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Swimming and pumping of rigid helical bodies in
viscous fluids

Lei Lia) and Saverio E. Spagnolieb)
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Wisconsin 53706, USA

(Received 18 January 2014; accepted 27 March 2014; published online 21 April 2014)

Rotating helical bodies of arbitrary cross-sectional profile and infinite length are
explored as they swim through or transport a viscous fluid. The Stokes equations
are studied in a helical coordinate system, and closed form analytical expressions
for the force-free swimming speed and torque are derived in the asymptotic regime
of nearly cylindrical bodies. High-order accurate expressions for the velocity field
and swimming speed are derived for helical bodies of finite pitch angle through
a double series expansion. The analytical predictions match well with the results
of full numerical simulations, and accurately predict the optimal pitch angle for
a given cross-sectional profile. This work may improve the modeling and design
of helical structures used in microfluidic manipulation, synthetic microswimmer
engineering, and the transport and mixing of viscous fluids. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4871084]

I. INTRODUCTION

The transport of fluid by helical structures has a long history in engineering, dating as far back as
the invention of the screw pump by Archimedes in ancient Greece.1 Today, helically driven viscous
flows are of central importance in such applications as the mixing of Newtonian2–5 and complex6

fluids. Helical flows can lead to chaotic mixing patterns, which may allow for efficient mixing
even in highly dissipative systems.7 There have also been a number of recent bio-inspired feats of
engineering, including the development of chiral magnetic bodies that may be propelled through
viscous environments by magnetic fields.8–12 Peyer et al.13 give a review of recent applications using
magnetic helical structures at the micrometer scale, which among other exciting uses may someday
lead to minimally invasive surgery and drug delivery techniques.14–16

A rather older example of helical fluid transport is found in the bacterial flagellum, which
microorganisms have used to propel themselves through fluids for over two billion years.17–19

The fluid flow driven by the motion of an immersed body is characterized by the Reynolds number,
Re = ρ UL/μ, where U and L are characteristic velocity and length scales, ρ is the fluid density, and μ

is the fluid viscosity. Low Reynolds number flows are those in which viscous dissipation dominates
inertial effects. A serious constraint for swimming and pumping in viscous fluids is the Scallop
Theorem, which states that no time-reversible boundary motion may lead to either swimming or net
transport at zero Reynolds number.20 To overcome this challenge, many microorganisms (for which
the flow is characterized by Re ≈ 10−4 − 10−2) evolved to swim through fluids by rotating one or
many helical flagella. The drag anisotropy of filaments in viscous fluids, along with the unidirectional
passage of waves along the flagellum, leads to a net transport of the organism.17, 21, 22 Recent
theoretical and numerical works have investigated the validity of theoretical approximations,23

synchronization, and bundling of multiple helical filaments,24–32 and the locomotion of helical
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bodies in complex fluid environments.33–37 A review of the large body of related literature has been
provided by Lauga and Powers.18

A natural question in the study of either biological or engineered propulsion and pumping is
that of optimization. Inspired by the pioneering work on the subject by Lighthill,17 there have been
many recent studies of optimal helical geometries for propulsion in viscous fluids. Investigations
have included the hydrodynamic optimization of: helical waveforms for propelling a spherical
load,38 general helical propellers,39 polymorphic forms in the bacterial flagellum,40, 41 and helical
bodies in a cylindrical channel.42 A thermodynamic efficiency for Stokesian swimming has also
been introduced.43 Numerical optimization has been performed for chiral colloidal aggregates and
cargo-bearing bodies,44, 45 and analytical optimization has been considered for slender magnetically
driven filaments using a local resistive force theory.46

In this paper, we investigate the force-free swimming of an infinitely long, rotating helical body
of a given arbitrary cross-section in an infinite fluid. Helical coordinates are adopted to study the
Stokes equations in a body-conforming coordinate system. Closed form analytical expressions for
the force-free swimming speed and torque are derived in the asymptotic regime of nearly cylindrical
bodies. The analytical predictions match well with the results of full numerical simulations, and
accurately predict the optimal pitch angle for a given cross-sectional profile. While we will discuss
the results in the context of force-free swimming, the problems of fluid pumping and force-free
swimming are simply related by a Galilean transformation. Due to the linearity of Stokes flow, the
limiting far-field fluid velocity in the former may be viewed as the force-free swimming speed in
the latter, and both problems are analyzed using an identical framework. In other words, although
we will solve the force-free swimming problem, in so doing we will also have solved the pumping
problem.

The paper is organized as follows. The equations of motion are presented and written in terms
of a helical coordinate system in Sec. II. The numerical method used to study the dynamics of
an arbitrary (e.g., large amplitude) body shape is described in Sec. III, which provides a basis of
comparison for the asymptotic results. In Sec. IV, helical perturbations of the cylindrical base shape
are studied, with resultant swimming speeds reported up to O(ε2) in the general setting, with ε

the size of the relative perturbation of the cylindrical cross-sectional (circular) profile. For single
Fourier-mode descriptions of the body’s cross-sectional profile, we report swimming speeds accurate
to O(ε4), which reveals an optimal choice of pitch angle as a function of the cross-sectional wave
number, as described in Sec. V. We conclude with a discussion in Sec. VI.

II. EQUATIONS OF MOTION AND HELICAL COORDINATE SYSTEM

Consider a right-handed helical body of infinite length, rotating with angular speed ω and
translating with speed U∗, immersed in a fluid of infinite extent. The surface of the body at time t is
described by

y(θ, ζ, t) = A ρ(θ )
[
cos(ν∗ζ + ω t + θ )x̂ + sin(ν∗ζ + ω t + θ )ŷ

] + (ζ + U ∗ t) ẑ, (1)

where θ ∈ [0, 2π ) and ζ ∈ (−∞, ∞), and the wavelength of the deformation along the surface
is given by 2π /ν∗ (the pitch angle is β = tan −1(ν∗A)). The entire body surface is therefore set by
the cross-sectional profile, A ρ(θ ), and the parameter ν∗, as illustrated in Fig. 1. In anticipation of
studying perturbations from a cylindrical surface, we write A ρ(θ ) = A[1 + εf(θ )], where ρ(θ ), ε,
and f(θ ) are dimensionless, and ρ(θ ) and f(θ ) are periodic on θ ∈ [0, 2π ). Figures 2(a)–2(c) show
three examples of such bodies with cross-sectional profiles of increasing wavenumber, all with ν∗A
= 1. The fourth example in Fig. 2(d) is a right-handed helix with a left-handed surface pattern, which
cannot be described by Eq. (1) but will be discussed later.

A particularly useful frame is the one in which the helical geometry (though not the material
surface) remains fixed, namely, ỹ = y − (U ∗ − ω/ν∗) t ẑ. The new frame is unchanged from the lab
frame when U∗ = ω/ν∗. Rewriting Eq. (1) in this new frame, and defining ζ̃ = ζ + (ω/ν∗)t , the
body surface is described by

ỹ(θ, ζ̃ ) = A(1 + ε f (θ ))
[
cos(ν∗ζ̃ + θ )x̂ + sin(ν∗ζ̃ + θ )ŷ

] + ζ̃ ẑ, (2)
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FIG. 1. The surface of a general helical body is described by the cross-sectional parameterization A ρ(θ ) = A (1 + ε f (θ ))
and the vertical pitch by 2π /ν∗ (the pitch angle is given by β = tan −1(ν∗A)). The example shown has a cross-sectional profile
ρ(θ ) = 1 + (1/3)(sin (θ ) − cos (3θ )). A polar coordinate system is defined on a planar cross-section as shown.

while the material on the helical surface moves with velocity

∂

∂t
ỹ(θ, ζ̃ (ζ, t)) = ω A(1 + ε f (θ ))

[− sin(ν∗ζ̃ + θ )x̂ + cos(ν∗ζ̃ + θ )ŷ
] + ω

ν∗ ẑ. (3)

The equations describing a Newtonian fluid flow at zero Reynolds number are the Stokes
equations, which are Galilean invariant and so are unchanged in a frame moving with constant
velocity. The incompressible Stokes equations in the moving frame described above are given by

∇ · σ = −∇ p + μ�u = 0, (4)

∇ · u = 0, (5)

N = 1 N = 2 N = 3

(a) (b) (c) (d)

FIG. 2. Helical body examples with ν = 1, with cross-section parameterizations given by: (a) ρ(θ ) = 1 + (1/2)sin (θ );
(b) ρ(θ ) = 1 + (1/2)sin (2θ ); (c) ρ(θ ) = 1 + (1/2)sin (3θ ). (d) A right-handed helix with a left-handed helical surface pattern,
selected such that the swimming speed during rotation is approximately zero. Cross-sections in the z = 0 plane are also
shown.
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where σ = −pI + 2μE is the Newtonian fluid stress, p is the pressure, u is the fluid velocity in
the moving frame, E = (∇u + ∇uT )/2 is the symmetric rate-of-strain tensor, and μ is the viscosity.
The fluid velocity in the lab frame is given by ulab = u + (U ∗ − ω/ν∗) ẑ. The boundary conditions
are no-slip on the helical surface, denoted by ∂S, and decay of the velocity in the lab frame as
ẑ × y → ∞, so that at a point x̃ in the moving frame we have

u(x̃ ∈ ∂S, t) = ∂ ỹ
∂t

, u(ẑ × x̃ → ∞, t) =
( ω

ν∗ − U ∗
)

ẑ. (6)

We will consider the problem of swimming with zero net force (see Ref. 18), an assumption that
closes the system. In the new frame, the Stokes equations (4) and (5), the boundary description
(2), and the boundary conditions (6) are independent of time, and correspond to a steady state
solution of the swimming speed and fluid velocity. It is therefore sufficient to solve the equa-
tions of motion at t = 0, when the new moving frame is identical to the lab frame, ζ̃ = ζ and
ỹ = y.

The system is made dimensionless by scaling lengths by A, time by 1/ω, velocities by A ω,
and stresses by μ ω. The dimensionless swimming speed is written as U = U∗/(Aω), and we define
ν = ν∗A. Understanding all variables henceforth to be dimensionless, the material velocity on the
body surface is described in the moving frame (see Eq. (3)) by

∂

∂t
ỹ(θ, ζ̃ (ζ, t)) = (1 + ε f (θ ))

[− sin(νζ̃ + θ )x̂ + cos(νζ̃ + θ )ŷ
] + 1

ν
ẑ, (7)

and the Stokes equations are given by −∇ p + �u = 0, ∇ · u = 0.
At t = 0, a body conforming helical coordinate system (r, θ , ζ ) is defined implicitly by

x(r, θ, ζ ) = r
[
cos(νζ + θ )x̂ + sin(νζ + θ )ŷ

] + ζ ẑ, (8)

where θ ∈ [0, 2π ), ζ ∈ (−∞, ∞), and r ∈ [1 + εf(θ ), ∞). However, we retain the convenience of
orthogonality by choosing as a basis that of a cylindrical coordinate system, (r̂, θ̂ , ẑ), with

r̂ = cos(νζ + θ )x̂ + sin(νζ + θ )ŷ, θ̂ = − sin(νζ + θ )x̂ + cos(νζ + θ )ŷ, (9)

so that the nabla operator may be expressed as

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ẑ

(
∂

∂ζ
− ν

∂

∂θ

)
. (10)

Taking advantage of helical symmetry, the velocity field may be written as

u(r, θ, ζ ) = u(r, θ )r̂ + v(r, θ )θ̂ + w(r, θ )ẑ. (11)

Transformation of the Stokes equations, Eqs. (4) and (5), into the helical coordinate system results
in the following system:

∂p

∂r
= 1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2
− 2

r2

∂v

∂θ
+ 1

r2

∂2u

∂θ2
+ ν2 ∂2u

∂θ2
, (12)

1

r

∂p

∂θ
= 1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+ 2

r2

∂u

∂θ
+ 1

r2

∂2v

∂θ2
+ ν2 ∂2v

∂θ2
, (13)

−ν
∂p

∂θ
= 1

r

∂

∂r

(
r
∂w

∂r

)
+ 1

r2

∂2w

∂θ2
+ ν2 ∂2w

∂θ2
, (14)

∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
− ν

∂w

∂θ
= 0. (15)

The boundary conditions, Eqs. (6), in dimensionless form and in the helical coordinate system, are
given by

u(r = 1 + ε f (θ ), θ ) = 0, v(r = 1 + ε f (θ ), θ ) = 1 + ε f (θ ), w(r = 1 + ε f (θ ), θ ) = 1

ν
,

(16)
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u(r → ∞, θ ) = 0, v(r → ∞, θ ) = 0, w(r → ∞, θ ) = 1

ν
− U. (17)

The pressure limits to a constant value, p∞, as r → ∞. Before solving the equations above, we first
describe a numerical method for computing solutions to the full Stokes equations, which can then
be used as a basis for comparison when we derive asymptotically accurate analytical solutions to
the system above in Sec. IV.

III. NUMERICAL SOLUTION OF THE STOKES EQUATIONS IN A HELICAL GEOMETRY

We now describe a numerical method of solving the Stokes equations for arbitrary rotating
and translating helical bodies. Once again we make use of the helical symmetry in the system,
now to significantly improve the speed and accuracy of our computations. The numerical approach
is based on the second kind boundary integral formulation of the Stokes equations (see Refs.
47 and 48). We solve for the mobility of a helical body with a finite number of wavelengths,
NW , and then increase NW until further increases have negligible consequences on the computed
swimming speed and torque. The dimensionless fluid velocity at a point x in the fluid (in the
lab frame) may be represented as an integration over the immersed boundary ∂S and the body
centerline C,

ulab(x) =
∫

∂S
q(y) · T(x, y) · n̂(y) dSy + 1

8π

∫
C

Gc(x, ζ ) · (L ẑ) dζ. (18)

Here, y = y(θ, ζ ) is a parameterization of the surface, dSy is the surface area element with respect
to the integration variable y, Ti jk(x, y) = −6(xi − yi )(x j − y j )(xk − yk)/|x − y|5 is the Stresslet
singularity, Gc(x, ζ )i j = εi jk(xk − ζ δk3)/|x − y|3 is the rotlet (or couplet) singularity, L is an external
torque per unit length acting on the body, and q(y) is an unknown density. Finally, εijk is the Levi-
Civita symbol, and δij is the Kronecker delta. Flows associated with external forces and torques
on the body do not lie in the range of the first integral operator above; the inclusion of singular
solutions to the Stokes equations internal to the body boundary is one method of completing the
flow.47, 48 The line distribution of rotlet singularities along the helical centerline provides for a net
torque and accompanying rotation of the body; since no other forms of completion are included, any
flow represented by the boundary integral equation above is assured to be one in which the body
experiences zero net force.

In the limit as the point x is taken to a point x0 on the boundary, the no-slip boundary condition
reveals an equation for the unknown density q. Anticipating the relaxation of the finite helix length
assumption, the rigid body velocity on the boundary at a point x0 will be written as U ẑ + ẑ × x, and
after some manipulation Eq. (18) will tend to the form

U ẑ + ẑ × x =
∫

∂S
(q(y) − q(x0)) · T(x0, y) · n̂(y) dSy + 1

8π

∫
C

Gc(x0, ζ ) · (L ẑ) dζ. (19)

Further investigation of the integral operator leads to the relations

−4π

SA

∫
∂S

q(x) d Sx = U ẑ, −4π

3∑
m=1

1

Am
em

(
em ·

∫
∂S

x × q(x) d Sx

)
= ẑ, (20)

where SA is the surface area, Am =
∫

∂S

∣∣em × x
∣∣2

dSx , and em is the mth Cartesian unit vector (see

Ref. 48). Equations (19) and (20) form a closed system for q, U, and L.
We are now set to exploit the helical symmetry in the problem of present interest. Specifically,

in the event that the helical surface is of infinite length, then the density everywhere along the surface
y(θ, ζ ) (from Eq. (1) at t = 0) is given by a rotation,

q(y(θ, ζ )) = R(ζ ; ν) q0(θ ), (21)
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R(ζ ; ν) =

⎛
⎜⎝

cos(νζ ) − sin(νζ ) 0

sin(νζ ) cos(νζ ) 0

0 0 1

⎞
⎟⎠, (22)

where q0(θ ) = q(y(θ, ζ = 0)). The angle θ is discretized uniformly on [0, 2π ) by setting θ j = 2π

(j − 1)/M for j ∈ {1, . . . , M}. A Nyström collocation method is employed (see Ref. 49) in which
the integral equation (19) is assumed to hold at the same nodes, x0 = y(θ j , ζ = 0). This produces
a linear system of equations for the density at the nodes q0(θ j ), the swimming speed U, and the
torque per unit length, L. The surface integrals in Eqs. (19) and (20) are performed by truncating
the surface at a finite number of wavelengths, NW , and discretizing ζ ∈ [−NW π/ν, NW π/ν] at the
points corresponding to the Gaussian quadrature nodes, ζ j, with j = 1, . . . , NW .

Integrals in θ and ζ are performed using Gaussian quadrature,50 where the density q is interpo-
lated using a Fourier basis to access its values at the Gaussian quadrature nodes; equivalently, the
Fourier coefficients of q are taken as the unknown components of the singularity density in the linear
system described above. The number of azimuthal gridpoints, M, the number of axial gridpoints,
NA, and the number of wavelengths, NW , are chosen so that further increases change the resulting
velocities and torques by less than 0.5% in every case considered. The results of a convergence
study using the helical shape shown in Fig. 1 as a test case are included as Appendix A. Though
they will not be needed here, the pointwise stress can also be computed from the framework of
Fredholm second-kind integral equations using the Lorentz reciprocal theorem51 or by evaluating a
hypersingular integral.52 Helical symmetry was recently exploited in this fashion elsewhere for the
study of helical swimming in Stokes flow,53 and helical swimming inside a capillary tube.42

IV. ANALYSIS OF THE SWIMMING SPEED

While solving the Stokes equations with a general helical boundary is daunting, nearly cylin-
drical bodies may be studied by an asymptotic consideration. We will consider helical bodies of
cross-sectional profile 1 + εf(θ ), with |ε| � 1 and f(θ ) = O(1). If the profile is described by a single
Fourier mode, f(θ ) = cos (Nθ ), then the operation ε → −ε is equivalent to a phase shift in f(θ ), and
there is no change in the swimming speed. We can therefore expect the swimming speed to appear
only in even powers of ε. For general f(θ ), this argument does not hold; nevertheless, we will show
in Sec. IV A that the swimming speed still enters as O(ε2). Note also that when the axial wavelength
2π /ν is small we can expect a straightforward asymptotic consideration in small ε to break down,
though we will remedy this problem by a calculation accurate to O(ε4) in Sec. IV B. We will also
show that the fourth-order expansion may be used to pick out the optimal pitch angle for a given
cross-sectional profile.

A. The swimming speed, accurate to O(ε2)

Assuming that |ε| � 1, we express the fluid velocity and swimming speed by a regular pertur-
bation expansion with the notation

u(r, θ, ζ ) = u0(r, θ, ζ ) + ε u1(r, θ, ζ ) + ε2 u2(r, θ, ζ ) + O(ε3), (23)

U = U0 + ε U1 + ε2 U2 + O(ε3). (24)

Recall that in the frame moving with the helical geometry that the ζ dependence only appears in
the varying basis vectors (see (11)); for example, we will write u1(r, θ, ζ ) = u1(r, θ )r̂ + v1(r, θ )θ̂
+ w1(r, θ )ẑ. The leading order representation of the helical body is a rotating helical cylinder of
unit radius. Expanding Eqs. (16) and (17) about small ε, the boundary conditions at leading order
are given by

u0(r = 1, θ ) = 0, v0(r = 1, θ ) = 1, w0(r = 1, θ ) = 1

ν
, (25)

u0(r → ∞, θ ) = v0(r → ∞, θ ) = 0, w0(r → ∞, θ ) = 1

ν
− U0. (26)
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Since the domain is axisymmetric at leading order the fluid velocity may be assumed to be inde-
pendent of θ , resulting in the leading order solutions to the Stokes equations, Eqs. (12)–(15), of

u0 = 0, v0 = 1

r
, w0 = 1

ν
, p0 = p∞. (27)

The boundary conditions then show that U0 = 0, as expected by the up-down symmetry of the
cylinder.

We now proceed to determine the first order correction to the velocity field and swimming
speed. The boundary conditions at the next order in the Taylor expansion of Eqs. (16) and (17)
are

u1(1, θ ) = 0, v1(1, θ ) = f (θ ) − f (θ )
∂v0

∂r
= 2 f (θ ), w1(1, θ ) = 0, (28)

u1(∞, θ ) = v1(∞, θ ) = 0, w1(∞, θ ) = −U1. (29)

Adopting a Fourier expansion of the cross-sectional profile, we write

f (θ ) =
∞∑

k=−∞
f̂k eikθ , (30)

where f̂ ∗
k = f̂−k (the asterisk indicating complex conjugate), and f̂0 = 0 is assumed without loss of

generality. Correspondingly, the pressure and fluid velocity are expressed in the Fourier basis as

p1 =
∑

k

p̂1keikθ , u1 =
∑

k

(û1k r̂ + v̂1k θ̂ + ŵ1k ẑ)eikθ , (31)

with the summation over all integer values of k.
Matching terms of O(ε) in the Stokes equations, Eqs. (12)–(15), we find that the modes are

decoupled at this order as a consequence of linearity and homogeneity. Therefore, the Fourier
coefficients for the velocity and pressure fields at first order must be linear in f̂k , and we may
write

p̂1k = Pk(r ) f̂k, û1k = Uk(r ) f̂k, v̂1k = Vk(r ) f̂k, ŵ1k = Wk(r ) f̂k . (32)

Since f̂0 = 0 by assumption, we have û10 = 0 and p̂10 = 0. For the remaining coefficients, as
detailed in the Appendix B 1, we find expressions for the pressure and axial component of the fluid
velocity,

Pk = −ik Dk Kq (λ), (33)

Wk = Dk

2ν

(
λKq−1(λ) − qνKq−1(qν)

Kq (qν)
Kq (λ)

)
, (34)

where Kq( · ) is the qth modified Bessel function of the second kind, and we have defined q = |k| and
λ = qνr. The constants Dk are given by

Dk = 4

q Kq + qνKq−1 − 2(q − 2)Kq−1

ν
− (3q − 2)K 2

q−1

Kq
− qνK 3

q−1

K 2
q

, (35)

where Kq−1 = Kq−1(qν) and Kq = Kq(qν). Derivatives of velocity fields are easier to determine using
Eqs. (12)–(15) at r = 1, and we find

d

dr
Uk

∣∣∣
r=1

= −2ik,
d

dr
Wk

∣∣∣
r=1

= Jq , (36)

d

dr
Vk

∣∣∣
r=1

= ν Jq − q Dk(Kq (qν) + νKq−1(qν)) − 2, (37)
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with

Jq =
4q2 Kq−1 − 2q2νKq + 2q2νK 2

q−1

Kq

q Kq + qνKq−1 − 2(q − 2)Kq−1

ν
− (3q − 2)K 2

q−1

Kq
− qνK 3

q−1

K 2
q

· (38)

Since all modes describing the first order velocity field in the axial direction, w1, decay to 0 as
r → ∞ (in Eq. (34)), we find by inspection of the boundary conditions at infinity that U1 = 0; hence,
there is no first order correction to the swimming speed for any cross-sectional profile f(θ ).

The calculation of the correction at O(ε2) is identical to the calculation at O(ε), and it can be
shown that the Fourier modes of the velocity field all vanish as r → ∞ with the exception of the k
= 0 mode. Focusing on the k = 0 mode, and using the same notation as in Eq. (31) at second order,
we must have

û20 = C1

r
, v̂20 = C2

r
, ŵ20 = C3, p̂20 = 0. (39)

The constants are determined using the boundary conditions at second order,

u2(1, θ ) = − f (θ )
∂u1(1, θ )

∂r
= − f (θ )

∑
k

f̂keikθ d

dr
Uk

∣∣∣
r=1

, u2(∞, θ ) = 0, (40)

v2(1, θ ) = − f (θ )
∂v1(1, θ )

∂r
− f 2(θ ) = − f (θ )

∑
k

f̂keikθ d

dr
Vk

∣∣∣
r=1

− f 2(θ ), v2(∞, θ ) = 0,

(41)

w2(1, θ ) = − f (θ )
∂w1(1, θ )

∂r
= − f (θ )

∑
k

f̂keikθ d

dr
Wk

∣∣∣
r=1

, w2(∞, θ ) = −U2. (42)

Namely, we find

C1 =
∑

k

(−2ik)| f̂k |2 = 0, C2 = −
∑

k

| f̂k |2 d

dr
Vk(1) −

∑
k

| f̂k |2, C3 = −
∑

k

| f̂k |2 Jq . (43)

The swimming speed at O(ε2) is therefore given by a linear superposition of the solutions for each
Fourier mode describing the profile f(θ ),

U2 = −ŵ20 = 2
∑
q≥1

Jq | f̂q |2. (44)

Figure 3(a) shows the normalized swimming speed of a rotating helical body described by a
single Fourier mode, f(θ ) = cos (2θ ), for four values of ε, and for a wide range of helical pitches. The
values computed using the full numerical simulations described in Sec. III are shown as symbols,
while the theoretical prediction of Eq. (44) is shown as a solid line. The analytical prediction agrees
well with the numerical results for small ν (large helical pitch) and as expected is more accurate for
smaller ε. For larger values of ε, the analytical prediction begins to deteriorate at smaller values of
ν. Intriguingly, the numerical simulations suggest an optimal choice of the pitch, 2π /ν, for a given
amplitude, ε, but the non-monotonicity of the swimming speed is not captured in the O(ε2) theory.

The swimming speeds of helical bodies with cross-sectional profiles f(θ ) = cos (Nθ ) are shown
in Fig. 3(b) for four values of N, now fixing ε = 0.1, again for a wide range of pitches. The O(ε2)
theory is shown by a solid line for each mode N, and we observe a monotonic and approximately
linear increase in the predicted swimming speed as a function of N. It is clear that higher order terms
must be taken into consideration for N ≥ 2 to give satisfactory expressions of swimming speeds for
bodies of all but the largest helical pitches.

Finally, recall that by subtracting the swimming speed from the fluid velocity, we find a solution
to the problem of pumping by a rotating helical body with zero swimming speed. The rate of fluid
transport as r → ∞ in that case is precisely −U ẑ, with the speed U given by Eq. (44).
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FIG. 3. (a) The normalized swimming speeds as functions of ν (the dimensionless helical pitch is given by 2π /ν) for
wavenumber N = 2. Symbols indicate numerically computed swimming speeds with ε = 0.025 (squares), ε = 0.05 (circles),
ε = 0.075 (triangles), and ε = 0.1 (diamonds). The solid line shows the prediction of the asymptotic theory from Eq. (44).
Inset images are of helical bodies with N = 2 and ε = 0.1 with ν ∈ {2, 4}. (b) The normalized swimming speeds for
cross-sectional profiles f(θ ) = cos (Nθ ), with ε = 0.1, as functions of ν. Again, symbols indicate numerically computed
values, and solid curves indicate the O(ε2) theoretical predictions. Cross-sections of each surface are also shown.

Before proceeding to higher order terms, we pause for an entertaining calculation using the
O(ε2) theory made possible by the decoupling of Fourier modes. Though it cannot be described by
the current mathematical framework, consider a right-handed helical body onto which a left-handed
helical pattern is grafted, as shown in Fig. 2(d). The structure is reminiscent of the double-wave
structure of insect spermatozoa in the opposite chirality case54 (see also Ref. 55). Upon rotation of
such a body there will appear to be two waves passing along the surface moving in opposite directions.
Using Eq. (44), the force-free translation of such a body can be predicted by subtracting the speeds
corresponding to each cross-sectional description, and the swimming speed may vanish for suitably
chosen parameters. The example shown in Fig. 2(d) is a right-handed helical body with surface
deformation ε1f(θ ) = 0.15cos (θ ) and ν = 1 with a small left-handed helical perturbation of higher
wavenumber, ε2 f̃ (θ ) = 0.062 cos(3θ ) and ν̃ = 2. Since the swimming speed increases rapidly with
increasing wavenumber, a small amplitude perturbation ε2 of high wavenumber may counteract the
swimming of a low wavenumber shape of larger amplitude, ε1. The second order theory predicts a
zero swimming speed for this example. More generally, writing the higher wavenumber perturbation
in the form ε2 f̃ (θ ), the resulting swimming speed (by superposition) is given by

U ≈ ε2
1

2
J1(ν) − 2ε2

2

∑
q≥1

| f̃q |2 Jq (ν̃), (45)

with Jq defined in Eq. (38), so that the swimming speed is predicted to vanish in the O(ε2) theory
when

ε2 = ε1

2

√
J1(ν)∑

q≥1 | f̃q |2 Jq (ν̃)
· (46)

B. The swimming speed, accurate to O(ε4)

Already we have observed that the force-free swimming speed of a helical body exhibits a
maximum value in the varying helical pitch, a feature of the dynamics not captured in the O(ε2)
theory. Even in the simpler setting of a two-dimensional swimming Taylor sheet, remarkable non-
monotonicity has been observed numerically and predicted in high-order asymptotic calculations.56

We are therefore led to consider the next order correction to the swimming speed which will enter at
O(ε4). As we approach the higher order correction to the swimming speed, note that many derivatives
in θ are accompanied by a factor of ν as a consequence of Eq. (10). Balancing terms in Eq. (15), we
should expect that ∂u/∂r = O(ν), so that εm∂mu/∂rm = O(εmνm), which may be significant if ν is
large. In this case we would find a boundary layer of thickness O(ν−1).
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The correction to the swimming speed may be determined using the method of matched asymp-
totic expansions. In this approach, with ν assumed to be large, an inner variable ξ = ν(r − 1)
is defined to magnify the dynamics near the body boundary. The solution in the inner variable,
in the limit as ξ → ∞, must match the limiting solution in the outer variable, r, as r → 1 (see
Ref. 57). In the problem of present interest, the outer solution is found by solving the Stokes equations
order by order in a regular asymptotic expansion in ν−1. Equations (12)–(15) show that the leading
order equations in the outer problem are given by ν2∂2u0/∂θ2 = ν2∂2v0/∂θ2 = ν2∂2w0/∂θ2 = 0,
and hence the velocity field at leading order depends only on r. Studying the equations at the next
order, we find that p0, w0 are constants, u0, v0 ∝ 1/r , and that the velocity field at the subsequent
order also depends only on r. Repeating the same argument, we see that the outer solution only
contains the k = 0 mode, where the axial velocity w is a constant, equal to 1/ν − U by the boundary
condition at infinity. The k �= 0 components of the flow are clearly nonzero near the body surface,
but the above indicates that these modes must decay rapidly so as to allow for a match with the outer
solution. Moreover, a match to the outer solution requires that the axial component of the velocity
field in the inner problem limits to the constant 1/ν − U.

To solve the inner problem, the parameter δ = εν is introduced. The variables are now expanded
as a double series in both δ and ν−1 (see also Ref. 58). The O(ε2) theory is expected to be accurate
only when δ � 1. Higher order corrections are therefore required when δ = O(1), which we now
perform for cross-sectional profiles described by a single Fourier mode, f(θ ) = cos (Nθ ). Instead of
computing the full O(δ4) solution, we will instead compute only the first several significant terms in
the expansion (to be specific, the δ4ν−2 and δ4ν−1 terms).

We begin by defining

S1(ν, ξ ) =
∑
n≥0

(−1)nν−(n+1)ξ n, (47)

S2(ν, ξ ) =
∑
n≥0

(−1)n(n + 1)ν−n−2ξ n. (48)

The Stokes equations may then be written as

pξξ + S1(ν, ξ )pξ + (1 + S2(ν, ξ ))pθθ = 0, (49)

uξξ + 3S1(ν, ξ )uξ + S2(ν, ξ )u + (1 + S2(ν, ξ ))uθθ = 1

ν
pξ + 2S1(ν, ξ )wθ, (50)

wξξ + S1(ν, ξ )wξ + (1 + S2(ν, ξ ))wθθ = −1

ν
pθ , (51)

uξ + S1(ν, ξ )(u + vθ ) − wθ = 0. (52)

A similar equation for v may be derived but is not required for this calculation. The no-slip boundary
condition is similarly described,

u(ξ = δ f (θ ), θ ) = (1 + δν−1 f (θ ))θ̂ + 1

ν
ẑ. (53)

Upon expanding in a Taylor series the order-by-order boundary conditions are found,

+∞∑
m=0

1

m!
δm f (θ )m ∂mu

∂ξm
= 0,

+∞∑
m=0

1

m!
δm f (θ )m ∂mv

∂ξm
= 1 + δν−1 f (θ ), (54)

+∞∑
m=0

1

m!
δm f (θ )m ∂mw

∂ξm
= ν−1. (55)

The m = 0 and m = 1 solutions have already appeared in Sec. IV A. However, while the m = 0
solution is easily expressed in terms of ν and ξ , this is not the case for the m = 1 solution, which
we will require. Therefore, we now solve again for the m = 1 solution but using the new framework
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above. According to the boundary conditions and the solution for m = 0, we are motivated to assume
the following forms for the pressure, velocity, and swimming speed:

p = p∞ +
∑
m≥1

δmν−1
∞∑

n=0

ν−n pmn, (56)

u =
(∑

n≥0

(−1)nν−nξ n θ̂ + ν−1ẑ

)
+

∑
m≥1

δmν−1
∞∑

n=0

ν−n(umn r̂ + vmn θ̂ + wmn ẑ), (57)

U =
∑
m≥1

δmν−1
∞∑

n=0

ν−nUmn. (58)

Noting that the coupling for different powers of m only appear in the boundary conditions, the
m = 1 terms may be solved for every n before moving on to the m = 2 terms, and so on. Below,
we will need only to solve for the axial fluid velocity, w, up to n = 2, or O(ν−3) for m = 1, 2, 3 to
guarantee O(ε4) accuracy.

The details of the following calculation are included as Appendix B 2. To summarize, denoting
the kth mode solution to (∂ξξ + ∂θθ )H = 0 by

Hk(ξ, θ ) = exp(−qξ )eikθ , (59)

with q = |k|, the m = 1 asymptotic solutions for a general boundary profile f (θ ) = ∑
k f̂keikθ are

given by

pm=1 = −ν−1
∑
k �=0

4ik f̂k Hk + ν−2
∑
k �=0

f̂k

(
2ikξ + 6ik

q

)
Hk + O(ν−3), (60)

um=1 = ν−2
∑
k �=0

(−2ik f̂k)ξ Hk + ν−3
∑
k �=0

ik f̂kξ
2 Hk + O(ν−4), (61)

vm=1 = ν−1
∑
k �=0

2 f̂k Hk − ν−2
∑
k �=0

f̂kξ Hk + O(ν−3), (62)

wm=1 = ν−2
∑
k �=0

2q f̂kξ Hk − ν−3
∑
k �=0

(3ξ + qξ 2) f̂k Hk + O(ν−4), (63)

where Hk = Hk(ξ , θ ). For m ≥ 2, we consider only helical shapes with f(θ ) = cos (Nθ ), or f̂N =
f̂−N = 1/2 and f̂k = 0 for |k| �= N. By a similar calculation as for the solutions at m = 1, the
solutions at m = 2 are given by

pm=2 = 2� [−ν−12i N 2 H2N + ν−2
(
i N 2ξ + 4i N

)
H2N

] + O(ν−3), (64)

um=2 = 2�
[
ν−2

(
−i N 2ξ + i N

2

)
H2N + ν−3

(
i Nξ + i N 2

2
ξ 2

)
H2N

]
+ O(ν−4), (65)

vm=2 = ν−1 N − ν−2 Nξ + 2�
[
ν−1 N

2
H2N − ν−2 3N

4
ξ H2N

]
+ O(ν−3), (66)

wm=2 = −Nν−2 + 3

2
ν−3 + 2�

[
ν−2

(
N 2ξ − N

2

)
H2N + ν−3 3 − 7Nξ − 2N 2ξ 2

4
H2N

]
+ O(ν−4),

(67)

where R[·] denotes the real part of the argument. By investigation of the boundary condition for
wm=4, only the Nth mode of w in the m = 3 solution is needed to compute the fourth-order swimming
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FIG. 4. (a) As in Fig. 3, the normalized swimming speeds for N = 2 fixed are shown as functions of ν for a selection
of ε. Symbols indicate numerically computed swimming speeds with ε = 0.025 (squares), ε = 0.05 (circles), ε = 0.075
(triangles), and ε = 0.1 (diamonds). The solid line shows the O(ε2) result from Eq. (44), while the dashed lines show the
O(ε4) predictions. (b) Normalized swimming speeds are shown for bodies with f(θ ) = cos (Nθ ) for two Fourier modes, N =
2 and N = 4, with ε = 0.1 fixed.

speed, Um = 4. By a similar calculation it can be shown that

wm=3 = 2�
[
−ν−2 3N 2ξ + 2N 2

8
HN + ν−3 14N + N 2ξ + 3N 3ξ 2

16
HN + (. . .)H3N

]
+ O(ν−4).

(68)

Only the zeroth Fourier mode of wm=4 is required to determine the swimming speed. Noting that

wm=4,k=0 = − 1

2π

∫ 2π

0

{
f (θ )∂ξwm=3 + 1

2
f 2(θ )∂2

ξ wm=2 + 1

6
f 3(θ )∂3

ξ wm=1

}
dθ, (69)

we finally arrive at the fourth-order correction to the swimming speed for finite ν,

Um=4 = −ν−2 5N 3

4
+ ν−3 3N 2

2
+ O(ν−4). (70)

Therefore, a rotating helical body of cross-sectional profile ρ(θ ) = 1 + εcos (Nθ ) swims with zero
net force at the speed

U = ε2

(
1

2
JN − ε2ν2 5N 3

4
+ ε2ν

3N 2

2

)
+ O(ε4) + O(ε6ν4), (71)

with JN given in (38).
We can now revisit the comparison between the analytical predictions and the results of the full

numerical simulations. Figure 4(a) shows the swimming speeds for the same cases considered in
Fig. 3(a), but here we include as dashed lines the predictions of the O(ε4) theory from Eq. (71). The
O(ε4) theory shows a significant improvement in the prediction for larger values of both ε and ν.
In particular, the speed-maximizing value of ν, and the maximum swimming speed, are very well
approximated for the values of ε considered. This optimal value of ν will be discussed in Sec. V.
Similarly, Fig. 4(b) reproduces the results from Fig. 3(b), but now includes the O(ε4) predictions for
two different Fourier modes, N = 2 and N = 4.

C. Computing the torque to O(ε2)

The external torque required to rotate the helical body may be computed using the solutions
already derived above, which we provide up to O(ε2). The torque per unit length is given by
integration of the fluid stress,

L = −ẑ ·
∫ 2π

0
y × [σ · (yθ × yζ )]

∣∣∣
ζ=0

dθ = −
∫ 2π

0

(
ρ2σθr − ρρθσθθ + νρ2ρθσθ z

)
dθ, (72)
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FIG. 5. The normalized torque per unit length as a function of ν for four wavenumbers, N, with: (a) ε = 0.05 fixed and (b) ε

= 0.1 fixed. Symbols indicate numerically computed values, and solid lines show the asymptotic predictions from Eq. (74).

where ρ(θ ) = 1 + εf(θ ). The required velocities are found by expanding about ρ = 1, keeping terms
up to O(ε2). Inserting velocity and pressure fields, we arrive at

L = 4π + 2πε2

(
v̂20 − d v̂20

dr

) ∣∣∣
r=1

− ε2
∫ 2π

0

{
f ′(θ )p1 +

(
−v1 + ∂v1

∂r
+ ∂2v1

∂r2

)
f (θ )

+ f (θ )
∂u1

∂θ
+ f (θ )

∂2u1

∂r∂θ
− 2 f ′(θ )u1 + ν f ′(θ )

∂w1

∂θ
− (2 + ν2) f ′(θ )

∂v1

∂θ

}∣∣∣
r=1

dθ. (73)

The integral is zero by the Stokes equations and incompressibility in O(ε) order, which results in the
torque per unit length on the body,

L = 4π + 4πε2
∑
q≥1

| fq |2
(

2q Dq [Kq (qν) + νKq−1(qν)] − 2ν Jq + 2
)
, (74)

with Dq, Jq, Kq, and Kq − 1 as defined in Sec. IV A.
The approximations for the torque per unit length are plotted as solid lines in Figs. 5(a) and

5(b) for the first four Fourier modes describing f(θ ). The torques computed using the full numerical
solutions of the Stokes equations are included as symbols. The nearly linear increase in the torque
per unit length as a function of N is primarily due to the linear scaling of the body wavelength in the
axial (ẑ) direction with N. The asymptotic approximation is naturally improved for small ε, small N,
and small ν. The curves correspond to the cases shown in Fig. 3(b).

V. OPTIMAL HELICAL GEOMETRIES

For some applications in biological or engineering design, it may be desirable to select a
helical body or drill geometry from a prescribed class C to maximize the swimming or pumping
speed. In other situations, the optimal helical surface might be that in C which provides a given
translational speed for minimal torque. In the small perturbation regime of present interest, the
dimensionless torque is approximately 4π for all bodies, which is the torque required to rotate the base
cylindrical shape. We would like to determine a surface topography that maximizes the dimensionless
swimming speed U for a fixed rotation rate. We have already seen, for instance, in Fig. 4, that there
exists a value of ν which maximizes the swimming speed for a given surface pattern. To further
simplify the problem, we consider the class Cε of helical bodies described by a single Fourier mode,
f(θ ) = cos (Nθ ), with ε fixed; Cε is then parametrized by N and ν.

A clear feature shown in Fig. 3 is that the swimming speed initially increases with ν to a
maximum value and then decreases in every case considered. Using the estimated swimming speed
from Eq. (71), an optimal choice of ν may be approximated for a given mode N. For reasonably
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FIG. 6. (a) The plots for νopt for different ε values. Lines are predictions by Eq. (76); plus signs are the maximum points
of Eq. (71) found by a binary search; squares are plots for the numerical results. (b) The swimming speeds at the optimal
helical pitch, setting ν = νopt.

small N and O(1) < ν < 1/ε, Eq. (71) has the following asymptotic form:

U

ε2
≈ N − 3

2ν
+ ε2 N 2ν

(
3

2
− 5Nν

4

)
, (75)

from which the optimal value of ν, denoted by νopt, is found to be

νopt ≈ 1

N

(
3

5ε2

)1/3

. (76)

Recall that the parameter δ = εν must be small for the double series expansion to return an accurate
approximation of the swimming speed. Equation (76) is expected to be accurate if ενopt ≈ ε1/3 � 1;
for instance, to have ε1/3 � 0.5 we require ε � 0.12.

Figures 6(a) and 6(b) show the values of νopt and the corresponding swimming speed, Uopt,
as functions of ε, as determined numerically using the full simulations (squares), by maximizing
Eq. (71) numerically (plus signs), and from the approximation (76) (dashed lines). Although there
is a systematic error in the theoretical prediction of νopt, the agreement indicates the success of the
theory in this regime.

We now consider the effect of varying N for fixed ν. Although they are not equivalent, doubling
N at least has a similar effect on the observed helical geometry as doubling ν. The approximation
formula (75) is not accurate for large N, however, so based on the work above we do not have an
accurate representation of the optimal mode Nopt. We are still free to compute the optimal value of
N for given values of ε and ν, and we show the results of this numerical investigation in Table I.
The swimming speeds shown in the table are of the form UN, where the speed-maximizing choice
of wavenumber, N = Nopt, is determined numerically. We observe that in this regime the optimal
mode Nopt decreases as ν and ε increase.

To rationalize the observations of Nopt, note that Eq. (75), though inaccurate for large N, is of
the form U = Ng(Nν). If this trend were to continue with the calculation of yet higher order terms in
the expansion (i.e., if the representation of U is still written as U = Ng(Nν) for a more complicated
function g(Nν)), then we will find Nopt ∼ C(ε)/ν, which is roughly what we observe in the numerical
investigation as reported in Table I.

TABLE I. Optimal swimming speed, choosing the computed value N = Nopt, for fixed ν.

ν ε = 0.05 ε = 0.075 ε = 0.1

1 U14/ε2 = 4.37 U9/ε2 = 2.87 U7/ε2 = 2.12
2 U9/ε2 = 3.37 U6/ε2 = 2.18 U5/ε2 = 1.59
3 U6/ε2 = 2.51 U4/ε2 = 1.61 U3/ε2 = 1.17
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We have also investigated the question of the optimal helical geometry which maximizes the
swimming speed for a given torque. Since the swimming speed and the torque both depend linearly
upon the rotation rate, this issue is addressed by maximizing the ratio U/L, where U is the swimming
speed plotted in Fig. 3, and L is the torque plotted in Fig. 5. However, since the computed torques
shown in Fig. 5 vary only modestly with variations in the geometry in the regime of interest, we
find very little variation in the geometry which maximizes U/L compared to the geometry which
maximizes U. This may not be the case for the passage of helical waves in the nearly cylindrical
regime, which unlike in the present consideration does not include the generation of a base rotational
flow by the rotating cylindrical shape at leading order. Optimizing helical geometries in helical
wave swimming and pumping is expected to depend more significantly upon the chosen efficiency
metric.

VI. DISCUSSION

In this paper, we studied the force-free swimming or fluid pumping by helical bodies of ar-
bitrary cross-section numerically, and analytically in the case of small-amplitude deviations from
a cylindrical base shape. Helical symmetry was used to reduce the dimensionality of the sys-
tem, making possible both the numerical and analytical efforts. The leading order swimming
speed, which entered at O(ε2), was found to be a superposition of the Fourier components de-
scribing the cross-sectional geometry. By comparing the predictions to numerically determined
values, the leading order result was found to be accurate for all bodies of sufficiently small he-
lical pitch angle. A much more accurate prediction was then provided up to O(ε4) and for larger
pitch angles for bodies with cross-sections described by a single Fourier mode. These results were
used to rationalize the numerically determined optimal helical pitch for a given cross-sectional
wavenumber N, or the optimal wavenumber for a given helical pitch. Solutions to the problem of
pumping by a rotating helical body with zero swimming speed were simultaneously derived; the
rate of fluid transport at infinity in the pumping problem is identical to the force-free swimming
speed.

The results shown here may be useful for designing efficient synthetic microswimmers, for
developing pumping mechanisms in microscale environments, and for drilling strategies for highly
viscous fluids at macroscopic scales. For example, the rotation of a double-helical body with op-
posite chirality shown in Fig. 2(d) may produce useful mixing patterns in a fluid while placing
minimal axial strain on the helical agitator. We can envision such a helically patterned nearly
cylindrical surface for such use in microfluidic devices.59, 60 In the future, we hope to explore
in more detail the behavior of complex fluids, such as viscoelastic and anisotropic fluids, when
driven by an immersed helical body.37, 61 Filament flexibility and internal molecular motor dynamics
may also play critical roles in many problems of biological interest, for which the theory pre-
sented here will provide either a test for numerical methods, or a launching point for analytical
investigations.

The passage of helical waves, which differs from rigid body motion, can be studied using the
same framework as described in this paper. In particular, by passing helical waves along a surface a
body can swim or pump without need of an external torque. This will have considerable consequences
for the computation of the mechanical work done on the fluid during swimming, which may result
in an interesting investigation of optimal geometries in that case. The study of helical waves is
important in the study of swimming by ciliated organisms such as Paramecium and Volvox,62, 63 and
even more directly in such organisms as the marine bacterium Synechococcus (see Refs. 64–68).
Swimming and pumping by helical waves will be the topic of a subsequent paper.

APPENDIX A: VALIDATION OF THE NUMERICAL METHOD

The numerical method used in the paper is partially validated by comparison with the small-
amplitude asymptotic solutions derived above. For helical shapes of more considerable geometric
variation, we now perform a convergence study. Consider the helical shape described by the in-plane
curve ρ(θ ) = 1 + εf(θ ) = 1 + (1/3)(cos (θ ) − sin (3θ )) and ν = 1, as shown in Fig. 1. Table II shows
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TABLE II. Three convergence studies: (1) varying M, with NW = 5 and NA/NW = 16 fixed; (2) varying NA, with NW = 5
and M = 16 fixed; (3) varying NW , with NA/NW = 16 and M = 16 fixed.

M U L NA/NW U L NW U L

16 0.081733 19.60312 12 0.078402 19.59587 6 0.082795 19.59965
32 0.081090 19.57638 24 0.081149 19.61341 12 0.084734 19.58195
64 0.081018 19.57598 48 0.080930 19.60641 24 0.085422 19.57128
128 0.081019 19.57599 96 0.080938 19.60708 48 0.085432 19.56992

the results of increasing the number of azimuthal gridpoints, M, the number of axial gridpoints,
NA, and the number of wavelengths, NW . Convergence in the azimuthal resolution and the axial
resolution per wavelength (through NA/NW ) are rapid, as expected from Gaussian quadrature, and
convergence is also rapid with increasing numbers of wavelengths, NW . Note that the highly resolved
case (M, NA/NW , NW ) = (32, 24, 24) gives (U, L) = (0.085341, 19.54007). The results suggest that
the true values are computed to within 1% using only (M, NA/NW , NW ) = (16, 24, 12), which in
this example gives (U, L) = (0.084871, 19.57795).

APPENDIX B: DETAILS OF THE VELOCITY FIELD CALCULATIONS

1. Derivation of the Fourier coefficients in Sec. IV A

To compute the Fourier coefficients of the velocities for k �= 0, we set f(θ ) = exp (ikθ ), and write
p1 = Pk exp(ikθ ) and u1 = u1r̂ + v1θ̂ + w1 ẑ = (Uk r̂ + Vk θ̂ + Wk ẑ) exp(ikθ ). Matching terms of
O(ε) in the momentum balance equation, and taking the divergence, we have using incompressibility
that �p1 = 0. Letting λ = qνr, this equation may be converted to the modified Bessel equation,(

λ2 d2

dλ2
+ λ

d

dλ
− (λ2 + q2)

)
Pk = 0, (B1)

which gives

Pk = −ik Dk Kq (λ) = −ik Dk Kq (qνr ), (B2)

where Kq( · ) is the modified Bessel function of the second kind, q = |k|, and Dk are unknown, real
constants. Inserting this expression into the equation for w1 (the O(ε) terms in Eq. (14)) results in(

λ2 d2

dλ2
+ λ

d

dλ
− (λ2 + q2)

)
Wk = − Dk

ν
λ2 Kq (λ). (B3)

With the boundary condition Wk |r=1 = 0, we find

Wk = Dk

2ν

(
λKq−1(λ) − qνKq−1(qν)

Kq (qν)
Kq (λ)

)
. (B4)

Meanwhile, in the equation for u1 (the O(ε) terms in Eq. (12)), the incompressibility condition is
used to remove the ∂θv term, and we obtain

∂2u1

∂r2
+ 3

r

∂u1

∂r
+ u1

r2
+ 1

r2

∂2u1

∂θ2
+ ν2 ∂2u1

∂θ2
= 2ν

r

∂w1

∂θ
+ ∂p1

∂r
. (B5)

Writing u1 = Uk exp(ikθ ), we have(
λ2 d2

dλ2
+ λ

d

dλ
− (q2 + λ2)

)
(λUk) = λ(−ik Dk

λ2

qν
K ′

q (λ) + 2i sign(k)λWk), (B6)

which is solved to give

Uk = ik Ek
Kq (λ)

λ
− ik Dk

qν

(
1

2
λKq (λ) − 1

2

(
q − 2 + qνKq−1(qν)

Kq (qν)

)
Kq−1(λ)

)
, (B7)
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where Ek are additional unknown constants. Using the boundary condition Uk |r=1 = 0 and the
incompressibility condition, we find

Uk

∣∣∣
λ=qν

= 0,
d

dλ
Uk

∣∣∣
λ=qν

= −2ik

qν
, (B8)

where q = |k|. These two conditions may be used to solve for the constants Ek and Dk; the latter are
provided in (35), which entirely describe Pk and Wk , which are then used in the calculation of the
swimming speed in the paper.

2. Details for deriving the asymptotic solution in Sec. IV B

We now provide details for the calculation of the m = 1 solution in Sec. IV B. As we will restrict
our attention to the m = 1 solution here, for clarity we omit the index for m and keep only the index
for n. For example, u should be interpreted as um = 1 and u0 should be interpreted as u10.

Working in the inner variable ξ = ν(r − 1), the boundary condition on the velocity field at first
order is given by

u(ξ = 0, θ ) = 0, v(ξ = 0, θ ) = 2

ν
f (θ ), w(ξ = 0, θ ) = 0. (B9)

The incompressibility condition may be used to find the last boundary condition needed in the
following calculation:

uξ (ξ = 0, θ ) = −1

ν
vθ = − 2

ν2
f ′(θ ). (B10)

The equation for p0 is ∂ξξ p0 + ∂θθp0 = 0, which has the solution

p0 =
∑
k �=0

Ak exp(−qξ ) exp(ikθ ), (B11)

with q = |k| and Ak as yet to be determined constants. Since only the gradient of the pressure appears
in the Stokes equations, the k = 0 mode of the pressure may be chosen to be 0 without loss of
generality. At the next order, we find ∂ξξ p1 + ∂θθp1 = −∂ξ p0, which has the solution

p1 =
∑
k �=0

− Ak

2
ξ exp(−qξ ) exp(ikθ ) +

∑
k �=0

A1k exp(−qξ ) exp(ikθ ), (B12)

introducing new unknown constants A1k.
Meanwhile, the equation for w0 is ∂ξξw0 + ∂θθw0 = 0, so that w0 = 0. We recall that the next

order equation is ∂ξξw1 + ∂θθw1 = −∂θ p0, and solving, we find

w1 =
∑
k �=0

ik Ak

2q
ξ exp(−qξ ) exp(ikθ ). (B13)

Then, to determine the constants Ak, we move on to consider the radial part of the velocity field, u.
By a similar calculation we find u0 = 0, and from ∂ξξ u1 + ∂θθu1 = ∂ξ p0, we find

u1 =
∑
k �=0

Ak

2
ξ exp(−qξ ) exp(ikθ ). (B14)

Applying the boundary conditions, the constants are given by

Ak = −4ik f̂k . (B15)

Finally, matching terms in the incompressibility condition results in the relation ∂θv0 = ∂θw1

− ∂ξ u1 − u0, yielding

v0 =
∑
k �=0

2 f̂k exp(−qξ ) exp(ikθ ). (B16)
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We now have our disposal the fields p0, u1, w1, and v0. Moving on to the second order calculation,
we come to the equation for u2, ∂ξξ u2 + ∂θθu2 = ∂ξ p1 + 2∂θw1 − 3∂ξ u1. Solving,

u2 =
∑
k �=0

(
Ak

q
+ 1

2
A1k − Ak

4q

)
ξ exp(−qξ ) exp(ikθ ) −

∑
k �=0

Ak

4
ξ 2 exp(−qξ ) exp(ikθ ). (B17)

Applying the boundary conditions, we then find

A1k = −3Ak

2q
= 6ik

q
f̂k, (B18)

u2 =
∑
k �=0

− Ak

4
ξ 2 exp(−qξ ) exp(ikθ ). (B19)

Looking to the equation for w2, we have ∂ξξw2 + ∂θθw2 = −∂θ p1 − ∂ξw1, resulting in the solution

w2 =
∑
k �=0

− ik Ak

2q2
ξ exp(−qξ ) exp(ikθ ) +

∑
k �=0

− 1

4q
ik Akξ

2 exp(−qξ ) exp(ikθ ) (B20)

+
∑
k �=0

− 1

4q2
ik Akξ exp(−qξ ) exp(ikθ ). (B21)

Finally, v1 is found by solving ∂θv1 = ∂θw2 − ∂ξ u2 − u1 + ξ∂θv0.
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