the right hand side of (3.5) goes to zero for constant functions. Similarly, by the

second equation of (3.4), k−γ
∑n

i=1 c
(−γ)
i (n− i)k− 1

Γ(−γ)

∫ t

k/b
t−s
sγ+1 ds = O((k/b)1−γ), and

then∣∣∣∣∣k−γ
n∑

i=1

c
(−γ)
i ik − 1

Γ(−γ)

∫ t

k/b

s−γds

∣∣∣∣∣ = t×O(k) +O((k/b)1−γ) = O(k1−γ). (3.7)

The right hand side of (3.5) goes to zero for linear functions. Combining (3.6) and (3.7),

we can assume without loss of generality that f(t) = f ′(t) = 0 in equation (3.5) (actually,

one can consider the function f̃(s) = f(s)− f(t)− f ′(t)(s− t)).

Choose M such that 1 � M � n and set tM = (M − 1)k again.

We first estimate the integral for s ∈ (k/b, tM ) and the summation from 1 to M − 1.

Since f(t) = f ′(t) = 0, one has |f(t− s)| � Cs2, and hence∣∣∣∣∣
∫ tM

k/b

f(t− s)

sγ+1
ds

∣∣∣∣∣ � C

∫ tM

k/b

s1−γds � C(Mk)2−γ .

Similarly, since f(nk) = f ′(nk) = 0 and c
(−γ)
i is negative for i � 1,∣∣∣∣∣k−γ

M−1∑
i=1

c
(−γ)
i f((n− i)k)

∣∣∣∣∣ � Ck2−γ
M−1∑
i=1

i2|c−γ
i | � CMk2−γ

∣∣∣∣∣
M−1∑
i=1

ic
(−γ)
i

∣∣∣∣∣ � C(Mk)2−γ .

Note that (3.7) also implies |
∑M−1

i=1 ic
(−γ)
i | = O(M1−γ), which has been used for the last

inequality.
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Now, we move onto the summation from M to n, and s ∈ (tM , t). By Lemma 3.3 and

applying the error analysis for rectangle rule of quadrature,∣∣∣∣∣k−γ
n∑

i=M

c
(−γ)
i f((n− i)k)− 1

Γ(−γ)

∫ t

tM

f(t− s)

sγ+1
ds

∣∣∣∣∣
�

∣∣∣∣∣k−γ
n∑

i=M

(
c
(−γ)
i − i−1−γ

Γ(−γ)

)
f((n− i)k)

∣∣∣∣∣
+

∣∣∣∣∣k−γ
n∑

i=M

i−1−γ

Γ(−γ)
f((n− i)k)− 1

Γ(−γ)

∫ t

tM

f(t− s)

sγ+1
ds

∣∣∣∣∣
� CM−1−γk−γ + (Mk)−2−γk.

Taking M = k−ε− 1+γ
2+γ for some small ε > 0, (Mk)−2−γk, (Mk)2−γ and M−1−γk−γ all

tend to zero as k → 0. Hence, the right hand side of (3.5) goes to zero for all C2[0,∞)

functions. �
Remark 3.5. In the case α = −1 and f(0) �= 0, (Tαf)0 = f(0)

k . This actually

approximates the singular term δ(t)f(0) in the modified Riemann-Liouville derivative

J−1f in [8].
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