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Abstract The Random Batch Method proposed in our previous work (Jin et al. J Comput Phys, 2020) is not

only a numerical method for interacting particle systems and its mean-field limit, but also can be viewed as a

model of the particle system in which particles interact, at discrete time, with randomly selected mini-batch of

particles. In this paper, we investigate the mean-field limit of this model as the number of particles N → ∞.

Unlike the classical mean field limit for interacting particle systems where the law of large numbers plays the

role and the chaos is propagated to later times, the mean field limit now does not rely on the law of large

numbers and the chaos is imposed at every discrete time. Despite this, we will not only justify this mean-field

limit (discrete in time) but will also show that the limit, as the discrete time interval τ → 0, approaches to the

solution of a nonlinear Fokker-Planck equation arising as the mean-field limit of the original interacting particle

system in the Wasserstein distance.
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1 Introduction

Many physical, biological and social sciences phenomena, at the microscopic level, are described by

interacting particle systems, for example, molecules in fluids [19], plasma [5], swarming [7, 9, 13, 48],

chemotaxis [4,26], flocking [1,12,25], synchronization [11,24] and consensus [43]. We consider the following

general first order systems:

dXi = b(Xi)dt+
1

N − 1

∑
j:j ̸=i

K(Xi −Xj)dt+
√
2σdW i, i = 1, 2, . . . , N (1.1)

with the initial data Xi
0’s being independent and identically distributed (i.i.d.), sampled from a common

distribution µ0. W
i’s are N independent d-dimensional Wiener processes (standard Brownian motions).

Here, we allow σ = 0 to include systems without noise.
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As is well known, under certain conditions, the mean field limit (i.e., N →∞) of (1.1) is given by

∂tµ = −∇ · ((b(x) +K ∗ µ)µ) + σ2∆µ. (1.2)

The term “mean field limit” means that the empirical measure µN := N−1
∑N

i=1 δ(x − Xi) converges

weakly to µ almost surely and the one marginal distribution µ
(1)
N := L (X1), the law of X1, converges

to µ. See [10,15,18,37] for some related models and proofs, though the setups in these works do not quite

fit our problem as we allow |b(·)| to have polynomial growth. Recall that µ is in general a probability

distribution and (1.2) is understood in the distributional sense. We will denote the solution operator

to (1.2) by S:

S(∆)µ(t1) := µ(t1 +∆), ∀ t1 > 0, ∆ > 0. (1.3)

Clearly, {S(t) : t > 0} is a nonlinear semigroup.

A direct simulation of (1.1) costs O(N2) per time step, which is expensive. To reduce the compu-

tational cost, in [28], a random algorithm that uses random mini-batches, called the Random Batch

Method (RBM), has been proposed to reduce the computation cost per time step from O(N2) to O(N).

The method has been applied to various problems with promising results [28, 32, 35, 36]. However, the

understanding of the method is still limited, despite some theoretical proofs [28,29]. The idea of using the

“mini-batch” was inspired by the stochastic gradient descent (SGD) method [6, 44] in machine learning.

The “mini-batch” was also used for Bayesian inference [50], and similar ideas were used to simulate the

mean-field equations for flocking [1]. How to apply the mini-batch depends on the specific problems. The

strategy in [28] for interacting particle systems (1.1) is to do random grouping. Intuitively, the method

converges due to certain time average in time, and thus the convergence is like the convergence in the

law of large number (in time) (see [28] for more details). Compared with the fast multipole method, the

accuracy is lower (half order in time step), but the RBM is simpler to implement and is valid for more

general potentials (see [29,35]).

The RBM algorithm corresponding to (1.1) is shown in Algorithm 1. Suppose we aim to do the

simulation until time T > 0. We first choose a time step τ > 0 and a batch size p ≪ N, p > 2 that

divides N . Define the discrete time grids tk := kτ , k ∈ N. For each time subinterval [tk−1, tk), there are

two steps: (1) at time grid tk−1, we divide the N particles into n := N/p groups (batches) randomly;

(2) the particles evolve with interaction inside the batches only. Here, we use the same symbols Xi

without causing any confusion. The Wiener process W i (the Brownian motion) used in (1.4) is the same

as in (1.1).

Algorithm 1 The Random Batch Method (RBM)

1: for k in 1 : [T/τ ] do

2: Divide {1, 2, . . . , N} into n = N/p batches randomly.

3: for each batch Cq do

4: Update Xi’s (i ∈ Cq) by solving the following stochastic differential equation (SDE) with t ∈ [tk−1, tk):

dXi = b(Xi)dt+
1

p− 1

∑
j∈Cq,j ̸=i

K(Xi −Xj)dt+
√
2σdW i. (1.4)

5: end for

6: end for

As pointed out in [28], the RBM is asymptotic-preserving regarding the mean field limit N →∞ (see

[21, 34, 46]); namely, the error bound of the one marginal distribution can be made independent of N so

that it can be used for large N as an efficient numerical particle method for (1.2), the mean field nonlinear

Fokker-Planck equation of (1.1). While the RBM was introduced as a numerical method, it can also be

viewed as a new model for the underlying particle system. A natural question for both numerical and

modeling interests is: what is the limiting (mean field) dynamics as N →∞ for a fixed time step τ?

Intuitively, in a specific realization of the random division of batches, when N ≫ 1, the probability that

two chosen particles are correlated is very small. Hence, in the N → ∞ limit, the two chosen particles
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will be uncorrelated with probability 1. Since the particles are exchangeable, the marginal distributions

of them will be identical. Hence, let us focus on one specific particle, i.e., i = 1, to understand the

mean field limit. Imagine that there are infinitely many particles as N → ∞. For each time interval,

we draw p − 1 particles from the infinite set, and they are independent from particle 1 by the intuition

just mentioned. They share the same distribution with particle 1. This small group then evolves with

interactions between themselves to the next time point so that the distribution of particle 1 has been

changed. At this new time point, we draw another p − 1 particles to interact with particle 1. In this

sense, in the N →∞ limit, the N -particle system is then reduced to a p-particle system described by the

following stochastic differential equation (SDE) system for t ∈ [tk, tk+1):

dY i = b(Y i)dt+
1

p− 1

p∑
j=1,j ̸=i

K(Y i − Y j)dt+
√
2σdW i, i = 1, . . . , p (1.5)

with {Y i(tk)} being i.i.d., drawn from µ̃(·, tk). We may impose Y 1(t−k ) = Y 1(t+k ), and for other particles

i ̸= 1, Y i(t) in [tk−1, tk) and [tk, tk+1) are independent so they are not continuous at tk. In fact, Y i’s

(i ̸= 1) correspond to the batchmates of particle 1 as in Algorithm 1 so they are different particles for

different iterations. Then, µ̃(·, tk+1) = L (Y 1(t−k+1)), the law of Y 1(t−k+1). In terms of the individual

particle 1, the rest N − 1 particles average out to an infinite pool of independent particles from particle 1

at each time step tk. This becomes the mean field limit model of the RBM, and one may write out the

following mean field limit for the RBM in terms of the probability distribution as shown in Algorithm 2,

while (1.5) becomes the microscopic description.

Algorithm 2 Mean field dynamics of the RBM (1.4)

1: µ̃(·, 0) = µ0 ∈ P(Rd).

2: for k > 0 do

3: Let ρ(p)(. . . , tk) = µ̃(·, tk)⊗p be a probability measure on (Rd)p ∼= Rpd.

4: Evolve the measure ρ(p) by the following Fokker-Planck equation for t ∈ [tk, tk+1):

∂tρ
(p) = −

p∑
i=1

∇xi ·
([

b(xi) +
1

p− 1

p∑
j=1,j ̸=i

K(xi − xj)

]
ρ(p)

)
+ σ2

p∑
i=1

∆xiρ
(p). (1.6)

5: Set

µ̃(·, tk+1) :=

∫
(Rd)(p−1)

ρ(p)(·, dy2, . . . , dyp, t−k+1). (1.7)

6: end for

The dynamics shown in Algorithm 2 naturally defines a nonlinear operator G∞ : P(Rd)→ P(Rd) as

µ̃(·, tk+1) =: G∞(µ̃(·, tk)). (1.8)

As indicated above, the mean field limit here does not rely on the law of large numbers. Instead, it

relies on the fact that the particles in one batch are unlikely to be related if N ≫ 1. In the mean field limit

dynamics of the RBM, one starts with a chaotic configuration1), the p particles evolve with interaction

to each other. Then, at the starting point of the next time interval, one imposes the chaos so that the

particles are independent again. This mean field limit is different from the standard mean field limit for

the system (1.1), given by (1.2): in the mean field limit of the RBM, the chaos is imposed at every time

step; in the classical mean field limit for the interacting particle system, the chaos is propagated to later

times. This mechanism may allow the mean-field limit of the RBM to achieve a higher convergence rate

than the standard N−1/2 convergence rate (at least N−1 under Wasserstein-1 as seen in Section 3). In

spite of the difference just mentioned, we will show that these two limiting dynamics are in fact close: in

Section 4, we will show that as τ → 0 the dynamics given by G∞ can approximate that of the nonlinear

1) By “chaotic configuration”, we mean that there exists a one particle distribution f such that for any j, the j-marginal

distribution is given by µ(j) = f⊗j . Such independence in a configuration is then loosely called “chaos”. If the j-marginal

distribution is more close to f⊗j for some f , we loosely say “there is more chaos”.
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Fokker-Planck equation (1.2). We remark that as τ → 0, the dynamics of the RBM has been shown to

converge to the N -particle system (1.1) in [28]. Thus, this result implies that the two limits limN→∞ and

limτ→0 commute (see also Subsection 5.1 and Figure 3).

The argument in this paper for t 6 T can be generalized to second order systems, which we omit,

but one may see Section 5 for some discussion. Of course, the argument for large time behavior can be

different and this is left for future study.

The rest of this paper is organized as follows. We introduce the notations and give a brief review to

the Wasserstein distance in Section 2. The mean field limit under the Wasserstein distance is shown in

Section 3. Section 4 is devoted to the discussion of the mean field dynamics of the RBM. In particular, we

show that it is close to the mean-field nonlinear Fokker-Planck equation. Some discussion is performed

in Section 5. We finally conclude the work along with future directions in Section 6.

2 Preliminaries and notations

In this section, we first introduce some assumptions and notations. Then we give a brief introduction to

the Wasserstein distance and prove some auxiliary results.

2.1 Mathematical setup of the problem

We first introduce several assumptions that will be used throughout the paper. In these assumptions,

“being smooth” means that the functions are infinitely differentiable. Note that the conditions in these

assumptions may be stronger than necessary.

Assumption 2.1. The moments of the initial data are finite:∫
Rd

|x|qµ0(dx) <∞, ∀ q ∈ [1,∞). (2.1)

One of the following two conditions will be used for the external fields and interaction kernels.

Assumption 2.2. Assume b(·) : Rd → Rd and K(·) : Rd → Rd are smooth. Moreover, b(·) is one-sided
Lipschitz:

(z1 − z2) · (b(z1)− b(z2)) 6 β|z1 − z2|2 (2.2)

for some constant β, and K is Lipschitz continuous

|K(z1)−K(z2)| 6 L|z1 − z2|.

Assumption 2.3. The fields b(·) : Rd → Rd and K(·) : Rd → Rd are smooth. Moreover, b(·) is

strongly confining:

(z1 − z2) · (b(z1)− b(z2)) 6 −r|z1 − z2|2 (2.3)

for some constant r > 0, and K is Lipschitz continuous |K(z1)−K(z2)| 6 L|z1 − z2|. The parameters r

and L satisfy

r > 2L. (2.4)

Remark 2.4. Compared with our previous works [28,29], we are not assuming the boundedness of K

in this paper to prove the mean-field limit and investigate the limiting dynamics. The boundedness of K

in our previous works is a simple condition to guarantee the boundedness of the variance of the random

forces (though the boundedness of variance may also be proved without assuming boundedness of K).

Denote C(k)q (1 6 q 6 n) the batches at tk so that
∪

q C
(k)
q = {1, . . . , N}, and

C(k) := {C(k)1 , . . . , C(k)n } (2.5)
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will denote the random division of batches at tk. By the Kolmogorov extension theorem [16], there exists

a probability space (Ω,F ,P) such that the random variables {Xi
0,W

i, C(k) : 1 6 i 6 N, k > 0} are

defined on this probability space and are all independent. We will use E to denote the integration on Ω

with respect to the probability measure P. For the convenience of the analysis, we introduce the L2(P)
norm as

∥v∥ :=
√
E|v|2. (2.6)

Define the filtration {Fk}k>0 by

Fk−1 = σ(Xi
0,W

i(t), C(j); t 6 tk−1, j 6 k − 1). (2.7)

Clearly, Fk−1 is the σ-algebra generated by the initial values Xi
0 (i = 1, . . . , N), W i(t), t 6 tk−1, and

C(j), j 6 k − 1. Hence, Fk−1 contains the information of how batches are constructed for t ∈ [tk−1, tk).

2.2 A review of the Wasserstein distance

Consider a domain O ⊂ Rn, where n is a positive integer. We denote P(O) the set of probability measures

on O. Let µ, ν ∈ P(O) be two probability measures and c : O × O → [0,∞) be a cost function. One

solves the following optimization problem for the optimal transport:

min
γ

{∫
O×O

cdγ

∣∣∣∣ γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) is the set of “transport plans”, i.e., a joint measure on O × O such that the marginal

measures are µ and ν, respectively. If there is a map T : O → O such that (I × T )#µ minimizes the

target function, then T is called an optimal transport map. Here, I is the identity map and

(I × T )#µ(E) := µ((I × T )−1(E)), ∀E ⊂ O ×O measurable. (2.8)

Choosing the particular cost function c(x, y) = |x − y|q, q ∈ [1,∞), one can define the Wasserstein-q

distance Wq(µ, ν) as

Wq(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫
O×O

|x− y|qdγ
)1/q

. (2.9)

It has been shown (see [3] and [45, Chapter 5]) that the Wasserstein-q distance between two probability

measures µ and ν is also given by

W q
q (µ, ν) = min

{∫ 1

0

∥v∥qLq(ρ)dt : ∂tρ+∇ · (ρv) = 0, ρ |t=0 = µ, ρ |t=1 = ν

}
, (2.10)

where ρ is a (time-parametrized) nonnegative measure and

∥v∥qLq(ρ) :=

∫
O

|v|qρ(dx). (2.11)

Hence, v can be thought as the particle velocity for the optimal transport, as explained in [45, Chapter 5].

With this explanation, one can then understand P(O) equipped with W2 distance as a Riemannian

manifold so that the Fokker-Planck equations can be formulated as a class of gradient flows on this

manifold (see, for example, [30] and [49, Chapter 8]).

Below, we note a useful lemma that relates the total variation distance to the Wq distance. This is

intrinsically [49, Proposition 7.10] and the version here is more convenient for our purpose in this paper.

Recall the Jordan decomposition for a signed measure µ = µ+ − µ− defined on a Polish space E . Then,

define |µ| := µ+ + µ−, and the total variation norm of the signed measure by

∥µ∥TV := |µ|(E) = µ+(E) + µ−(E). (2.12)
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Lemma 2.5. Let µ, ν ∈ P(Rd) be two different probability measures on E = Rd. Let δ > 0 and µ̂

be a measure such that |µ − ν|(E) 6 δµ̂(E) for any Borel measurable E. Suppose for q > 1, Mq :=

infx0

∫
Rd |x− x0|qµ̂(dx) <∞. Then,

Wq(µ, ν) 6 21−1/q(Mqδ)
1/q. (2.13)

In particular, choosing δ = ∥µ− ν∥TV and µ̂ := 1
∥µ−ν∥TV

|µ− ν| yields

Wq(µ, ν) 6 21−1/q(Mq∥µ− ν∥TV )
1/q.

Proof. We consider µm := µ ∧ ν, which is defined by

µm(E) = min(µ(E), ν(E)), ∀E measurable.

Define two measures µ1 := µ− µm and ν1 := ν − νm. Then,

∥µ− ν∥TV = ∥µ1∥TV + ∥ν1∥TV , µ1 + ν1 6 δ µ̂. (2.14)

Construct the joint distribution (noting ∥µ1∥TV = ∥ν1∥TV )

dπ := π(dx, dy) =
1

∥µ1∥TV
µ1(dx)⊗ ν1(dy) +Q#µm(dx, dy)

with Q(x) = (x, x) and Q# is the standard pushforward map as in (2.8). Clearly, the marginal distribu-

tions of π are µ and ν, respectively.

Then, fix x0 ∈ Rd. We have∫
Rd×Rd

|x− y|qdπ =
1

∥µ1∥TV

∫
Rd×Rd

|x− y|qµ1(dx)⊗ ν1(dy)

6 2q−1

∥µ1∥TV

∫
Rd×Rd

(|x− x0|q + |y − x0|q)µ1(dx)⊗ ν1(dy)

= 2q−1

∫
Rd

|x− x0|q[µ1 + ν1](dx).

By noting µ1 + ν1 6 δ µ̂, the claim follows by taking infimum on x0.

3 The mean field limit of the RBM with τ fixed

Starting with µ0, after k steps of the dynamics given in (1.8), one arrives at

Gk∞(µ0) = G∞ ◦ · · · ◦ G∞(µ0) (k copies),

which is expected to be the mean field limit of the RBM after k steps. Corresponding to this, one may

define the operator G(k)N : P(Rd) → P(Rd) for the RBM with N particles as follows. Let Xi
0’s be i.i.d.,

drawn from µ0. Consider (1.4) and define

G(k)N (µ0) := L (X1(tk)), (3.1)

where recall that L (X1) means the law of X1, thus the one marginal distribution. By conditioning on

a specific sequence of random batches, the particles are not exchangeable. However, when one considers

the mixture of all possible sequences of random batches, the laws of the particles Xi(tk) (1 6 i 6 N) are

identical. In Figure 1, we illustrate these definitions and various limits.

The semigroup property is closely related to the Markovian property. For the G∞ dynamics, knowing

the marginal distribution of X1 can fully determine the probability transition. However, knowing only

the marginal distribution is not enough for G(k)N dynamics, and the joint distribution must be known.

Hence, we remark the following lemma.
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Lemma 3.1. {Gk∞ : k > 1} forms a nonlinear semigroup while {G(k)N : k > 1} is not a semigroup.

We first of all introduce some concepts. For each particle i, we define a sequence of lists {L(k)
i : k > 0}

associated with i, given as follows:

(a) L
(0)
i = {i}.

(b) For k > 1, let C
(k−1)
q be the batch that the particle i stays in for t ∈ [tk−1, tk). Then,

L
(k)
i =

∪
j∈C

(k−1)
q

L
(k−1)
j . (3.2)

Here, L
(k)
i can be viewed as the particles that have impacted i for t < tk. Clearly, a particle i1 ∈ L

(k)
i

might not have been a batchmate of i. It could have been a batchmate of i2, and then i2 was a batchmate

of i at some time. The important observation is that if L
(k)
i and L

(k)
j do not intersect for a given sequence

of random batches, then the particles i and j are independent at t−k . Note that we are not claiming all

particles in L
(k)
j are independent of those in L

(k)
j at t−k . In fact, it is possible that some i1 ∈ L

(k)
i and

j1 ∈ L
(k)
j are in the same batch on [tk−1, tk). However, i1 and j1 must be independent at the times when

they were added to the batches that eventually impact i and j at t−k . This motivates us to define the

following definition.

Definition 3.2. We say the particle i is clean on [tk, tk+1) if the batch C(k)q that contains i at t+k
satisfies the following: (1) any j ∈ C(k)q is clean at t−k ; (2) any j, ℓ ∈ C(k)q with j ̸= ℓ, L

(k)
j and L

(k)
ℓ do not

intersect.

Figure 2 gives the illustration for the definitions of L
(k)
i and particles being clean. Plainly speaking, a

particle i is “clean” at t−k if its batchmates at t < tk were mutually independent and independent to i

when they interacted.

N

the RBM the RBM

,

Figure 1 Illustration of the various operators and the asymptotic limits
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Figure 2 (Color online) Illustration of the definitions of L
(k)
i and particles being clean. The three pictures are for t−1 , t−2

and t−3 , respectively with N = 8, p = 2. The lists (i.e., {1, 2}, {1, 2, 5, 6} etc.) indicate L
(k)
i for the corresponding particles
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Let us use the symbol |A| below for a set A to mean the cardinality of A. The following observation

is useful for our argument later.

Lemma 3.3. Consider a fixed sequence of divisions of random batches {C(ℓ)}ℓ6k−1.

(i) It holds that

|L(k)
i | 6 pk,

and the particle i is clean at t−k if and only if the equality holds.

(ii) The distribution of Xi for a clean particle i at t−k is Gk∞(µ0).

Proof. The proof is a straightforward induction. Here, let us just mention the proof of the second claim

briefly.

For k = 0, the statement is trivial. Now, suppose the statement is true for all k 6 m − 1. We now

consider k = m.

For the given sequence of random batches {C(ℓ)}ℓ6k−1, that a particle i is clean at t−m means that on

[tm−1, tm), the particles in the batch for i are independent of i at tm−1. By the induction assumption,

the distribution of one particle at tm−1 is given by µ̃(·, tm−1) = Gm−1
∞ (µ0). By the independence, the

joint distribution of them at tm−1 is therefore

ρ(p)(. . . , tm−1) = µ̃(·, tm−1)
⊗p.

From tm−1 to tm, the evolution of the joint distribution obeys the Fokker-Planck equation (1.6). Hence,

at t−m, the distribution of the particle i is given by Gm∞(µ0) by the definition (see (1.8)).

Let Ak denote the set of particles that are clean at t−k . Then,

A1 = A0 = {1, . . . , N}.

For k > 2, one has

Ak = {i ∈ Ak−1 : i ∈ C(k−1)
q , ∀ j, ℓ ∈ C(k−1)

q , j ̸= ℓ,

j ∈ Ak−1, ℓ ∈ Ak−1, L
(k−1)
j ∩ L

(k−1)
ℓ = ∅}. (3.3)

Denote

ϵk := P(1 /∈ Ak). (3.4)

Note that by symmetry, ϵk is also the probability that the particle i is not clean. We state our main

result.

Theorem 3.4. Let q ∈ [1,∞). It holds that

Wq(Gk∞(µ0),GkN (µ0)) 6 C exp(αtk)ϵ
1/q
k (3.5)

for some α > 0. Moreover, in the strong confinement case, α = 0.

To prove Theorem 3.4, we need some preparation. We first establish some moments estimates.

Lemma 3.5. If Assumption 2.1 holds, then for q > 1, there exists α1(q) > 0 such that

sup
k:kτ6T

∫
Rd

|x|qGk∞(µ0)(dx) 6 C(q)eα1(q)T . (3.6)

In the strong confinement case (see Assumption 2.3), one can take α1(q) = 0, i.e., the constant in the

upper bound can be uniform in T .

Proof. We note that {Gk∞} is a semigroup, so it suffices to estimate the growth of the moments in one

step.

First, consider (1.5) and take q > 2. By Itô’s calculus, one has

dE|Y i|q = qE|Y i|q−2Y i ·
[
b(Y i) +

1

p− 1

p∑
j=1,j ̸=i

K(Y i − Y j)

]
dt+ Eq|Y i|q−2(d+ q − 2)σ2dt. (3.7)
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Using the one-sided Lipschitz condition in Assumption 2.2, one has

Y i · b(Y i) = (Y i − 0) · (b(Y i)− b(0)) + Y i · b(0) 6 β|Y i|2 + C|Y i|.

Similarly, since K is Lipschitz, one has |K(Y i − Y j)| 6 |K(0)|+ L(|Y i|+ |Y j |), and thus

Y i ·K(Y i − Y j) 6 |K(0)||Y i|+ L(|Y i|2 + |Y i||Y j |).

It follows that

E|Y i|q−2Y i ·
[
b(Y i) +

1

p− 1

p∑
j=1,j ̸=i

K(Y i − Y j)

]
6 (β + L)E|Y i|q + CE|Y i|q−1 +

1

p− 1

∑
j:j ̸=i

E|Y i|q−1|Y j |.

By Young’s inequality,

E|Y i|q−1|Y j | 6 (q − 1)ν

q
E|Y i|q + E|Y j |q

qνq−1

for any ν > 0. In particular, one also has

E|Y i|q−1 6 (q − 1)ν

q
E|Y i|q + 1

qνq−1
.

Similarly, using Young’s inequality, E|Y i|q−2 is also easily controlled by δE|Y i|q +C(δ) for some small δ.

By the exchangeability so that E|Y i|q = E|Y j |q, one then has

d

dt
E|Y i|q 6 q(β + 2L+ δ)E|Y i|q + C2.

In the strong confinement case as in Assumption 2.3,

E|Y i|q−2Xi ·
[
b(Y i) +

1

p− 1

p∑
j=1,j ̸=i

K(Y i − Y j)

]
6 (−r + L)E|Y i|q + CE|Y i|q−1 +

L

p− 1

∑
j:j ̸=i

E|Y i|q−1|Y j |

6
(
− r + L+

(q − 1)L

q

)
E|Y i|q + L

p− 1

∑
j:j ̸=i

1

q
E|Y j |q + δE|Y i|q + C(δ)

= (−r + 2L)E|Y i|q + δE|Y i|q + C(δ),

where δ is a sufficiently small but fixed number. The conclusions then follow easily for q > 2.

If q ∈ [1, 2), one then uses Hölder’s inequality (E|Y i|q)1/q 6 (E|Y i|r)1/r for r > q to get the desired

result.

We also need the moment control for the Random Batch Method conditioning on any specific sequence

of random batches.

Lemma 3.6. Consider a fixed sequence of divisions of random batches {C(ℓ)}. Again, consider the

solutions {Xi(t)}Ni=1 to (1.6). Then,

sup
t6T

sup
i

E(|Xi|q | {C(ℓ)}) 6 C(q)eα1T . (3.8)

In the strong confinement Assumption 2.2,

sup
t>0

sup
i

E(|Xi|q | {C(ℓ)}) 6 C(q), (3.9)

where C(q) and α1 do not depend on the specific sequence of divisions of random batches {C(ℓ)}.
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Proof. The proof follows the same line as that in Lemma 3.5. The difference is that there is no

exchangeability now conditioning on the random batches.

Under Assumption 2.2 and using the similar estimates to those in Lemma 3.5, one has for t ∈ [tk, tk+1],

d

dt
E(|Xi|q | {C(ℓ)}) 6 q

(
β + L+

(q − 1)L

q
+ δ

)
E(|Xi|q | {C(ℓ)})

+
qL

p− 1

∑
j:j ̸=i

1

q
E(|Xj |q | {C(ℓ)}) + C(δ). (3.10)

Under Assumption 2.3, one then has for t ∈ [tk, tk+1],

d

dt
E(|Xi|q | {C(ℓ)}) 6 q

(
− r + L+

(q − 1)L

q
+ δ

)
E(|Xi|q | {C(ℓ)})

+
qL

p− 1

∑
j:j ̸=i

1

q
E(|Xj |q | {C(ℓ)}) + C(δ). (3.11)

Next, based on (3.10), one easily finds

E(|Xi(t)|q | {C(ℓ)})− E(|Xi|q(tk) | {C(ℓ)}) 6
(
β + L+

(q − 1)L

q
+ δ

)∫ t

tk

E(|Xi(s)|q | {C(ℓ)})ds

+ L

∫ t

tk

max
16i6p

E(|Xi(s)|q | {C(ℓ)})ds+
∫ t

tk

C(δ)ds.

It follows that

a(t) := max
16i6p

E(|Xi|q | {C(ℓ)}) (3.12)

satisfies

a(t) 6 a(tk) + q(β + 2L+ δ)

∫ t

tk

[a(s) + C(δ)]ds.

Grönwall’s inequality then yields the first claim with any α > β + 2L.

For (3.11), defining r1 := q(r − L− q−1
q L− δ) > 0, one finds that

E(|Xi(t)|q | {C(ℓ)}) 6 E(|Xi|q(tk) | {C(ℓ)})e−r1(t−tk)

+

∫ t

tk

e−r1(t−s)
[
L max

16i6p
E(|Xi(s)|q | {C(ℓ)}) + C(δ)

]
ds.

Hence, the function a defined in (3.12) satisfies

a(t) 6 a(tk)e
−r1(t−tk) +

∫ t

tk

e−r1(t−s)[La(s) + C(δ)]ds.

It can be shown easily that a(t) is controlled by b(t) which satisfies the following integral equality:

b(t) = a(tk)e
−r1(t−tk) +

∫ t

tk

e−r1(t−s)[Lb(s) + C(δ)]ds.

(One can perturb the initial data a(tk)→ a(tk) + ϵ for b(·) and then take ϵ→ 0.)

Then, one finds

b′(t) = (−r1 + L)b(t) + C(δ) = q(−r + 2L+ δ)b(t) + C(δ), b(tk) = a(tk).

Hence,

a(tk+1) 6 b(tk+1) 6 a(tk)e
−q(r−2L+δ)τ +

C(δ)

q(r − 2L− δ)
(1− e−q(r−2L+δ)τ ).

The second claim also follows.
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Now, we can prove the main theorem in this section.

Proof of Theorem 3.4. First of all, for the N -particle system, by symmetry, the distribution of any

particle is equal to GkN (µ0). Now, we focus on a particular particle i = 1, for example.

By Lemma 3.3,

GkN (µ0) = P(1 ∈ Ak)Gk∞(µ0) + P(1 /∈ Ak)νk (3.13)

for some probability measure νk. To see this, we consider all possible sequences of random batches.

Only the first k divisions of batches (i.e., ones at t0, . . . , tk−1) will affect the distribution at tk. This

subsequence (the first k divisions) can take only finitely many values, and let {cℓ}ℓ6k−1 be such values.

Then, for any E ⊂ Rd that is Borel measurable,

GkN (µ0)[E] =
∑

{Cℓ=cℓ,ℓ6k−1}

P(Cℓ = cℓ, ℓ 6 k − 1)P(X1 ∈ E | Cℓ = cℓ, ℓ 6 k − 1).

Lemma 3.3 tells us that if {cℓ}ℓ6k−1 is a value such that 1 is clean, then

P(X1 ∈ E | Cℓ = cℓ, ℓ 6 k − 1) = Gk∞(µ0)[E].

Hence,

GkN (µ0)[E] = P(1 ∈ Ak)Gk∞(µ0)[E]

+
∑

{Cℓ=cℓ,ℓ6k−1},1/∈Ak

P(Cℓ = cℓ, ℓ 6 k − 1)P(X1 ∈ E | Cℓ = cℓ, ℓ 6 k − 1)

= P(1 ∈ Ak)Gk∞(µ0)[E] + P(1 /∈ Ak)νk(E)

with

νk(E) =
∑

{Cℓ=cℓ,ℓ6k−1},1/∈Ak

P(Cℓ = cℓ, ℓ 6 k − 1)

P(1 /∈ Ak)
P(X1 ∈ E | Cℓ = cℓ, ℓ 6 k − 1).

Clearly, νk is a convex combination of some conditional marginal distributions of X1, each being L (X1)

conditioning on a particular sequence of batches for {1 /∈ Ak}. Hence, νk is a probability measure.

By (3.13), it holds that

|Gk∞(µ0)− GkN (µ0)| 6 (1− P(1 ∈ Ak))Gk∞(µ0) + P(1 /∈ Ak)νk = ϵk(Gk∞(µ0) + νk). (3.14)

Therefore, the total variation distance between the two measures is controlled by

∥Gk∞(µ0)− GkN (µ0)∥TV 6 (1− P(1 ∈ Ak)) + P(1 /∈ Ak) = 2ϵk. (3.15)

By Lemma 3.6, for each sequence of batches, one has

sup
i

E(|Xi|q | C(ℓ)) 6 C(q)eα1t.

Hence, it holds that ∫
Rd

|x|qνk(dx) 6 C(q)eα1t. (3.16)

In the case of strong confinement, α1 = 0. Similarly, by Lemma 3.5, Gk∞(µ0) has the same moment

control. The application of Lemma 2.5 then yields the desired result.

Lastly, we close up the estimate.

Theorem 3.7. For any fixed k, it holds that

lim
N→∞

ϵk = 0. (3.17)
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Proof. First of all, clearly, we have

ϵ0 = ϵ1 = 1− 1 = 0.

Now, we do induction on k. Assume

lim
N→∞

ϵk = 0.

Consider the batches for tk → t−k+1. Assume the batch for particle 1 is C(k)q . Denote

Bk = {∀ j, ℓ ∈ C(k)q , j ̸= ℓ, L
(k)
j ∩ L

(k)
ℓ = ∅}.

Let B = C(k)q \ {1} be the set of other particles that share the same batch with particle 1. Then, by

the definition of Ak+1,

P(1 ∈ Ak+1) =
∑

j1,...,jp−1

P(B = {j1, . . . , jp−1})

× P
(
Bk ∩ {1 ∈ Ak}

p−1∩
ℓ=1

{jℓ ∈ Ak}
∣∣∣∣B = {j1, . . . , jp−1}

)
. (3.18)

Denote E := {B = {j1, . . . , jp−1}}, where we omit the dependence in jℓ, 1 6 ℓ 6 p − 1 for notational

convenience. Conditioning on Bk∩E (i.e., provided that the event Bk∩E happens), whether the particles

are clean or not are independent. Hence,

P
(
Bk ∩ {1 ∈ Ak}

p−1∩
ℓ=1

{jℓ ∈ Ak}
∣∣∣∣E)

= P(Bk | E)P
(
{1 ∈ Ak}

p−1∩
ℓ=1

{jℓ ∈ Ak}
∣∣∣∣E,Bk

)

= P(Bk | E)

p∏
ℓ=1

P(jℓ ∈ Ak | E,Bk),

where we have set jp = 1. Moreover,

P(jℓ ∈ Ak | E,Bk) =
P({jℓ ∈ Ak} ∩ E ∩Bk)

P(E ∩Bk)
=

P({1 ∈ Ak} ∩ E ∩Bk)

P(E ∩Bk)
=

P({1 ∈ Ak} ∩Bk)

P(Bk)
.

The second and the last equalities are due to symmetry. For the last equality, P({B = {j1, . . . , jp−1}}∩Bk)

should be equal for all possible j1, . . . , jp−1, and the same is true for the numerator. This actually is a

kind of independence. Hence, eventually due to the fact∑
j1,...,jp−1

P(B = {j1, . . . , jp−1})P(Bk | B = {j1, . . . , jp−1}) = P(Bk),

one has

1− ϵk+1 = P(1 ∈ Ak+1) > P(Bk)(1− ϵk/P(Bk))
p.

Hence, it suffices to show

lim
N→∞

P(Bk) = 1.

To get an estimate for this, we consider the following equivalent way to construct L
(k)
i : one starts with

Li ← {i} and repeat the following for k times:

(1) Set Ltmp ← Li and A = ∅.
(2) Loop the following until Ltmp is empty:

(a) Pick a particle i1 ∈ Ltmp, and then choose p− 1 particles from {1, . . . , N} \A∪ {i1} denoted by

{i2, . . . , ip}.
(b) Li ← Li ∪ {i2, . . . , ip}.
(c) Set A← A ∪ {i1, i2, . . . , ip}.
(d) Set Ltmp ← Ltmp \ {i1, i2, . . . , ip}.
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In the above, we are actually looking back from tk−1. In the j-th iteration, we are constructing batches

at tk−j . Hence, this is an equivalent way to construct L
(k)
i .

Now, we estimate P(Bk) by constructing the lists L
(k)
jℓ

: 1 6 ℓ 6 p for jℓ ∈ C
(k)
q using the above

procedure. Consider that the lists for j1, . . . , jℓ−1 have been constructed, which have included at most

(ℓ−1)pk particles. Now, for L
(k)
jℓ

not to intersect with the previous lists, one has to choose particles from

{1, . . . , N}\[
∪ℓ−1

z=1 L
(k)
jz
∪A∪{i1}] in the (2)(a) step. Conditioning on the specific choices of L

(k)
jℓ

: 1 6 ℓ 6 p

and A with N1 := |L(k)
jℓ
∪A ∪ {i1}|, N2 := |A|, this probability is controlled from below by(

N−N1

p−1

)(
N−1−N2

p−1

) >
(
N−1−ℓpk

p−1

)(
N−1
p−1

) .

Hence, as N →∞,

P(Bk) >
p∏

ℓ=1

[(N−1−ℓpk

p−1

)(
N−1
p−1

) ]k
= 1−O(N−1).

Hence, limN→∞ ϵk+1 = 0 and the claim follows.

As can be seen in the proof, one actually has ϵk 6 C(p, k)N−1 for some C(p, k) > 0. This rate

is different from the typical O(N−1/2) rate (though under W2 distance) for the mean field limit of

interacting particle systems due to the law of large number results.

Remark 3.8. The current argument of the mean field limit relies on the fact that two particles are

unlikely to be related when N → ∞ for finite iterations. This is not enough to get the mean field limit

independent of τ . For fixed N , ϵk → 1 as k → ∞. As pointed out in [28], the RBM works due to the

averaging effect in time. The regime we consider here (finite iterations and N →∞) is clearly far before

the point when the averaging effect in time comes into play. To study the mean field limit uniform in τ

(the averaging mechanism can take effect), one must consider carefully how the correlation decays as k

grows when two particles are not totally clean to each other. The study of this creation of chaos will be

left for the future.

4 Properties of the limiting dynamics

We consider the limit dynamics given by the operator G∞ (defined in (1.8)) and its approximation to the

dynamics of the nonlinear Fokker-Planck equation (1.2), the mean-field limit of the interacting particle

system (1.1).

As proved in [28], the error between the one marginal distribution of the RBM particle system (1.6)

and that of (1.1) are close independent of N under the W2 distance (the left-hand side in Figure 1).

Combining the mean field result in Section 3 and taking N → ∞, one sees that the dynamics of G∞
is close to that of (1.2) (the right-hand side in Figure 1). In other words, the two limits limN→∞ and

limτ→0 commute.

A direct application of the strong mean square error in [28] gives an upper bound O(
√
τ) for the W2

distance corresponding to the left-hand side in Figure 1, and thus the right-hand side in Figure 1 after

taking N → ∞. It is shown in [29] (though for b(·) being bounded) that the weak error is O(τ). The

Wq distance is a kind of weak topology as it measures the closeness between distributions instead of the

trajectories of particles. Hence, the sharp upper bound for the Wasserstein distance between these two

marginal distributions is believed to be O(τ), even for unbounded b(·). Below, we aim to prove these

under W1 distance.

4.1 Stability of the limiting dynamics

In this subsection, we study the stability and contraction properties of the nonlinear operator G∞ for the

limiting dynamics.
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Proposition 4.1. Under Assumption 2.2, G∞ satisfies for q ∈ [1,∞),

Wq(G∞(µ1),G∞(µ2)) 6 e(β+2L)τWq(µ1, µ2), µi ∈ P(Rd), i = 1, 2. (4.1)

The operator G∞ is a contraction in Wq under Assumption 2.3:

Wq(G∞(µ1),G∞(µ2)) 6 e−(r−2L)τWq(µ1, µ2) (4.2)

so that G∞ has a unique invariant measure πτ and it holds that for any µ0,

Wq(Gn∞(µ0), πτ ) 6 e−(r−2L)nτWq(µ0, πτ ). (4.3)

Proof. Consider two copies of (1.5): one is

dY i
1 = b(Y i

1 )dt+
1

p− 1

p∑
j=1,j ̸=i

K(Y i
1 − Y j

1 )dt+
√
2σdW i, i = 1, . . . , p (4.4)

with (Y 1
1 (0), . . . , Y

p
1 (0)) being drawn from µ⊗p

1 ; the other one is

dY i
2 = b(Y i

2 )dt+
1

p− 1

p∑
j=1,j ̸=i

K(Y i
2 − Y j

2 )dt+
√
2σdW i, i = 1, . . . , p (4.5)

with (Y 1
2 (0), . . . , Y

p
2 (0)) being drawn from µ⊗p

2 .

For any ϵ > 0, choose the coupling as follows. First, choose a coupling γ for Y 1
1 and Y 1

2 such that

E|Y 1
1 (0)− Y 1

2 (0)|q 6 ϵ+W q
q (µ1, µ2).

Then, let the samples (Y i
1 (0), Y

i
2 (0)) be i.i.d., drawn from γ. Let the Brownian motions for the two

systems be the same.

Now, to show the claims, it suffices to show that the moments of the SDE system (1.5) are stable. In

fact, the joint distribution of (Y 1
1 (τ), Y

1
2 (τ)) is a coupling for G∞(µ1) and G∞(µ2),

Wq(G∞(µ1),G∞(µ2)) 6 (E|Y 1
1 (τ)− Y 1

2 (τ)|q)1/q.

By using the symmetry, it can be computed directly that under Assumption 2.2,

d

dt
E|Y 1

1 − Y 1
2 |q 6 q(β + 2L)E|Y 1

1 − Y 1
2 |q,

and that under Assumption 2.3,

d

dt
E|Y 1

1 − Y 1
2 |q 6 q(−r + 2L)E|Y 1

1 − Y 1
2 |q.

For q = 1, one can use
√
|Y 1

1 − Y 1
2 |2 + δ to approximate and then take δ → 0+. Applying Grönwall’s

inequality and noticing ϵ is arbitrary, one obtains the first two assertions directly. The last claim follows

from the standard contraction mapping theorem [23, Chapter 1].

4.2 Basic properties of the nonlinear Fokker-Planck equation

We establish several basic results to (1.2) using a stronger version of Assumption 2.1.

Assumption 4.2. The measure µ0 has a density ϱ0 that is smooth with finite moments∫
Rd

|x|qϱ0dx <∞, ∀ q > 1,

and the entropy is finite, i.e.,

H(µ0) :=

∫
Rd

ϱ0 log ϱ0dx <∞. (4.6)
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If ϱ0(x) = 0 at some point x, one defines ϱ0(x) log ϱ0(x) = 0. We also introduce the following assump-

tion on the growth rate of derivatives of b and K, which will be used below.

Assumption 4.3. The function b and its derivatives have polynomial growth. The derivatives of K

with order at least 2 (i.e., DαK with |α| > 2) have polynomial growth.

Based on these conditions, (1.2) can be formulated in terms of the density of µ:

∂tϱ = −∇ · ((b(x) +K ∗ ϱ)ϱ) + σ2∆ϱ,

ϱ(0) = ϱ0.
(4.7)

Then, a weak solution to (4.7) corresponds to a measure solution µ = ϱdx to (1.2), where the weak

solution is defined as follows.

Definition 4.4. We say ϱ ∈ L∞([0, T ];L1(Rd)) is a weak solution to (4.7), if ϱdx ∈ C([0, T ];P(Rd))

where P(Rd) is equipped with the weak topology, and for any φ ∈ C∞
c (Rd), it holds that for any t 6 T ,∫

Rd

ϱ(x, t)φ(x)dx−
∫
Rd

ϱ0(x)φ(x)dx

=

∫ t

0

∫
Rd

∇φ(x) · (b(x) +K ∗ ϱ) ρ(x, s)dxds+ σ2

∫ t

0

∫
Rd

∆φ(x)ϱ(x, s)dxds. (4.8)

Note that the test function used here does not depend on time variable, so we require the integral

equation to hold for any t 6 T . Due to the relation between (4.7) and (1.2), we will not distinguish the

measure and its density. For example, we will use G∞(ϱ0) to mean the nonlinear semigroup acting on

the measure µ0, and will use Wq(ϱ, ν) to mean the Wasserstein-q distance between µ = ϱdx and another

measure ν.

We have the following regarding the well-posedness of the nonlinear Fokker-Planck equation (4.7).

Proposition 4.5. Let Assumption 2.2 or Assumption 2.3 hold, and also |b| + |∇b| 6 C(1 + |x|q) for

some C and q. Fix any T > 0. Assume the initial data ϱ0 satisfies Assumption 4.2. Then the nonlinear

Fokker-Planck equation (4.7) has a unique weak solution satisfying sup06t6T

∫
Rd |x|ϱdx <∞. Moreover,

this solution is a strong solution and is smooth together with the moment control:

sup
06t6T

∫
Rd

|x|qϱdx 6 C(q, T )

∫
Rd

|x|qϱ0dx. (4.9)

Besides, under Assumption 2.3, the moments are uniformly bounded in t, i.e., the constants C(q, T ) above

can be made independent of T . Moreover, µ = ϱdx converges in Wq, q > 1 to an invariant measure π

exponentially as t→∞.

There are many works on similar models in the literature (see [2, 8, 10, 40] as a few of examples).

However, in our case, b and K are not bounded and b can have polynomial growth at infinity, so the

proofs in these works do not quite fit our setting here. For example, in the work of [8, 10], b = −∇V
and they require ∇V · x > C for some constant while we allow b · x 6 β|x|2; also the requirements on

the kernel K(·) do not quite match the setup here. In the work [2], a certain class of nonlinear Fokker-

Planck equations have been studied via the approach of Crandall and Liggett for m-accretive operators

in L1(Rd), but the approach cannot be applied directly to our case here. Due to these reasons, we attach

a proof of Proposition 4.5 in Appendix A for a reference.

In proving the uniqueness of the solution to (4.7) in Appendix A, we have in fact proved the following

mean-field limit.

Proposition 4.6. With the same assumptions of Proposition 4.5, one has

sup
06t6T

W2(ϱ, µ
(1)
N ) 6 C(T )√

N
, (4.10)

where µ
(1)
N is the one marginal distribution of the interacting particle system (1.1). Moreover, if Assump-

tion 2.3 holds, the constant C(T ) can be independent of T .
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As long as the existence and uniqueness of the solutions to the nonlinear Fokker-Planck equation have

been established, one can regard

K̄(x, t) :=

∫
Rd

K(x− y)ϱ(y, t)dy, (4.11)

as known, and the properties of ϱ can be studied via the linear Fokker-Planck equation

∂tϱ = −∇ · [(b(x) + K̄(x, t))ϱ] + σ2∆ϱ. (4.12)

By the moment estimates of ϱ, K̄(0, t) is bounded by the first moment of ϱ and it is Lipschitz continuous

with uniform Lipschitz constant L. We consider the time continuity of K̄.

Lemma 4.7. Under Assumptions 2.2, 4.2 and 4.3, we have for any ∆t ∈ [0, τ ],

|K̄(x, t+∆t)− K̄(x, t)| 6 C(Mq(ϱ(t)))(1 + |x|q)τ (4.13)

for some q > 1, where Mq(ϱ(t)) means the q-moment of ϱ at t. Moreover, if Assumption 2.2 is replaced

by Assumption 2.3, C(Mq(ϱ(t))) has an upper bound independent of time t.

Proof. It can be computed directly that

∂tK̄(x, t) =

∫
Rd

K(x− y){−∇ · [(b(y) +K ∗ ϱ)ϱ] + σ2∆yϱ}dy

= −
∫
Rd

(b(y) +K ∗ ϱ)ϱ · (∇K)(x− y)dy +

∫
Rd

σ2(∆K)(x− y)ϱdy.

Since b has polynomial growth and ∇K is bounded, we have∣∣∣∣− ∫
Rd

(b(y) +K ∗ ϱ)ϱ · (∇K)(x− y)dy

∣∣∣∣ 6 C

∫
Rd

(1 + |y|q)ϱdy + C

∫∫
Rd×Rd

|K(x− y)|ϱ(x)ϱ(y)dxdy.

This is controlled by the moments of ϱ.

Moreover, since ∆K has polynomial growth,∣∣∣∣ ∫
Rd

σ2(∆K)(x− y)ϱdy

∣∣∣∣ 6 σ2C

∫
Rd

(1 + |x− y|q)ϱdy

6 C

(
1 +

∫
Rd

(|x|q + |y|q)ϱdy
)

6 C(1 + |x|q),

where C depends on the moments of ϱ.

By using the results in Proposition 4.5, the moments on [t, t +∆t] can be controlled by the one at t.

Since τ is a fixed small number, we omit the dependence in τ for the amplification constant, the claims

then follow.

Before further discussion, we first establish some auxiliary results regarding the following linear Fokker-

Planck equation:

∂tf = −∇ · (b1(x, t)f)dt+ σ2∆f =: L∗
b1(f). (4.14)

We will assume b1(x, t) satisfies

(x− y) · (b1(x, t)− b(y, t)) 6 β1|x− y|2. (4.15)

We say b1 satisfies the strong confinement condition if β1 < 0. We also denote Ss,t to be the solution

operator from time s to time t, i.e.,

Ss,tfs := ft. (4.16)

There are many classical results on the parabolic equation (4.14) with bounded drifts b1 or drifts

with linear growth (see, for example, [33]). However, the results for drifts with polynomial growth seem

limited. Below, we will show some results, especially the properties of the fundamental solutions, for

drifts with polynomial growth (see Lemma 4.10 and Proposition 4.11) to fulfill our needs.
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Lemma 4.8. Consider (4.14), where b1 satisfies (4.15). Also, assume the derivatives of b1(x, t) have

polynomial growth and supt>0 |b(0, t)| <∞. Then for q > 1, we have the following:

(i) For any g ∈ L1(Rn), one has

sup
∆t6T

∫
Rd

(1 + |x|q)|St,t+∆tg|dx 6 C(T )

∫
Rd

(1 + |x|q)|g(x)|dx.

(ii) If b1 satisfies the strong confinement condition β1 < 0, C(T ) in the item (i) can be made independent

of T . Moreover, when σ > 0 and
∫
Rd gdx = 0, β1 < 0 implies that∫

Rd

(1 + |x|q)|St,t+∆tg|dx 6 P (Mq1(|g|))e−δ∆t,

where δ > 0 is independent of g, P (·) is some polynomial, q1 > q is some suitable number, and Mq1(|g|)
means the q1-moment of |g|.

(iii) In the case where b1 does not depend on time so that Ss,t = e(t−s)L∗
b1 , one also has

sup
∆t6T

∫
Rd

(1 + |x|q)|(L∗
b1)

mSt,t+∆tg|dx 6 C(T )

∫
Rd

(1 + |x|q)|(L∗
b1)

mg|dx.

Proof. For (i), one decomposes g := g+ − g−, where g+ = max(g, 0) and g− = −min(g, 0). Then,

St,t+∆tg = (St,t+∆tg
+) − (St,t+∆tg

−) with each of them being nonnegative. The operator St,t+∆t

is L1-contraction, so we focus on the q-moments only. Following similar approaches of Step 1 in

Appendix A, one can show that the moments of St,t+∆tg
± can be controlled by those of g±. Hence,

the moments of St,t+∆tg have the desired estimates. We skip the details.

Regarding (ii), we first note that the q moments of St,t1g can be uniformly controlled by moments of |g|,
due to similar reasons. Then, one can consider the measures µ± := 1

∥g±∥L1
St,t+∆tg

±. Using standard

techniques of Markov chains (see [39, Appendix A] and [41, Chapters 15–16]), one can show that

∥µ+ − µ−∥TV 6 P1(Mq1(|µ|))e−δ′∆t ⇒ ∥St,t+∆tg∥TV 6 P (Mq1(|g|))e−δ′∆t

for some q1 > q and polynomials P1(·) and P (·). Then∫
Rd

|x|q|St,t+∆tg|(dx) =
1

2
∥g∥L1

∫
|x|q|µ+ − µ−|(dx)

6 C∥g∥L1

√∫
|x|2q|µ+ − µ−|(dx)

√
∥µ+ − µ−∥TV

= C

√∫
Rd

|x|2q|St,t+∆tg|(dx)
√
∥St,t+∆tg∥TV .

Furthermore, due to √∫
Rd

|x|2q|St,t+∆tg|(dx) 6
1

2
(1 +M2q(|g|)),

one can then choose another q1 large enough such that the claims in (ii) hold.

For (iii), we just note that

∂t((L∗
b1)

mf) = L∗
b1((L

∗
b1)

mf).

Then, we apply the property of etL
∗
b1 proved in the first part (i).

Remark 4.9. For (ii), if σ = 0, even if the strong confinement condition is satisfied, ∥µ+ − µ−∥TV

may not decay. However, we believe that when b1(x, t)→ b∞(x), then∫
Rd

|x− x∗|q|St,t+∆tg|dx 6 C(Mq1(|g|))e−δ∆t

still holds for the limiting point x∗ of the trajectories. We do not explore this in this work.
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It is well known that the linear equation (4.14) has a transition density Φ(x, t; y, s) solving (4.14) for

t > s with the initial data Φ(x, s; y, s) = δ(x− y). Then,

(Ss,tg)(x) =

∫
Rd

Φ(x, t; y, s)g(y)dy. (4.17)

Hence, the property of Φ is important.

Lemma 4.10. Consider (4.14) with σ > 0, and b1 satisfying (4.15). Also, assume the derivatives of

b1(x, t) have polynomial growth and supt>0 |b1(0, t)| <∞. Then for all 0 6 s < t 6 T , we have∫
Rd

(1 + |x|q)|∇yΦ(x, t; y, s)|dx 6 C(T )P (|y|)(1 + (t− s)−1/2) (4.18)

for some polynomial P (·). If β1 < 0,∫
Rd

(1 + |x|q)|∇yΦ(x, t; y, s)|dx 6 CP (|y|)(1 + (t− s)−1/2)e−δ(t−s) (4.19)

for some δ > 0.

The proof of Lemma 4.10 is tedious, and we defer it to Appendix B. Below, we aim to consider

the moments of the derivatives of ϱ. Now, we recall the standard multi-index notation used in PDE

community:

Dα :=
d∏

j=1

∂αj

j , α = (α1, . . . , αd). (4.20)

The length of the index is defined as |α| :=
∑d

j=1 α
j .

The following proposition is helpful for our estimates later.

Proposition 4.11. Let Assumptions 2.2, 4.2 and 4.3 hold. Then for any multi-index α, it holds that

sup
t6T

∫
Rd

(1 + |x|q)|Dαϱ|dx 6 C(α, q, T ). (4.21)

If σ > 0 and Assumption 2.3 holds, then

sup
t>0

∫
Rd

(1 + |x|q)|Dαϱ|dx <∞. (4.22)

Proof. We set

b1(x, t) := b(x) + K̄(x, t),

which is regarded as known (since the existence and uniqueness of ϱ have been established).

In the case σ = 0, consider the characteristics satisfying

Ż = b(Z), Z(0; y) = y.

Using the one-sided Lipschitz condition in Assumption 2.2, one has v · ∇b1(x, t) · v 6 β1|v|2 for any v

and x with β1 = β + 2L. With this and induction, one can show that |∂yiZ| 6 Ceβ1t and Dα
yZ(t; y) is

controlled by polynomials of |y| for higher order α. By using ϱ = Z#ϱ0, the claim can be proved. We

omit the details.

Now, we focus on σ > 0. We do by induction on the derivatives of ϱ. Let ℓ = |α|. We know already

that the claim holds for ℓ = 0.

Suppose the claim is true for ℓ− 1 with ℓ > 1. Now, we consider ℓ. One can see that

∂tD
αϱ = −∇ · (b1(x, t)Dαϱ) + σ2∆Dαϱ+

∑
|β|6ℓ−1

Cβ∇ · [fβ(x)Dβϱ].
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Here, fβ are some functions with polynomial growth. Then, we have

Dαϱ = S0,tD
αϱ0 −

∫ t

0

∑
|β|6ℓ−1

Cβ

∫
Rd

∇yΦ(x, t; y, s) · (fβ(y)Dβϱ(y, s))dyds.

The claim follows by a direct application of the induction assumption and Lemma 4.10 with β1 = β+2L

or β1 = −r + 2L.

4.3 Approximation of the limiting dynamics to the nonlinear Fokker-Planck equation

To get a feeling about how close the dynamics given by G∞ (the mean field limit of the RBM) is to

the nonlinear Fokker-Planck equation (1.2), we consider (1.6). Recall that ρ(p)(. . . , tk) = µ̃(·, tk)⊗p with

order τ error, (1.6) is approximated as

∂tρ
(p) = −

p∑
i=1

∇xi ·
([

b(xi) +
1

p− 1

∑
j:j ̸=i

K(xi − xj)

] p∏
j=1

µ̃(xj , tk)

)
+ σ2

p∑
i=1

∆xiρ
(p) +O(τ). (4.23)

Since we are curious about how the marginal distribution is evolving, one may take the integrals on

x2, . . . , xp and have

∂tρ̃ = −∇x1 · ([b(x1) +K ∗ µ̃(·, tk)]µ̃(x1, tk)) + σ2∆x1 ρ̃+O(τ).

Since ρ̃ :=
∫
ρ(p)dx2 · · · dxp is equal to µ̃(·, tk) initially, one finds that this is close to (1.2) already. Thus,

one expects that the overall error between Gk∞(ϱ0) and ϱ(kτ) is like O(τ).

We now state the main results in this section.

Theorem 4.12. Let ϱ be the solution to the nonlinear Fokker-Planck equation (4.7). Suppose Assump-

tions 2.2, 4.2 and 4.3 hold. Then,

sup
n:nτ6T

W1(Gn∞(ϱ0), ϱ(nτ)) 6 C(T )τ. (4.24)

If Assumption 2.3 is assumed in place of Assumption 2.2 and also σ > 0, then

sup
n>0

W1(Gn∞(ϱ0), ϱ(nτ)) 6 Cτ. (4.25)

Consequently, the invariant measures (see Propositions 4.1 and 4.5 for the related notations) satisfy

W1(πτ , π) 6 Cτ. (4.26)

Below, we aim to prove Theorem 4.12. We first establish the one-step error and then give the global

estimate.

Define

M
(k)
q,ℓ :=

∑
|α|6ℓ

∫
Rd

(1 + |x|q)|Dαϱ(x, tk)|dx, (4.27)

which are the moments of |Dαϱ(·, tk)| for |α| 6 ℓ (see (4.20) for the multi-index notation). In fact, we

have the following result provided that ϱ is smooth enough.

Lemma 4.13. Suppose Assumptions 2.2 and 4.3 hold. Let tk 6 T − τ . Then,

W1(G∞(ϱ(·, tk)), ϱ(·, tk+1)) 6 g(M
(k)
q,4 )τ

2

for some q > 1 and the nondecreasing function g(·), where M
(k)
q,4 is defined in (4.27).
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Proof. For the notational convenience in this proof, we denote, only in this proof,

ϱk(·) ≡ ϱ(·, tk).

Step 1. Consider the SDE corresponding to the nonlinear Fokker-Planck equation (4.7):

dX = [b(X) +K(·) ∗ ϱ(·, t)(X)]dt+
√
2σdW.

Denote K̄(X) :=
∫
Rd K(X − z)ϱk(z)dz. Then we have

dX = [b(X) + K̄(X) +R]dt+
√
2σdW, (4.28)

where by a similar calculation to that in the proof of Lemma 4.7,

|R| 6 C(Mq1,0)(1 + |X(tk)|q)τ

for some q1 > 1. In fact, C depends on the moments of ϱ(·, t) for t ∈ [tk, tk+1], which can be controlled

by the ones at tk.

We show that the law of X is close in W1 to the law generated by the following SDE:

dX̂ = [b(X̂) + K̄(X̂)]dt+
√
2σdW. (4.29)

To do this, we estimate E|X − X̂| under the synchronization coupling (i.e., using the same Brownian

motion). In fact,
d

dt
E|X − X̂| 6 CE|X − X̂|+ CE|R|.

Clearly, E|R| 6 C(Mq2,0)τ for some q2 > 1.

Denote (recall that L means the law of a random variable)

S̃(ϱk) := L (X̂(τ)). (4.30)

Then, applying Grönwall’s lemma yields

W1(ϱ(·, tk+1), S̃(ϱk)) 6 C(Mq,0)τ
2.

Step 2. Compare S̃(ϱk) with G∞(ϱk).

We compare the law of X̂ in (4.29) (i.e., S̃(ϱk)) with the law of Y 1 (i.e., G∞(ϱk)), where (Y 1, . . . , Y p)

satisfy

dY i = b(Y i)dt+
1

p− 1

p∑
j=1,j ̸=i

K(Y i − Y j)dt+
√
2σdW i, i = 1, . . . , p (4.31)

with the initial data drawn from ϱ⊗p
k . The main strategy is to use Lemma 2.5, so we need to estimate

the difference of these two distributions and control the moments of this difference.

It is clear that S̃(ϱk) = eτL̂
∗
ϱk, where L̂∗ is given by (for ρ in its domain)

L̂∗(ρ)(x) := −∇ ·
([

b(x) +

∫
Rd

K(x− x2)ϱk(x2)dx2

]
ρ(x)

)
+ σ2∆xρ(x)

= −
∫
Rd

dx2ϱk(x2)[∇ · ([b(x) +K(x− x2)]ρ(x)) + σ2∆xρ(x)]. (4.32)

Denote the Fokker-Planck operator for the evolution of (Y 1, . . . , Y p) by

L̄∗ := −
p∑

i=1

∇xi ·
([

b(xi) +
1

p− 1

∑
j:j ̸=i

K(xi − xj)

]
·
)
+ σ2

p∑
i=1

∆xi .
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Then the law of Y 1 at τ is given by

G∞(ϱk) =

∫
(Rd)p−1

eτL̄
∗

p∏
i=1

ϱk(xi)dx2 · · · dxp. (4.33)

First note

S̃(ϱk)(x) = ϱk(x) + τ L̂∗ϱk(x) +

∫ τ

0

(τ − s)(L̂∗)2esL̂
∗
ϱkds, (4.34)

while

G∞(ϱk)(x1) =

∫
(Rd)p−1

p∏
i=1

ϱk(xi)dx2 · · · dxp + τ

∫
(Rd)p−1

L̄∗
p∏

i=1

ϱk(xi)dx2 · · · dxp

+

∫ τ

0

(τ − s)

∫
(Rd)p−1

(L̄∗)2esL̄
∗

p∏
i=1

ϱk(xi)dx2 · · · dxpds. (4.35)

The first line of (4.35) is reduced to

ϱk(x1)− τ

∫
(Rd)p−1

∇x1 ·
([

b(x1) +
1

p− 1

∑
j:j ̸=1

K(x1 − xj)

] p∏
i=1

ϱk(xi)

)
dx2 · · · dxp

+ τσ2∆x1
ϱk(x1) = ϱk(x1) + τ L̂∗ϱk(x1), (4.36)

where we used ∫
(Rd)p−1

∇x1 ·
([

b(x1) +
1

p− 1

∑
j:j ̸=1

K(x1 − xj)

] p∏
i=1

ϱk(xi)

)
dx2 · · · dxp

= ∇x1 ·
([

b(x1) +

∫
Rd

K(x1 − y)ϱk(y)dy

]
ϱk(x1)

)
.

Hence, we find

|S̃(ϱk)(x)− G∞(ϱk)(x)|

6
∫ τ

0

(τ − s)

[
|(L̂∗)2esL̂

∗
ϱk|+

∣∣∣∣ ∫
(Rd)p−1

(L̄∗)2esL̄
∗
( p∏

i=1

ϱk(xi)

)
dx2 · · · dxp

∣∣∣∣]ds. (4.37)

Now, we will apply Lemma 2.5 for q = 1 with δ = τ2 and µ̂ = ρ̂dx with

ρ̂ =
1

τ2

∫ τ

0

(τ − s)

[
|(L̂∗)2esL̂

∗
ϱk|+

∣∣∣∣ ∫
(Rd)p−1

(L̄∗)2esL̄
∗
( p∏

i=1

ϱk(xi)

)
dx2 · · · dxp

∣∣∣∣]ds.
The moment M1 of µ̂ is controlled by C(Mq,4) for a constant C depending on Mq,4. To see this, we first

remark that for x ∈ Rd, one has 1+ |x| 6 2+ |x|2. Both L̂∗ and L̄∗ are constant operators, and then one

has by Lemma 4.8(iii) that for some q > 1,∫
Rd

(2 + |x|2)ρ̂ dx 6 CMq,4.

To illustrate how this is estimated, we take the second term as an example:∫
Rd

(2 + |x|2)
∣∣∣∣ ∫

(Rd)p−1

(L̄∗)2esL̄
∗

p∏
i=1

ϱk(xi)dx2 · · · dxp

∣∣∣∣dx
6

∫
(Rd)p

(2 + |x1|2)
∣∣∣∣(L̄∗)2esL̄

∗
p∏

i=1

ϱk(xi)

∣∣∣∣dx1 · · · dxp

=

∫
(Rd)p

(
2 +

1

p

∑
i

|xi|2
)∣∣∣∣(L̄∗)2esL̄

∗
p∏

i=1

ϱk(xi)

∣∣∣∣dx1 · · · dxp

6
∫
(Rd)p

(
2 +

1

p

∑
i

|xi|2
)∣∣∣∣(L̄∗)2

p∏
i=1

ϱk(xi)

∣∣∣∣dx1 · · · dxp.
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This is controlled by Mq,4. Note that the dependence in τ for the constant C(τ) in Lemma 4.8 has been

omitted since τ . O(1).

Lastly, the constants C(Mq,0) and C(Mq,4) clearly have an upper bound g(Mq,4) with g nondecreasing,

defined on [0,∞).

With the key one-step estimate established in Lemma 4.13 above, we can now finish the proof of

Theorem 4.12.

Proof of Theorem 4.12. By the semigroup property of {Gk∞}, one can find easily that

W1(Gn∞(ϱ0), ϱ(nτ)) 6
n∑

m=1

W1(Gn−m+1
∞ (ϱ((m− 1)τ)),Gn−m

∞ (ϱ(mτ))).

By Proposition 4.1, under Assumptions 2.2 and 4.3, one has for nτ 6 T ,

n∑
m=1

W1(Gn−m+1
∞ (ϱ((m− 1)τ)),Gn−m

∞ (ϱ(mτ))) 6
n∑

m=1

e(β+2L)(n−m)τW1(G∞(ϱ((m− 1)τ)), ϱ(mτ)).

Combining Proposition 4.11 and Lemma 4.13, W1(G∞(ϱ((m−1)τ)), ϱ(mτ)) 6 C(T )τ2 and thus the claim

follows.

Under Assumptions 2.3 and 4.3, by using Propositions 4.1 and 4.11, the above estimates can be changed

by replacing α with −(r−2L), and W1(G∞(ϱ((m−1)τ)), ϱ(mτ)) now is bounded by Cτ2 with C uniform

in T . Hence, the conclusions follow easily.

5 Some helpful discussions

In this section, we perform some helpful discussions to deepen the understanding and extend the results

to second order interacting particle systems.

5.1 The mean field limit for τ ≪ 1

Formally, as τ → 0, the equation for Y 1 in (1.5) tends to (i.e., the limit for limτ→0 limN→∞) the SDE

dY = b(Y )dt+
1

p− 1

p−1∑
j=1

K(Y − Yj)dt+
√
2σdW (5.1)

with Yj ∼ L (Y ) being i.i.d., and {Yj(si)}’s are independent for different time points si. Theorem 4.12

essentially tells us that the law of this SDE obeys the same nonlinear Fokker-Planck equation (1.2), which

was satisfied by the law of the following seemingly different SDE:

dX = b(X)dt+

(∫
Rd

K(X − y)ϱ(y, t)dy

)
dt+

√
2σdW, ϱ(x, t)dx = L (X(t)). (5.2)

See Figure 3 for illustration (compare with Figure 1).

To understand this, we consider a small but fixed τ , and the following SDEs (with the force field frozen

at tk):

dŶ = b(Y )dt+
1

p− 1

p−1∑
j=1

K(Ŷ − Y j
0 )dt+

√
2σdW, Y j

0 ∼ L (Y (tk)),

dX̂ = b(X̂)dt+

(∫
Rd

K(X̂ − y)ϱ(y, tk)dy

)
dt+

√
2σdW.

(5.3)

The probability density for the former at tk + τ is
∫
Rd dyϱ(y, tk)e

τL∗
yϱ(·, tk), where

L∗
y = −∇ · ([b(x) +K(x− y)]·) + σ2∆x,
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N

i.i.d.

i.i.d.

Figure 3 Illustration of the various SDEs in different regime

while the probability density for the latter is eτL̂
∗
ϱ(·, tk) with

L̂∗ = −∇ ·
([

b(x) +

∫
Rd

K(x− y)ϱ(y, tk)dy

]
·
)
+ σ2∆x =

∫
Rd

dyϱ(y, tk)L∗
y.

Clearly, to the leading order, the changing rates of the probability densities are the same.

In Figure 3, we have made a stronger claim that the X and Y processes in the right-upper corner are

equal in L2, instead of “equal in law”, if the Brownian motions W used are the same. To see this, one

may compute

d

dt
E|X − Y |2 = 2E(X − Y ) · (b(X)− b(Y )) + 2E(X − Y ) ·

(
K ∗ ϱ(·, t)(X)− 1

p− 1

p−1∑
j=1

K(Y − Yj)

)
.

Since Yj(t) is independent of Y (t) and X(t), one has

E(X − Y ) ·
(
K ∗ ϱ(·, t)(X)− 1

p− 1

p−1∑
j=1

K(Y − Yj)

)
= E(X − Y ) · (K ∗ ϱ(·, t)(X)−K ∗ ϱ̄(·, t)(Y )),

where ϱ̄ is the law of Y . By taking τ → 0 in Theorem 4.12, ϱ̄ = ϱ. Hence, one actually has

d

dt
E|X − Y |2 6 2(β + L)E|X − Y |2.

Hence, X = Y in L2.

5.2 Regarding the approximation in Lemma 4.13

Usually, the Wasserstein distance (especially W2) was estimated using the SDEs. A natural question is

therefore whether one can estimate the Wasserstein distance in Lemma 4.13 via the SDE approach.

Below, we illustrate the issue using the W2 distance and the approximating problem (5.3) (with the

force expressions frozen). Here, we assume the Brownian motions used are the same. The values Y j
0 are

i.i.d., drawn from ϱ(·).
We compute that

d

dt
E|X̂ − Ŷ |2 = E(X̂ − Ŷ ) · (b(X̂)− b(Ŷ )) +D,

where

D = E(X̂ − Ŷ ) ·
(
K̄(X̂)− 1

p− 1

p−1∑
j=1

K(Ŷ − Y j
0 )

)
.
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Clearly, for fixed x,

E
1

p− 1

p−1∑
j=1

K(x− Y j
0 ) = K̄(x). (5.4)

Hence, if Ŷ is independent of Y j
0 ’s, then this term can be controlled as

E(X̂ − Ŷ ) · (K̄(X̂)− K̄(Ŷ )) 6 CE|X̂ − Ŷ |2.

One is thus tempted to believe that even though that Ŷ is not independent of Y j
0 , one can do the

Itô-Taylor expansion and the extra term is small enough, which can yield the desired error.

Unfortunately, if one is going to do the Itô-Taylor expansion in Ŷ , one may find that D = O(τ). In

fact,

(X̂ − Ŷ ) ·
(
K̄(X̂)− 1

p− 1

p−1∑
j=1

K(Ŷ − Y j
0 )

)

=

∫ t

0

(
K̄(X̂(s))− 1

p− 1

p−1∑
j=1

K(Ŷ (s)− Y j
0 )

)
·
(
K̄(X̂(t))− 1

p− 1

p−1∑
j=1

K(Ŷ (t)− Y j
0 )

)
ds.

If we take expectation, the variance of the random force 1
p−1

∑p−1
j=1 K(x − Xj

0) appears, which gives

D = O(τ). Hence, this estimate is not good and the mean square error is only like√
E|X̂ − Ŷ |2 = O(τ).

This means that the consistency (5.4) brings no benefit for this mean square error.

Intrinsically, the mean square error above is roughly comparable with∫
ϱ(z1) · · · ϱ(zj)W 2

2 (e
τL̂∗

ϱ, e
tL∗

z1,...,zj ϱ)dz1 · · · dzj .

What we care about is the distance between eτL̂
∗
ϱ and

∫
ϱ(z1) · · · ϱ(zj)e

tL∗
z1,...,zj ϱdz1 · · · dzj . The former

involves the variance introduced by the random force while the latter does not have this issue and uses

the consistency (5.4). This is why we used the total variation norm to obtain the one-step error under

the W1 distance in Lemma 4.13.

5.3 Approximation using weak convergence

The weak convergence is another popular gauge of the convergence of probability Gk∞(ϱ0) to ϱ(kτ) [31,42].

Pick a test function φ. By using a consistency condition similar to (4.36), it is not very hard to show∣∣∣∣ ∫
Rd

φ(y)S(τ)(µ)(dy)−
∫
Rd

φ(y)G∞(µ)(dy)

∣∣∣∣ 6 Cτ2 (5.5)

for any µ, where we recall S(t) is the evolution operator for (1.2). Hence, the one-step error is easy to

control for weak convergence. However, the difficulty is to get a certain stability property of the nonlinear

dynamics under the weak topology. That means, if two measures are close in the weak topology at some

time, then let them evolve under G∞ for k times, one needs them to be close. Consider

Un(x) :=

∫
Rd

φ(y)Gn∞(δ(y − x))dy.

Unlike the linear case (see [17]), it is hard to write Un as some operator acting on Un−1 due to the non-

linearity of G∞. Proving the stability of this nonlinear dynamics under weak topology seems challenging,

and this is why we chose the Wasserstein metric.
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5.4 A remark for second order systems

As shown in [28], the Random Batch Method applied equally well to second order systems on finite time

interval. Repeating the proof here, one can show that the similar mean field limit holds for second order

systems when t ∈ [0, T ]. In particular, let us consider the models for swarming and flocking considered

in [1]:

ẋi = vi,

v̇i =
1

N

∑
j

Hα(xi, xj , vi)(vj − vi).
(5.6)

Here, Hα(·, ·, ·) is some function modeling interactions between particles. The mean field limit of (5.6)

for t ∈ [0, T ] takes the following form (rigorous justification needs some assumptions on Hα [27]):

∂tf +∇x · (vf) +∇v · (ξ(f)f) = 0,

ξ(f) =

∫
R2d

Hα(x, y, v)(w − v)f(y, w, t)dwdy.
(5.7)

Albi and Pareschi [1] developed some stochastic binary interaction algorithms for the dynamics. The

symmetric Nanbu algorithm (see [1, Algorithm 4.3]) is like the Random Batch Method when p = 2 and

the Random Batch Method can be viewed as the generalization of this Nanbu algorithm. When applying

the Random Batch Method to the particle system and consider N ≫ 1, the dynamics is expected to be

close to the following limiting dynamics:

Algorithm 3 Mean field dynamics of the RBM for the flocking dynamics (5.6)

1: From tk to tk+1, the distribution fk ∈ P(R2d) will be transformed into fk+1 = Q∞(fk) as follows.

2: Let f (p)(. . . , tk) = f⊗p
k be a probability measure on (R2d)p ∼= R2pd.

3: Evolve f (p) by time τ according to the following:

∂tf
(p) +

p∑
i=1

∇xi · (vif
(p)) +

p∑
i=1

∇vi · (ξif
(p)) = 0,

ξi =
1

p− 1

∑
j:j ̸=i

Hα(xi, xj , vi)(vj − vi).

(5.8)

4: Set

fk+1 = Q∞(fk) :=

∫
(R2d)(p−1)

f (p)(·, dy2, . . . , dyp; ·, dv2, . . . , dvp; t−k+1). (5.9)

We expect that this nonlinear operator will approximate the nonlinear kinetic equation (5.7). In this

sense, we believe the N → ∞ limit of [1, Algorithm 4.3] will be an analogue of the dynamics Q∞ given

in Algorithm 3.

6 Conclusions

We first identified and justified in this work the mean field limit of the RBM for the fixed step size τ .

Then we showed that this mean field limit is close to that of the N particle system, though the chaos

arises differently in these two dynamics. The current argument of the mean field limit relies on the fact

that two particles are unlikely to be related in the RBM when N → ∞ for finite iterations. Hence, this

argument cannot give a uniform in τ bound for the speed of the mean field limit. It will be an interesting

topic to investigate how mixing and chaos can be created in the RBM after two particles in a batch are

separated, so that one may obtain a convergence speed independent of τ .
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Appendix A Proof of Proposition 4.5

Step 1. A priori estimates on the moments and the entropy.

We first perform a priori estimates on the moments. Fix q > 2. We have

∂t

∫
Rd

|x|qϱdx =

∫
Rd

|x|q{−∇ · [(b(x) +K ∗ ϱ)ϱ]}dx+

∫
Rd

|x|qσ2∆ϱdx

=

∫
Rd

q|x|q−2x · b(x)ϱdx+

∫∫
Rd×Rd

q|x|q−2x ·K(x− y)ϱ(x)ϱ(y)dxdy

+ σ2

∫
Rd

q(q − 2 + d)|x|q−2ϱdx =: I1 + I2 + I3.

For I2, one has∫∫
Rd×Rd

q|x|q−2x ·K(x− y)ϱ(x)ϱ(y)dxdy 6 q

∫∫
Rd×Rd

|x|q−2x ·K(0)ϱ(x)ϱ(y)dxdy

+ qL

∫∫
Rd×Rd

|x|q−1(|x|+ |y|)ϱ(x)ϱ(y)dxdy.

By Young’s inequality,

q

∫∫
Rd×Rd

|x|q−2x ·K(0)ϱ(x)ϱ(y)dxdy 6 δ

∫
Rd

|x|qϱdx+ C(δ).
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Also, Young’s inequality implies that

|x|q−1|y| 6 q − 1

q
|x|q + 1

q
|y|q.

Hence,

I2 6 q(2L+ δ)

∫
Rd

|x|qϱdx+ C(δ).

If q = 2, I3 is a constant. Otherwise if q > 2, one can use Young’s inequality and

I3 6 δ

∫
Rd

|x|qϱdx+ C(δ).

For I1, under Assumption 2.2, one has

I1 =

∫
Rd

q|x|q−2x · (b(x)− b(0))ϱdx+

∫
Rd

q|x|q−2x · b(0)ϱdx

6 βq

∫
Rd

|x|qϱdx+ C

∫
Rd

|x|q−1ϱdx.

Hence,

I1 + I2 + I3 6 q(β + 2L+ δ)

∫
Rd

|x|qϱdx+ C(δ),

where the concrete meaning of δ and C(δ) have changed. By using Grönwall’s inequality, the moments

can be controlled.

Now, we perform a priori estimates on the entropy. Multiply 1 + log ϱ on both sides and integrate

d

dt

∫
Rd

ϱ log ϱdx = −
∫
Rd

ϱ(x)∇ · (b(x) + (K ∗ ϱ)(x))dx− 4σ2

∫
Rd

|∇√ϱ|2dx.

By the moment control, the first term is bounded on [0, T ]. Hence, the entropy can be controlled.

As a remark, in the case σ = 0, ϱ could be zero at some points. In this case 1+ log ϱ is not a good test

function. This issue will be explained further in Step 2.

Step 2. The existence in L∞(0, T ;L1(Rd)) ∩ C([0, T ];P(Rd)).

Take a smooth function χ ∈ Cc[0,∞), i.e., 1 in [0, 1] and zero on [2,∞). Consider the following

approximating equation:

∂tρN = −∇ · (b(x)χ(x/N)ρN )−∇ · (ρN (K ∗ ρN )) + ∆ρN ,

ϱN |t=0 = ϱ0.

Now, b(x)χ(x/N) and K are Lipschitz functions and b(x)χ(x/N) is bounded (compactly supported). The

existence of a smooth solution is clear (see, for example, [8, Appendix A]). Performing similar estimates

to that in Step 1, we have

sup
N

sup
06t6T

∫
Rd

|x|2ϱNdx 6 C(T )

and

sup
N

sup
06t6T

∫
Rd

ϱN log ϱNdx 6 C(T ).

Note that for the entropy, the zeros of ϱN may make 1 + log(ϱN ) an invalid test function. We instead

multiply
ϱN

ϱN + ϵ
+ log(ϱN + ϵ)

as the test function for ϵ > 0. Then, the left-hand side becomes d
dt

∫
ϱN log(ϱN + ϵ)dx (note that

ϵ→ ϱ log(ϱ+ ϵ) is non-decreasing so later one can take ϵ→ 0 to get the desired entropy control). For the

right-hand side, we note

∇
[

ϱN
ϱN + ϵ

+ log(ϱN + ϵ)

]
=

(ϱN + 2ϵ)∇ϱN
(ϱN + ϵ)2

.
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For the transport term,

b(x)χ

(
x

N

)
ϱN (ϱN + 2ϵ)∇ϱN

(ϱN + ϵ)2
= (b(x)χ(x/N)) · ∇ϱN + ϵ2(b(x)χ(x/N)) · ∇

(
1

ϱN + ϵ

)
.

By doing integration by parts and sending ϵ → 0 first, the second term here will vanish. Through this

way, a priori estimate on the entropy can be justified for this approximating sequence.

The moment estimates imply that {ϱNdx} is tight while the entropy estimates imply that {ϱN} is

uniformly integrable. By the Dunford-Pettis theorem, ϱN converges weakly to some ϱ ∈ L1
loc([0, T ]×Rd)

and ϱdx ∈ C([0, T ];P(Rd)). Moreover, with the moment control and the uniform integrability∫
Rd

K(x− y)ϱN (y)dy →
∫
Rd

K(x− y)ϱ(y)dy

pointwise and actually uniformly on compact sets. With this, then one can easily verify that ϱ is

a desired weak solution with the corresponding moment control. This will further imply that ϱ ∈
L∞([0, T ];L1(Rd)).

Step 3. The uniqueness and smoothness of the solution.

We now aim to prove the uniqueness. We divide this step into two sub-steps.

Step 3.1. The weak solution is a strong solution.

Let ϱ be such a weak solution with

sup
06t6T

∫
Rd

|x|ϱdx < C(T ).

Then K̄(x, t) := K ∗ ϱ is a smooth function (since K is smooth) and

|K̄(0)| 6
∣∣∣∣ ∫

Rd

K(x)ϱ(x)dx

∣∣∣∣ 6 |K(0)|+ LC(T ).

Moreover, it is easy to see that K̄(x, t) is also Lipschitz with the Lipschitz constant bounded by L.

We claim that for a given ϱ, the solution to

∂tu = −∇ · (b(x)u+ K̄(x, t)u) + σ2∆u,

u |t=0 = ϱ0

is unique and thus must be ϱ. In fact, the existence can be justified by the following SDE as its law is a

weak solution:

dX = (b(X) + K̄(X, t))dt+
√
2σdW, X0 ∼ ϱ0dx.

For the well-posedness of such SDEs, one can refer to [38, Chapter 2, Theorem 3.5], and also see a recent

work with weaker assumptions [47]. Regarding the uniqueness, one considers the difference of two such

solutions ui, i = 1, 2,

∂t(u1 − u2) = −∇ · ([b(x) + K̄(x, t)](u1 − u2)) + σ2∆(u1 − u2).

We then multiply hϵ(u1 − u2) := h((u1 − u2)/ϵ) on both sides and take integral. Here, h(·) is an odd

function that increases monotonely from −1 to 1 on [−1, 1]. It is 1 on [1,∞). Hence, h(·/ϵ) is some

approximation for the sign function.

Then,

d

dt

∫
Rd

Hϵ(u1 − u2)dx 6
∫
Rd

h′
(
u1 − u2

ϵ

)
u1 − u2

ϵ
(b(x) + K̄(x, t)) · ∇(u1 − u2)dx,

where Hϵ(u) =
∫ u

0
hϵ(s)ds. The right-hand side goes to zero when ϵ→ 0, because

h′
(
u1 − u2

ϵ

)
u1 − u2

ϵ
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is bounded and nonzero only on |u1 − u2| 6 ϵ. Also, Hϵ(u1 − u2)→ |u1 − u2| as ϵ→ 0. Hence, the claim

is shown and thus

u = ϱ.

By the theory of the linear PDEs, u = ϱ is in fact a strong solution and smooth. For the general theory

of linear parabolic equations, one may refer to [20].

Step 3.2. The uniqueness of the nonlinear Fokker-Planck equation.

For the uniqueness of the nonlinear Fokker-Planck equation, we cannot use the technique in Step 3.1

as we show the uniqueness for the linear PDE, as the term K ∗ ϱ involves the solution ϱ itself. Also, the

classical Dobrushin’s estimate [14,22] cannot be used because the flow map is not well defined before we

show the uniqueness of ϱ.

Instead, we use the interacting particle system for the mean-field limit and show that any weak solution

is close to the one marginal distribution of the N -particle system. This then will result in the uniqueness.

Fix any weak solution of the nonlinear Fokker-Planck equation. Consider the following SDEs:

dXi = b(Xi)dt+ (K ∗ ϱ)(Xi)dt+
√
2σdW i, i = 1, . . . , N. (A.1)

According to the argument in Step 3.1, the law of each Xi is exactly the weak solution ϱ used to convolve

with K. Moreover, these Xi’s are independent.

Now, consider the interacting particle system

dY i = b(Y i)dt+
1

N − 1

∑
j:j ̸=i

K(Y i − Y j)dt+
√
2σdW i, i = 1, . . . , N. (A.2)

The next step is to use the technique in the proof of [10, Theorem 3.1]. We compute for fixed i,

1

2

d

dt
E|Xi − Y i|2 = E(Xi − Y i) · (b(Xi)− b(Y i))

+ E(Xi − Y i) ·
(
K̄(Xi, t)− 1

N − 1

∑
j:j ̸=i

K(Y i − Y j)

)
. (A.3)

The first term is controlled by βE|Xi − Y i|2. The second term is split as

E(Xi − Yi) ·
(
K̄(Xi, t)−

1

N − 1

∑
j:j ̸=i

K(Yi − Yj)

)

= E(Xi − Yi) ·
(
K̄(Xi, t)−

1

N − 1

∑
j:j ̸=i

K(Xi −Xj)

)

+ E(Xi − Yi) ·
(

1

N − 1

∑
j:j ̸=i

K(Xi −Xj)−
1

N − 1

∑
j:j ̸=i

K(Yi − Yj)

)
=: D1 +D2.

The term D2 is easily controlled by 2LE|Xi − Yi|2 by the exchangeability. For D1, one can control it as

D1 6
√
E|Xi − Yi|2

√√√√E
∣∣∣∣K̄(Xi, t)−

1

N − 1

∑
j:j ̸=i

K(Xi −Xj)

∣∣∣∣2.
However,

E
∣∣∣∣K̄(Xi, t)−

1

N − 1

∑
j:j ̸=i

K(Xi −Xj)

∣∣∣∣2
=

1

(N − 1)2

∑
j,k:j ̸=i,k ̸=i

E(K̄(Xi, t)−K(Xi −Xj))(K̄(Xi, t)−K(Xi −Xk)).
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By independence, the terms for j ̸= k are zero. Hence, only N − 1 terms will survive. This means

D1 6
√
E|Xi − Yi|2

C1(T, ϱ)√
N − 1

.

Moreover, C1(T, ϱ) will have an upper bound that is independent of T if Assumption 2.3 holds.

By Grönwall’s inequality, √
E|Xi − Yi|2 6 C(T, ϱ)

1√
N − 1

.

Hence for any two weak solutions ϱ1 and ϱ2, we have

sup
06t6T

W2(ϱ1, ϱ2) 6 [C(T, ϱ1) + C(T, ϱ2)]
1√

N − 1
.

Taking N →∞ yields the uniqueness of the solutions to the nonlinear Fokker-Planck equation.

Step 4. Strong confinement.

Under Assumption 2.3, one in fact has

I1 + I2 + I3 6 q(−r + 2L+ δ)

∫
Rd

|x|qϱdx+ C(δ).

The assertions about moments have then been proved with the application of Grönwall’s inequality.

Under this condition, the estimate of D1 term in Step 3 can also be independent of T , because of this

uniform moment control. Hence, the mean field limit can be uniform in T .

Lastly, to show the convergence of ϱ as t→∞, we consider two different initial data ϱj,0 where j = 1, 2.

Then, one can consider (A.2) with these two initial data. Pick the coupling between Y i
1 (0) and Y i

2 (0)

(the data for different i’s are independent) such that

E|Y i
1 (0)− Y i

2 (0)|q 6 W q
q (ϱ1,0, ϱ2,0) + ϵ, ∀ i = 1, . . . , N.

Then by a similar computation,

d

dt
E|Y i

1 (t)− Y i
2 (t)|q 6 q(−r + 2L)E|Y i

1 (t)− Y i
2 (t)|q.

By fixing t > 0 and taking N → ∞, L (Y i
j (t)) → ϱj(t), j = 1, 2. Hence, the evolutional nonlinear

semigroup for the nonlinear Fokker-Planck equation is a contraction

Wq(ϱ1(t), ϱ2(t)) 6 Wq(ϱ1,0, ϱ2,0)e
−(r−2L)t.

Thus, the last claim follows.

Appendix B Proof of Lemma 4.10

Since σ > 0, without loss of generality, we will assume

σ ≡ 1.

We first fix s > 0. Consider the trajectory determined by

∂tZ(t; y, s) = b(Z, t), Z(s; y, s) = y. (B.1)

Then, one has
1

2

d

dt
|Z|2 6 β1|Z|2 + C|Z|

as b(0, t) is bounded. Hence,
d

dt
|Z| 6 β1|Z|+ C.
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This means

|Z| 6 |y|eβ1(t−s) + C

∫ t

s

eβ1(t−s)ds. (B.2)

Moreover, (4.15) implies that

v · ∇b1(x, t) · v 6 β1|v|2, ∀ v, x ∈ Rd, t > 0.

Consequently,

|∇yZ| 6
√
deβ1(t−s) (B.3)

uniformly in y, where

|A| :=
√∑

ij

A2
ij

is the matrix Frobenius norm.

Assume without loss of generality |x| > |y|. Clearly,

|b1(x, t)− b1(y, t)| 6 |x− y|
∣∣∣∣ ∫ 1

0

∇b1(xθ + y(1− θ), t)dθ

∣∣∣∣.
Due to the assumption of polynomial growth of derivatives of b1,

|∇b1(xz + y(1− z), t)| 6 C(1 + |xθ + y(1− θ)|q).

If |y| 6 1
2 |x|, then

|xθ + y(1− θ)| 6 3

2
|x| 6 3|x− y|.

Otherwise, we bound this by a polynomial of |y| directly. Hence,

|b1(x, t)− b1(y, t)| 6 min(P1(|x|), P1(|y|))|x− y|+ P2(|x− y|)|x− y| (B.4)

for some polynomials P1 and P2.

We denote

Φ0(x, t; y, s) :=
1

(2π(t− s))d/2
exp

(
− |x− Z(t; y, s)|2

2(t− s)

)
. (B.5)

Below, we establish an important lemma indicating that Φ0 is the main term of Φ, and Lemma 4.10

will follow easily.

Lemma B.1. It holds that

Φ(x, t; y, s) = Φ0(x, t; y, s) + u(x, t; y, s), (B.6)

where u satisfies ∫
Rd

(1 + |x|q)|∇yu|dx 6 h(t− s)P (|y|) (B.7)

for some polynomial P (·), some nondecreasing function h(·) defined on [0,∞).

Moreover, if β1 < 0, h(t− s) can be taken as

h(t− s) = Ce−δ1(t−s) (B.8)

for some δ1 > 0.
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Proof. It is not hard to verify

∂tΦ0 +∇x · (b1(x, t)Φ0)−∆xΦ0 = ∇x · ([b1(x, t)− b(Z, t)]Φ0). (B.9)

Hence, letting u = Φ− Φ0, one finds

∂tu+∇x · (b1(x, t)u)−∆xu = −∇x · ([b1(x, t)− b(Z, t)]Φ0),

u |t=s = 0.
(B.10)

Letting

v := ∂yiu,

one has

∂tv +∇x · (b1(x, t)v)−∆xv = R,

u |t=s = 0,
(B.11)

where

R := ∇x · b1(x, t)∇Φ0 · ∂yiZ + ∂yiZ · ∇b1(x, t) · ∇Φ0 + (b1(x, t)− b1(Z, t)) · ∇2Φ0 · ∂yiZ.

By writing

∇x · b1(x, t) = [∇x · b1(x, t)−∇ · b1(Z, t)] +∇ · b1(Z, t),

it is not hard to see (using also (B.3) and (B.4))

|R| 6 P (|Z|) 1

(t− s)(d+1)/2
exp

(
− γ|x− Z|2

2(t− s)

)
eβ1(t−s)

for some polynomial P and γ ∈ (0, 1).

We then find

v =

∫ t

s

Sλ,tRdλ.

Below, we use hi(·) to denote some nondecreasing functions defined on [0,∞). By Lemma 4.8, one has∫
Rd

(1 + |x|q)|v|dx 6 h1(t− s)

∫ t

s

∫
Rd

(1 + |x|q)|R(x, λ)|dxdλ.

Clearly, ∫
Rd

(1 + |x|q) 1

(t− s)(d+1)/2
exp

(
− δ|x− Z|2

2(t− s)

)
dx 6 C

1 + (t− s)q/2√
t− s

(1 + |Z|q).

Moreover, by the stability of trajectory of Z (see (B.2)), P (|Z|) 6 h2(t− s)P (|y|). Hence,∫
Rd

(1 + |x|q)|v|dx 6 h3(t− s)P (|y|)
∫ t

s

1√
λ− s

dλ.

If β1 < 0, we consider t > s+ 1 and

v =

∫ t

s

Sλ,tRdλ = S(t+s)/2,t

∫ t+s
2

s

Sλ,(t+s)/2Rdλ+

∫ t

(t+s)/2

Sλ,tRdλ. (B.12)

The second term is like∫
Rd

(1 + |x|q)|v|dx 6 C

∫ t

(s+t)/2

∫
Rd

(1 + |x|q)|R(x, λ)|dxdλ

6 C

∫ t

(s+t)/2

eβ1(λ−s)P (|Z|)
∫
Rd

1 + |x|q

(t− s)(d+1)/2
exp

(
− δ|x− Z|2

2(t− s)

)
dxdλ.
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This is easily controlled by P (|y|)e−δ1(t−s) for some polynomial P and δ1 > 0 (recall (B.2)).

For the first term in (B.12), we note
∫ t+s

2

s
Sλ,(t+s)/2Rdλ ∈ L1, and∫

Rd

∫ t+s
2

s

Sλ,(t+s)/2Rdλdx = 0

since
∫
R(x, λ)dx = 0 for all λ. Hence, Lemma 4.8(ii) implies that∫
Rd

(1 + |x|q)
∣∣∣∣S(t+s)/2,t

∫ t+s
2

s

Sλ,(t+s)/2Rdλ

∣∣∣∣dx 6 e−δ(t−s)/2P

(
Mq1

(∣∣∣∣ ∫ t+s
2

s

Sλ,(t+s)/2Rdλ

∣∣∣∣)).
For the inside,

Mq1

(∣∣∣∣ ∫ t+s
2

s

Sλ,(t+s)/2Rdλ

∣∣∣∣) 6 C

∫ (t+s)/2

s

∫
Rd

(1 + |x|q1)|R|dxdλ,

where C is independent of time as β1 < 0. As has been proved, the integral here is controlled by products

of polynomials of |y| and |t− s|. Hence, the first term is also controlled similarly.

As Lemma B.1 is proved, Lemma 4.10 is very straightforward, since |∇yZ| 6 Ceβ1(t−s).
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