
J. Fluid Mech. (2014), vol. 756, pp. 935–964. c© Cambridge University Press 2014
doi:10.1017/jfm.2014.482

935

The instability of a sedimenting suspension of
weakly flexible fibres

Harishankar Manikantan1, Lei Li2, Saverio E. Spagnolie2 and
David Saintillan1,†

1Department of Mechanical and Aerospace Engineering, University of California San Diego,
9500 Gilman Drive, San Diego, CA 92093, USA

2Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive,
Madison, WI 53706, USA

(Received 22 April 2014; revised 2 July 2014; accepted 15 August 2014)

Suspensions of sedimenting slender fibres in a viscous fluid are known to be unstable
to fluctuations of concentration. In this paper we develop a theory for the role
of fibre flexibility in sedimenting suspensions in the asymptotic regime of weakly
flexible bodies (large elasto-gravitation number). Unlike the behaviour of straight
fibres, individual flexible filaments rotate as they sediment, leading to an anisotropic
base state of fibre orientations in an otherwise homogeneous suspension. A mean-field
theory is derived to describe the evolution of fibre concentration and orientation fields,
and we explore the stability of the base state to perturbations of fibre concentration.
We show that fibre flexibility affects suspension stability in two distinct and competing
ways: the anisotropy of the base state renders the suspension more unstable to
perturbations, while individual particle self-rotation acts to prevent clustering and
stabilizes the suspension. In the presence of thermal noise, the dominant effect
depends critically upon the relative scales of flexible fibre self-rotation compared to
rotational Brownian motion.
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1. Introduction
The sedimentation of a suspension of particles in a viscous fluid at low Reynolds

number is marked by long-range hydrodynamic interactions resulting in strong
velocity fluctuations. This slowly decaying nature of multi-body interactions readily
complicates even the seemingly simple case of a random dilute dispersion of
sedimenting spheres (Guazzelli & Hinch 2011). The disturbance velocity at a
distance r induced by a sphere decays as 1/r, and a naive pairwise summation
of the contributions of all spheres promptly leads to a diverging value of the settling
velocity. This issue was first addressed by Batchelor (1972), who noted that, in a
finite-sized container, the presence of a bottom wall in fact results in a vertical
backflow that cancels the diverging part of the settling velocity; this can alternatively
be perceived as the effect of a modified pressure field, the gradient of which balances
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the weight of the suspension. While this observation resolved the problem with the
mean settling speed, the variance of the particle velocities was later shown, in what
has illustriously become known as the Caflisch–Luke paradox (Caflisch & Luke 1985;
Ramaswamy 2001; Guazzelli & Hinch 2011), to increase unboundedly with system
size, notwithstanding Batchelor’s renormalization. Such a divergence is not supported
by experimental observations (Segrè, Herbolzheimer & Chaikin 1997; Bergougnoux
et al. 2001; Guazzelli 2001), and various mechanisms have been suggested over the
years to resolve this oddity, each with experiments and numerical simulations to
support and challenge the notion. These mechanisms have included the hydrodynamic
screening of long-range interactions as a result of local microstructural changes (Koch
& Shaqfeh 1991) or by vertical no-slip walls (Brenner 1999), homogenization of the
suspension due to recirculating currents induced by horizontal boundaries (Hinch
1987; Ladd 2002), and the damping of fluctuations by vertical density gradients
(Luke 2000; Mucha et al. 2004).

The suspension microstructure becomes all the more important in the case of
anisotropic particles. Consider for the moment a collection of rigid spheroids of a
defined geometry, with the configuration of each particle now specified by its position
and orientation. While the contribution of particle geometry to the aforementioned
effects is not obvious a priori, we can readily see that such a dispersion is
fundamentally different from one containing only spherical particles in that spheroids
can orient in flow. This orientation, in turn, decides the direction of sedimentation,
which no longer has to be vertically downwards even in the case of a single particle
in a quiescent fluid. This simple consequence of viscous drag anisotropy has been
well studied, and knowledge of the hydrodynamic mobilities along and perpendicular
to the particle major axis lets one evaluate its settling velocity. At a suspension level,
this dependence of particle velocities on their orientations seriously complicates the
dynamics, as the disturbance velocity field in the suspension can now reorient particles
and hence dramatically affect their trajectories over large length scales. This problem
was first studied by Koch & Shaqfeh (1989), who modelled a dilute suspension of
rigid spheroids using a Smoluchowski equation for the continuous probability field
of particle positions and orientations. Perturbing around a spatially homogeneous and
orientationally isotropic base-state distribution, they predicted a linear concentration
instability in which perturbations with the longest wavelengths are the most unstable.
In short, the mechanism is as follows: hydrodynamic interactions cause denser particle
clusters to sediment faster than their surroundings, inducing a disturbance field that
orients neighbouring particles in such a way that they preferentially migrate towards
the already dense clusters, thereby amplifying the concentration fluctuations.

The instability predicted by Koch & Shaqfeh (1989) has been amply confirmed by
experiments on rigid fibres (Herzhaft et al. 1996; Metzger, Guazzelli & Butler 2005;
Metzger, Butler & Guazzelli 2007) and by numerical simulations with various levels
of sophistication (Butler & Shaqfeh 2002; Kuusela, Lahtinen & Ala-Nissila 2003;
Saintillan, Darve & Shaqfeh 2005; Saintillan, Shaqfeh & Darve 2006b; Tornberg &
Gustavsson 2006; Gustavsson & Tornberg 2009). More complex theoretical models
have also been developed to address issues such as the effects of stratification
in finite-sized containers (Saintillan, Shaqfeh & Darve 2006a), particle alignment
under electric fields (Saintillan, Shaqfeh & Darve 2006c), Brownian fluctuations
(Hoffman & Shaqfeh 2009) and fluid inertia (Dahlkild 2011; Zhang, Dahlkild &
Lundell 2013). In all cases, the key ingredient remains the lateral migration due
to the orientability of the anisotropic particles at the micromechanical level, and a
suspension of rigid spheres is indeed stable to concentration fluctuations as elucidated
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by Koch & Shaqfeh (1989) using the same linear stability analysis. Suspensions of
isotropic particles, however, can exhibit an instability if the particles are allowed
to deform and become anisotropic under flow (Saintillan et al. 2006b), as in the
sedimentation of emulsions (Manga & Stone 1995; Zinchenko & Davis 2003). More
generally, suspensions of isotropic particles have also been found to be unstable
due to other types of nonlinear couplings between the direction of sedimentation of
the particles and the local disturbance flow field that they induce, for instance due
to Marangoni stresses in suspensions of spherical bubbles covered with surfactants
(Narsimhan & Shaqfeh 2010), or to viscoelastic stresses in suspensions of rigid
spheres in non-Newtonian fluids (Vishnampet & Saintillan 2012).

In this paper, we address the effects of fibre (or filament, as we shall use
interchangeably in the rest of the paper) flexibility. Elastic filaments play crucial roles
in many biological and technological processes: be it in fortifying cells in the form of
biopolymers (Gardel et al. 2006), rendering locomotive capabilities to microorganisms
(Lauga & Powers 2009), facilitating mammalian reproduction (Fauci & Dillon 2006),
constituting the microstructure responsible for non-Newtonian behaviour of complex
fluids (Bird, Armstrong & Hassager 1987), or permitting chaotic mixing (Groisman
& Steinberg 2000), among numerous others. When a flexible filament is placed in
a flow, the competition between viscous and elastic forces can result in complex
deformations and dynamics at the particle level (Tornberg & Shelley 2004), and
in turn drive drastic bulk behavioural changes at the macroscopic level (Switzer &
Klingenberg 2003). Of particular relevance within the scope of this paper is the limit
of weak flexibility where the filament departs only slightly from its straightened state.
This regime is realized in many physical systems involving stiff polymers, carbon
nanotubes, rod-like bacteria or microtubules. While it is a useful and often illustrative
simplification to neglect fibre compliance completely in such systems (Saintillan &
Shelley 2012; Gao et al. 2014), even weak flexibility has been shown to change the
rheology (Keshtkar, Heuzey & Carreau 2009) and phase behaviour (Van Der Schoot
1996) of flexible fibre suspensions.

Pertinent to the present context is the fact that a compliant filament breaks the
symmetry enjoyed by a rigid rod and is therefore susceptible to an additional coupling
between translational and rotational motions. Under sedimentation, this leads to a new
mechanism for fibre reorientation and, owing to drag anisotropy, to a change in the
direction and magnitude of the settling velocity. There is no reason to expect steady
and trivial trajectories any longer, as was previously illustrated by Xu & Nadim (1994)
and Cosentino Lagomarsino, Pagonabarraga & Lowe (2005), who predicted that
flexible fibres should spontaneously align perpendicular to gravity. Such reorientation
dynamics and structural deformations were also reported in suspensions of filaments
made of superparamagnetic colloids (Goubault et al. 2003) and electrophoretically
driven microtubules (Van den Heuvel et al. 2008), the role of gravity in these cases
being played by magnetic and electric fields, respectively.

In our recent work (Li et al. 2013), we applied slender-body theory and a
multiple-scale asymptotic analysis to theoretically describe, and verify using numerical
simulations, the reorientation dynamics and shape evolution of a single flexible fibre
undergoing sedimentation. The key result that we shall exploit vastly in the current
study is that, in the absence of flow or Brownian motion, the only stable orientation
for the filament is one perpendicular to the direction of gravity, and every other
configuration reorients at a rate that depends on flexural rigidity and instantaneous
orientation. The notion of weak flexibility can be defined more precisely in terms of
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an elasto-gravitation number β comparing elastic forces acting on the filament to the
external gravitational force:

β = πEa4

4FGL2
= κ

FGL2
. (1.1)

Here, the filament is assumed to be of a spheroidal geometry with length L and width
2a at its thickest point, FG is the net gravitational force acting on it, E is the elastic
modulus of the material that comprises the filament, and κ = πEa4/4 is the bending
stiffness. The regime of weak flexibility then corresponds to the limit of β� 1 and
in this case the deviation of a sedimenting filament from its straightened state is
O(β−1). To leading order, the configuration of the filament in three dimensions is
fully described by the position and tangential orientation of its centre, which in turn
determines its deflection. As shown by Li et al. (2013), such a filament translates at
the same velocity as a rigid rod, i.e.

us( p)= (λ1I + λ2 pp) ·
FG

8πµL
+O(β−2), (1.2)

where p is a unit vector tangent to the filament at its centre, and µ is the viscosity of
the suspending fluid. The filament also reorients as a result of flexibility at an angular
velocity given by

ṗs( p)= FG

8πµL2

A
2β

sin(2θ) θ̂ +O(β−2), (1.3)

where θ = cos−1( p · ẑ) is the instantaneous angle made by the fibre with gravity and
θ̂ is the corresponding polar unit vector in spherical coordinates. The constants λ1,
λ2 and A are geometric factors given by c+ 1, c− 3 and 3(c− 7/2)/80, respectively,
where c = ln(1/ε2) with ε = a/L the particle aspect ratio. Clearly, the changing
orientation of the filament affects its speed and direction of sedimentation, leading
to non-trivial trajectories. As can be seen from (1.3), the filament tends to align
perpendicular to gravity, after which a quasi-steady state is achieved with steady
vertical downward translation. The deflection of the filament was also calculated by
Li et al. (2013), with a maximum value of L/256β attained at steady state. For a
slender filament of aspect ratio ε = 0.01, we find that the maximum deflection is
approximately 0.004L when β = 1. This suggests that, to an excellent approximation,
a stiff sedimenting filament behaves like a rigid rod with the added dynamics of
reorientation and, through it, a non-constant sedimentation velocity. When multiple
such filaments are allowed to interact hydrodynamically in a suspension, we expect
the tendency to align horizontally to compete with the rotation of the particles in the
disturbance flow they generate, with non-trivial consequences for the stability of the
suspension as we analyse in this work.

The paper is organized as follows. In § 2, we describe a simple model for the
sedimentation of a collection of hydrodynamically interacting weakly flexible fibres,
and use it to derive a mean-field theory for the evolution of the distribution of
particle positions and orientations in a large-scale suspension. As we shall see, this
mean-field continuum model admits a steady uniform base state that is anisotropic
in orientation space and depends on fibre flexibility. The stability of the system
to spatial perturbations around this base state is then analysed in § 3, where we
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find that flexibility affects the stability in two distinct ways. On the one hand, the
anisotropic base state is shown to render the suspension more unstable as compared
to a suspension of rigid rods; on the other hand, reorientation of the weakly flexible
fibres under gravity can act to prevent clustering and stabilize the suspension by
competing against rotation in the disturbance flow driven by density fluctuations. We
conclude with a discussion in § 4.

2. Theoretical formulation
In this section, we formulate a theoretical model for the dynamics in a suspension

of weakly flexible filaments sedimenting under gravity. We first present a simple
micromechanical model for a discrete collection of filaments in § 2.1. This simple
model is then used in § 2.2 as the basis for a mean-field continuum theory that
extends the model of Koch & Shaqfeh (1989) to account for the leading effects of
weak flexibility.

2.1. Micromechanical model
As rationalized in the discussion of the previous section, we model a dilute suspension
of weakly flexible fibres using rigid-rod dynamics, with flexibility entering only
through an additional component to the rotational velocity. The instantaneous
centre-of-mass position and orientation of particle α in the suspension are given
by xα = (xα, yα, zα) and pα = (sin θα cos ϕα, sin θα sin ϕα, cos θα), where θα ∈ [0,π] and
ϕα ∈ [0, 2π) denote the polar and azimuthal angles on the unit sphere of orientations
Ω , respectively. We take gravity to be in the −ẑ direction. In a dilute system and
in the weakly flexible limit, the centre-of-mass velocity of fibre α is modelled as
the sum of its settling velocity obtained in (1.2) and of the disturbance velocity ud
induced in the fluid by the motion of the other fibres:

ẋα = us( pα)+ ud(xα). (2.1)

Similarly, its angular velocity also includes contributions from sedimentation and from
the disturbance flow, i.e.

ṗα = ṗs( pα)+ ṗd(xα, pα), (2.2)

where ṗs( pα) is given by (1.3) and accounts for the leading-order effect of flexibility.
Particle reorientation due to the disturbance flow is modelled following Jeffery (1922)
as

ṗd(xα, pα)= (I − pα pα) · [γEd(xα)+Wd(xα)] · pα (2.3)

in terms of the disturbance rate-of-strain tensor Ed = (∇xud + ∇xuT
d )/2 and rate-of-

rotation tensor Wd = (∇xud − ∇xuT
d )/2, respectively, having chosen the convention

that (∇xu)ij = ∂ui/∂xj. In (2.3), γ = (1 − 4ε2)/(1 + 4ε2) is a measure of particle
anisotropy, and we take γ ≈ 1 in this work, corresponding to the limit of very slender
fibres. It should be noted that (2.1)–(2.3) technically describe the motion of a fibre
in a linear flow field. They are expected to hold in dilute suspensions where spatial
variations of the disturbance field occur on length scales much greater than the particle
dimensions, and could be corrected to account for small-scale velocity fluctuations
using more general Faxén relations for spheroidal particles in arbitrary flows (Kim
& Karrila 2005).
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Integration of (2.1) and (2.2) requires knowledge of the disturbance velocity
induced in the fluid by the other particles. This disturbance velocity arises from the
net gravitational force on each fibre, which is transmitted to the fluid. In the dilute
limit and to leading order, the velocity experienced by particle α therefore solves the
forced Stokes equations

−µ∇2
x ud +∇xqd =FG

∑
β 6=α

δ(x− xβ), ∇x · ud = 0. (2.4a,b)

Here, δ(x) is the three-dimensional Dirac delta function, qd(x) is the disturbance
pressure field set up by the flow, and we have assumed that the viscosity of the fluid
is unaffected by the particles. Equations (2.4) also implicitly assume that particles
are widely separated so that the effects of higher force moments on the particles are
negligible compared to the flow induced by the net gravitational force. In the limit
of rigid rods (β→∞ and ṗs→ 0), the model posed here is identical to that used by
Mackaplow & Shaqfeh (1998) in their discrete particle simulations.

2.2. Mean-field theory
Following Koch & Shaqfeh (1989), we now introduce a continuum mean-field theory
based on the micromechanical model described above. Rather than tracking the
motions of individual fibres, we describe the configuration of the suspension in terms
of the probability distribution function Ψ (x, p, t) of finding a particle at position x
with orientation p at time t. The distribution function is normalized as

1
V

∫
V

∫
Ω

Ψ (x, p, t) d p d x= n, (2.5)

where V is the volume of the suspension and n is the mean number density.
Conservation of particles is expressed by the Smoluchowski equation (Doi & Edwards
1986)

∂Ψ

∂t
+∇x · (ẋΨ )+∇p · ( ṗΨ )−∇x · (D · ∇xΨ )−∇p · (d∇pΨ )= 0, (2.6)

where differential operators with a subscript x act on spatial coordinates while those
with a subscript p act on the sphere of orientations, i.e.

∇p ≡ (I − pp) ·
∂

∂p
= θ̂ ∂

∂θ
+ ϕ̂

sin θ
∂

∂ϕ
. (2.7)

In (2.6), ẋ and ṗ denote the translational and rotational flux velocities. Based on
the discussion of § 2.1, these include contributions from sedimentation and from the
disturbance flow field ud in the suspension:

ẋ = us( p)+ ud(x), (2.8)
ṗ = ṗs( p)+ ṗd(x, p). (2.9)

Here us( p) and ṗs( p) were defined in (1.2) and (1.3), respectively, and ṗd(x, p) is
related to ud(x) through Jeffery’s equation (2.3). Equation (2.6) also accounts for
translational and rotational diffusion with constant diffusivities D and d. In this work,
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we assume that these diffusivities arise primarily from Brownian motion and can be
related via the Stokes–Einstein relation (Doi & Edwards 1986) to the translational
and rotational mobilities of the particles obtained from slender-body theory,

D = kBT
8πµL

(λ1I + λ2 pp), d= kBTλ3

8πµL3
, (2.10a,b)

where λ3 = 12(c− 1) and kBT is the thermal energy unit. More sophisticated models
may be used for these diffusivities in the case of non-Brownian suspensions, where
their origin is hydrodynamic rather than thermal (Ham & Homsy 1988; Mucha &
Brenner 2003).

The above system is closed with a description of the mean-field disturbance velocity
ud(x). In the continuum limit, the forced Stokes equations (2.4) become

−µ∇2
x ud +∇xqd =FG c(x, t), ∇x · ud = 0, (2.11)

where c(x, t) denotes the local concentration of particles and is obtained from the
distribution function as

c(x, t)=
∫
Ω

Ψ (x, p, t) d p. (2.12)

The flow is driven by the forcing term on the right-hand side of the momentum
equation, which can be interpreted as a body force acting on the fluid that is
everywhere proportional to the local weight of the suspension. In the limit of rigid
rods (β→∞ and ṗs→ 0) and in the absence of diffusion (D = 0 and d = 0), this
continuum model reduces to the original model of Koch & Shaqfeh (1989) for a
non-Brownian suspension of sedimenting rigid rods.

2.3. Homogeneous base-state distribution
We first seek a steady and spatially homogeneous solution Ψ (x, p, t)= nΨ0( p) of the
mean-field model in an infinite domain, which will serve as the base-state distribution
for the linear stability analysis of § 3. In this case, the body force in the Stokes
equations (2.11) reduces to nFG, with an obvious solution given by

ud(x)= 0, qd(x)=−nFGz+ q0
d. (2.13a,b)

Therefore, in the absence of concentration fluctuations, the disturbance flow is zero
and a hydrostatic pressure gradient balances the buoyant weight of the suspension. In
this case, the Smoluchowski equation (2.6) simplifies to

∇p · ( ṗsΨ0)= d∇2
p Ψ0, (2.14)

expressing the balance of reorientation due to flexibility and rotational diffusion. We
expect the base state to depend only on the inclination θ of the particles from ẑ. This
allows us to solve for Ψ0 exactly as

Ψ0(θ)=m0 exp
[
− AF2

GL3

4kBTλ3κ
cos 2θ

]
, (2.15)

where m0 is a normalization constant, with m0 = (4π)−1 for an isotropic orientation
distribution. Let us introduce the gravitational Péclet number Pe, or ratio of the
gravitational potential to the thermal energy:

Pe= FGL
kBT

. (2.16)
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FIGURE 1. (Colour online) Anisotropic base-state orientation distribution Ψ0(θ), given by
(2.17), for different values of η= A Pe/4λ3β. Flexibility causes particles to preferentially
align in directions perpendicular to gravity.

The base-state distribution (2.15) can then be rewritten as

Ψ0(θ)= 1
2π

e−2η cos2 θ∫ 1

−1
e−2ηu2

du
, (2.17)

where we have defined η = A Pe/4λ3β. As illustrated in figure 1, any amount
of flexibility causes the fibres to align preferentially in the plane normal to the
direction of gravity, and this tendency strengthens in the limits of weak rotational
diffusion (large Pe) and of increasing flexibility (small β, although we recall that the
micromechanical model is technically valid for β & 1). Two limits of interest can
be noted: if η� 1 the distribution is isotropic (Ψ0(θ)→ (4π)−1), while if η� 1 all
the filaments assume nearly horizontal orientations (Ψ0(θ)→ δ(θ − π/2)/2π). In the
following, we shall explore the regime where η & O(1), and frequently return to the
case of small η for comparison with the already established results for an isotropic
suspension (Koch & Shaqfeh 1989).

3. Linear stability
3.1. Eigenvalue problem

We now perturb the system about the base-state distribution as Ψ (x, p, t)= n[Ψ0(θ)+
εψ ′(x, p, t)], with |ε| � 1 and |ψ ′| ∼ O(1). This weak perturbation in concentration
leads to a weak disturbance velocity and an associated angular velocity: ud = εu′d
and ṗd = εṗ′d. Substituting these along with the base-state equation (2.17) into the
conservation equation (2.6) and collecting terms of O(ε), we obtain

∂ψ ′

∂t
+∇xψ

′
· us +∇p Ψ0 · ṗ′d +Ψ0∇p · ṗ′d

+∇pψ
′
· ṗs +ψ ′∇p · ṗs −∇x · (D · ∇xψ

′)− d∇2
pψ
′ = 0. (3.1)

To proceed, we impose Fourier modes with wavevector k and complex frequency ω=
ωR + iωI on the perturbed quantities, e.g. ψ ′(x, p, t) = ψ̃(k, p, ω) exp[i(k · x − ωt)].
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In doing so, we are assuming that the fluid occupies all space, or, in the event that the
fluid is contained, that the container is assumed to be large enough so that walls have
negligible effects on the suspension dynamics. The disturbance velocity and angular
velocity then accommodate similar normal modes due to the linearity of the Stokes
equations. Following Hasimoto (1959), we know the velocity from (2.11) in Fourier
space as

ũ(k, p, ω)= n
µk2

(I − k̂k̂) ·FG c̃(k, ω), (3.2)

with k̂= k/k and k= |k|. Here, correspondingly, c(x, t)= n[1+ εc′(x, t)] and c′(x, t)=
c̃(k, ω) exp[i(k · x−ωt)], so that c̃= ∫

Ω
ψ̃ d p. Then, using Jeffery’s equation (2.3), we

find the Fourier coefficients of the angular velocity and its orientational divergence:

˜̇p(k, p, ω) = i
n
µk2

( p · k)(I − pp) · (I − k̂k̂) ·FG c̃(k, ω), (3.3)

∇p · ˜̇p(k, p, ω) = −3i
n
µk2

( p · k)p · (I − k̂k̂) ·FG c̃(k, ω). (3.4)

Using FG =−FG ẑ and the Fourier coefficients obtained in (3.2)–(3.4), the linearized
conservation equation (3.1) simplifies to

(−iω+ i k · us +∇p · ṗs + k · D · k)ψ̃ − d∇2
p ψ̃ + ṗs · ∇pψ̃

+ i
nFG

µk2
[3Ψ0( p · k)p · (I − k̂k̂) · ẑ− ( p · k)∇pΨ0 · (I − pp) · (I − k̂k̂) · ẑ] c̃= 0.

(3.5)

For simplicity, we assume that k̂ · ẑ= 0, as horizontal waves are known to be the most
unstable in the case of rigid rods (Koch & Shaqfeh 1989). Equations (1.2) and (1.3)
can be inserted for us and ṗs. After scaling lengths by the filament length L and time
by the sedimentation time scale 8πµL2/FG, we recast the above equation as

{−iω− i k · (λ1I + λ2 pp) · ẑ+ Aβ−1(3 cos2 θ − 1)+ Pe−1[λ1k2 + λ2( p · k)2]}ψ̃
− λ3Pe−1∇2

p ψ̃ +
A
2
β−1 sin 2θ

∂ ψ̃

∂θ
+ iF c̃= 0. (3.6)

Here, F is a scalar function defined as

F = N

k2
[3Ψ0( p · k)( p · ẑ)− ( p · k)∇pΨ0 · (I − pp) · ẑ] (3.7)

= −N

k2
∇p · [Ψ0( p · k)(I − pp) · ẑ], (3.8)

where N = 8πnL3 can be interpreted as an effective volume fraction. As previously
noted by Koch & Shaqfeh (1989), the only intrinsic length scale of the problem at
the suspension level is (nL)−1/2. For the mean-field description used here to be valid,
this length scale should be much greater than the particle size L, which implies that
nL3 � 1, consistent with the assumption of a dilute suspension. Another restriction
arises from the use of (2.1) and (2.2) for the particle motions, which assume that the
disturbance velocity field varies smoothly on the scale of the fibres. This condition
limits the validity of the above model to Fourier perturbations such that k−1� L.
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FIGURE 2. (Colour online) Spectral solution of the growth rate, σ , as a function of
the horizontal perturbation wavenumber k∗, from (3.6), for Pe = 106 and β = 1000 (�),
100 (4) and 10 (◦). The solid lines show the theoretical predictions of (3.25) for
the base-state-driven instability for corresponding values of η, demonstrating that the
leading effect of flexibility on the stability occurs primarily through the anisotropy of the
base-state orientation distribution.

Equation (3.6) is an eigenvalue problem for the complex frequency ω, with
corresponding eigenfunctions given by ψ̃ . In the limit of rigid rods and negligible
Brownian motion (β, Pe→ ∞ with η → 0), it reduces to the eigenvalue problem
previously obtained and solved by Koch & Shaqfeh (1989). It is interesting to note
that flexibility and Brownian motion alter the problem in several distinct ways. First,
they both have a direct influence through the terms involving β−1 and Pe−1 in (3.6),
which capture rotation away from the direction of gravity as a result of flexibility
and diffusive processes, respectively. In addition, they also both affect the base-state
orientation distribution Ψ0(θ) appearing in the function F through the parameter
η = A Pe/4λ3β setting the degree of anisotropy as previously explained in § 2.3. As
we shall show below, the direct and indirect effects of β and Pe are subtle and have
non-trivial consequences for the stability. Before analysing successively the roles
played by base-state anisotropy, flexibility and diffusion, we first discuss the full
numerical solution of the eigenvalue problem (3.6) using a spectral method.

3.2. Spectral solution

Noting that (3.6) is an eigenvalue problem of the form L [Ψ̃ ] = iωΨ̃ , where L is a
linear integro-differential operator, we first seek a spectral solution for the eigenvalues
ω by projecting the eigenmodes ψ̃ on the basis of spherical harmonics as detailed in
appendix A. The eigenvalue ω with the largest imaginary part ωI decides the stability
of the system. In figure 2, we plot the normalized growth rate σ =ωI/ωm against the
normalized wavenumber k∗= k/km for different values of Pe and β. Here, the variables
ωm and km are, respectively, the zero-wavenumber growth rate and zero-growth-rate
wavenumber for an isotropic suspension as in Saintillan et al. (2006a), and we shall
asymptotically rederive them in § 3.3. As shown previously by Hoffman & Shaqfeh
(2009) and confirmed by our numerical experiments, the leading effect of Brownian
motion is to stabilize the system. Therefore, we first focus on the regime where Pe is
large and hence the effects of diffusion are weak.
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FIGURE 3. (Colour online) (a) Normalized growth rate at zero wavenumber for Pe =
108 (�), 107 (◦), 106 (�) and 105 (4) as obtained from the spectral solution. All cases
asymptote to the isotropic rigid-rod limit as β → ∞. (b) Same data scaled according
to the parameter η = A Pe/4λ3β, with the predicted maximum growth rate (3.22) for the
base-state-driven instability shown as a solid line.

The impact of flexibility in this case is clearly shown in figure 2. Here and in
all spectral calculations shown below, we use the value of N = 1 for the effective
volume fraction, without affecting σ as will be shown. In the limit of stiff rods,
obtained by letting β→∞ for finite Pe (and therefore η→ 0), the solution tends to
the benchmark case previously analysed by Koch & Shaqfeh (1989) and Saintillan
et al. (2006a), with a maximum growth rate of σ = 1 reached for k∗ = 0. As the
filaments become more flexible (i.e. as β decreases), both the range of unstable
wavenumbers and the highest growth rate are observed to increase. In other words,
we find that filament flexibility further destabilizes the perturbed suspension. Recall,
however, that β cannot be arbitrarily small, as (1.3) for the angular velocity is valid
only in the weakly flexible regime of β & 1. Interestingly, the destabilization with
decreasing β is found to be primarily the consequence of the indirect effect of
flexibility on the anisotropy of the base state through (2.15), as the spectral solution
to the full dispersion relation compares very well with an approximation (shown by
the full lines in figure 2) that ignores the independent effects of Brownian motion
and flexibility and only accounts for their contribution to the base state. This peculiar
point and the physical mechanism for this base-state-driven destabilization will be
addressed more precisely in § 3.3.

In figure 3(a), we look more closely at the dependence of the maximum growth rate
σm= σ(k∗= 0) on β and Pe, still focusing on the regime where the independent effect
of Brownian motion is weak (Pe& 104). The case of an isotropic suspension of rigid
rods is recovered by letting β→∞ for all considered values of the Péclet number,
as illustrated by a unique asymptote in the limit of large β. While all four curves for
different values of Pe show similar shapes in this limit, we observe quite interestingly
that the asymptote is approached faster with respect to β when the Péclet number is
small. More precisely, an increase by a decade in Pe causes the range of β where
the asymptote is approached also to increase by a decade, suggesting a self-similar
dependence of the largest growth rate on Pe/β. This is confirmed in figure 3(b),
showing the zero-wavenumber growth rates plotted versus η, where the values for all
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FIGURE 4. (Colour online) (a) Instability mechanism proposed by Koch & Shaqfeh
(1989): the vertical shear flow set up by a horizontal density wave reorients particles
such that they migrate preferentially towards high-concentration regions. (b) Effect of the
vertical shear flow on an isotropic distribution: after a weak rotation, the distribution
remains nearly isotropic, with only a weak net lateral migration towards the right. Empty
shapes depict initial orientations in the base state, while filled ones represent orientations
after rotation in the disturbance flow for a short duration. (c) Effect of the vertical shear
flow on a strongly anisotropic orientation distribution: the weak rotation by the flow causes
a large fraction of fibres to migrate towards the right, suggesting that base-state anisotropy
can have a destabilizing effect on the suspension.

Pe and β collapse onto a single curve in the low-η range. This dependence on η,
rather than on β and Pe independently, confirms that the dominant effect is that of
the base state, and indeed we find that the self-similar curve matches an analytical
prediction derived in § 3.3 by neglecting the independent effects of flexibility and
diffusion. As η exceeds unity, self-similarity is no longer observed, and figure 3(b)
shows an eventual stabilization with decreasing β (or increasing η for a fixed Pe),
presumably as a result of the independent effect of flexibility that competes against
particle alignment by the flow and therefore hinders the growth of fluctuations.

3.3. Effect of the base state
As demonstrated by the full spectral solution in § 3.2, both flexibility and Brownian
motion primarily impact the stability by controlling the degree of anisotropy of the
base state, and it is this effect that we further analyse here. The original instability
mechanism proposed by Koch & Shaqfeh (1989) for an isotropic suspension of rigid
rods is illustrated in figure 4(a). The key point is that a plane-wave perturbation
in the number density sets up a vertical shear flow that causes neighbouring
particles to reorient so that they sediment preferentially towards the regions of
higher concentration, thereby bolstering the initial density fluctuation. This is a
direct consequence of the shape anisotropy of the particles and of their ability to
orient in the disturbance flow. This effect was further illustrated by Saintillan et al.
(2006a), who considered an anisotropic base state given by an Onsager distribution.
In contrast with the current work, they considered a distribution with a preferred
orientation parallel to the direction of gravity, and found that the weak horizontal
drift of the nearly vertical fibres led to a decrease in the growth rate of the instability.
However, as illustrated in figure 4(b,c), the base state in the present study favours
the direction perpendicular to gravity when η> 0, and this configuration increases the
probability for a fibre to migrate towards the denser regions after a weak rotation by
the disturbance flow. Thus, we expect the anisotropy of the base state to enhance the
concentration instability in this case.
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We restrict our attention here to the regime where both Brownian motion and
filament flexibility are weak, i.e. Pe−1� 1 and β−1� 1. Notice that, in the limiting
case, we require for a well-defined base state that both Pe and β tend to infinity at the
same rate, so that η remains finite but arbitrary. Then, the leading-order terms in (3.6)
for the eigenfunctions ψ̃ = ψ̃0 +O(β−1, Pe−1) and eigenvalues ω=ω0 +O(β−1, Pe−1)
become

ψ̃0 = F c̃0

ω0 + λ2( p · k)( p · ẑ)
, (3.9)

where F is defined in (3.7) and (3.8) and involves the base state Ψ0. Integrating over
all orientations and simplifying by c̃0 yields∫

Ω

F

ω0 + λ2( p · k)( p · ẑ)
d p= 1, (3.10)

which is a dispersion relation for ω0(k). Note that both flexibility and Brownian
motion only enter this dispersion relation through the ratio of β and Pe appearing
in the base state. In neglecting Pe−1 and β−1 in the governing equation, we have
assumed that the correct order has been maintained with respect to the magnitude of
perturbation in the linearized equation (3.1).

3.3.1. The isotropic base state
Before delving into the general case of the anisotropic base state of (2.15), we first

revisit the limit of perfectly rigid rods (β−1 = 0) in the absence of thermal diffusion
(Pe−1 = 0). This isotropic limit, formally reached by letting η → 0 in (3.10), was
previously explored by Koch & Shaqfeh (1989), Saintillan et al. (2006a) and Hoffman
& Shaqfeh (2009) and will provide us with a reference point with which to compare
the effects of flexibility and Brownian motion. In this case, the base state is simply
Ψ0 = (4π)−1, and the dispersion relation (3.10) simplifies to

3N

4πk2

∫
Ω

( p · k)( p · ẑ)
ω0 + λ2( p · k)( p · ẑ)

d p= 1. (3.11)

A numerical solution for ω0(k) was first obtained by Koch & Shaqfeh (1989) and
showed that the growth rate is maximum at k = 0 and decays monotonically with
increasing wavenumber to reach zero at a critical wavenumber km, defining the
marginal stability limit and indicating the range of unstable wavenumbers. Clearly,
setting ω0= 0 in (3.11) gives km=

√
3N /λ2. An approximation to ω0(k) in the limit

of small wavenumber can also be obtained by expanding (3.11) with error O(k4),

3N

4πω0k2

∫
Ω

( p · k)( p · ẑ)
[

1− λ2

ω0
( p · k)( p · ẑ)+ λ

2
2

ω2
0
( p · k)2( p · ẑ)2

− λ
3
2

ω3
0
( p · k)3( p · ẑ)3 +O(k4)

]
dp= 1. (3.12)

Now, recall that p = (sin θ cos ϕ, sin θ sin ϕ, cos θ) and that we have assumed a
plane-wave perturbation in a direction perpendicular to gravity. In this case, the only
dependence on the azimuthal angle ϕ comes from p · k̂= sin θ cos ϕ. Noting that∫ 2π

0
( p · k̂)2 dϕ =π sin2 θ,

∫ 2π

0
( p · k̂)4 dϕ = 3π

4
sin4 θ,

∫ 2π

0
( p · k̂)2m+1 dϕ = 0,

(3.13a–c)
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for all m ∈ Z, it follows that all terms in odd powers of k are zero in (3.12), which
becomes

ω2
0 =−

3N λ2

4

∫ 1

−1
u2(1− u2) du− 9N λ3

2k2

16ω2
0

∫ 1

−1
u4(1− u2)2 du+O(k4), (3.14)

and can be simplified to

ω2
0 =−

N λ2

5
+ N λ2

2k2

7
+O(k4). (3.15)

This readily provides the zero-wavenumber growth rate through the complex frequency
ω0 = ±iωm = ±i

√
N λ2/5. Recall the definitions k∗ = k/km and σ = ωI/ωm for the

scaled wavenumber and scaled growth rate, respectively. Restricting our attention to
positive solutions for the growth rate, as only these drive the instability, we can recast
the solution (3.15) for ω0 with this scaling as

σ = 1− 15
14 k∗2 +O(k∗4). (3.16)

3.3.2. The perfectly aligned base state
Another interesting limiting case is realized when η � 1, corresponding to a

base state where the filaments are perfectly aligned in directions perpendicular
to gravity. We have seen than any amount of flexibility introduces a rotational
velocity that favours such an alignment, so this situation is relevant to the case of
negligible diffusion (Pe→∞). The limiting base state is then readily shown to be
Ψ0(θ)= δ(θ −π/2)/2π, where δ is the one-dimensional Dirac delta function. Inserting
Ψ0 into (3.7) for F and using the property of the Dirac delta function that

(I − pp) · ẑ · ∇pδ = (I − pp) · ẑ · θ̂ δ′ =− sin θ δ′, (3.17)

where δ′ = dδ/dθ , we rewrite the dispersion relation (3.10) as

2πk2

N
=
∫ 2π

ϕ=0

∫ π

θ=0

k sin3 θ cos ϕ δ′(θ −π/2)
ω0 + λ2k sin θ cos θ cos ϕ

dθ dϕ. (3.18)

The integrals are easily performed after an integration by parts with respect to θ ,
allowing us to evaluate the complex frequency as

ω0(k)=±i
√

1
2N λ2 =±i

√
5
2 ωm, (3.19)

which, surprisingly, is independent of k. In other words, the growth rate in the
perfectly aligned case exceeds the maximum growth rate in the isotropic case by a
factor of

√
5/2 regardless of the value of the wavenumber k. This supports our initial

speculation schematically illustrated in figure 4(b,c) that the preferred base orientation
of the fibres towards the horizontal plane due to flexibility reinforces their tendency
to drift horizontally in response to a density wave perturbation, thereby feeding in to
the growth of the instability.
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3.3.3. The general anisotropic base state
We now analyse the approximate dispersion relation (3.10) for the general

anisotropic base state found in (2.15), written under the current non-dimensionalization
as Ψ0(θ) = m0 exp[−η cos(2θ)], where we recall that η = A Pe/4λ3β. The degree of
anisotropy is set by the value of η, and the two limits η→ 0 (isotropic base state)
and η → ∞ (perfectly aligned base state) have already been examined. First, we
insert (3.8) into (3.10) and note the following divergence theorem for a vector field
w in orientational space Ω , as derived in appendix B:∫

Ω

∇p ·w d p= 2
∫
Ω

p ·w d p. (3.20)

The integrand can then be expanded for k→ 0, and once again terms involving odd
powers of k contain odd functions of the azimuthal angle ϕ and do not contribute. We
find

ω2
0

N λ2
=−

∫
Ω

Ψ0( p · k̂)2[1− ( p · ẑ)2]
[

1+ 3λ2
2k2

ω2
0
( p · k̂)2( p · ẑ)2

]
d p+O(k4). (3.21)

Using the change of variables u= p · ẑ= cos θ , the above integrals can be evaluated
analytically. After normalizing the imaginary part of the eigenvalue by ωm and the
wavenumber by km, we obtain the following expansion for the growth rate in the long-
wave limit:

σ(η)=
√

5
2

J1/2
1 −

27
√

10
8

J2

J3/2
1

k∗2 +O(k∗4). (3.22)

Here J1(η) and J2(η) denote the following functions:

J1(η)=

∫ 1

−1
e−2ηu2

(1− u2)(1− 2u2) du∫ 1

−1
e−2ηu2

du
= 2η− 3

2
√

2πη3

e−2η

erf(
√

2η)
+ 8η2 − 6η+ 3

8η2

(3.23)

and

J2(η) =

∫ 1

−1
e−2ηu2

u2(1− u2)2(1− 2u2) du∫ 1

−1
e−2ηu2

du

= 8η2 − 10η+ 105
32
√

2πη7

e−2η

erf(
√

2η)
+ 32η3 − 96η2 + 150η− 105

128η2
. (3.24)

In the limit of η→ 0, we expect to retrieve the results from our discussion of the
isotropic base state in § 3.3.1. Indeed, we find that J1(0) = 2/5 and J2(0) = 8/315,
which reduces (3.22) to (3.16). On the other hand, the limit of η→∞ corresponds
to the perfectly aligned base state, and here we have J1(∞) = 1 and J2(∞) = 0,
recovering (3.19). The monotonic behaviour of J1(η) further suggests that the
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FIGURE 5. (Colour online) (a) Numerical solution to the dispersion relation (3.25) for
various values of η. The limiting case η = 0 corresponds to the isotropic base state
discussed in § 3.3.1, whereas η→∞ corresponds to the perfectly aligned base state of
§ 3.3.2. (b) Zero-wavenumber (maximum) growth rate as a function of η following (3.22).
(c) Range of unstable wavenumbers as a function of η following (3.27).

maximum growth rate σm(η) = σ(η; k = 0) is bounded between 1 as η → 0 as
we expect from the isotropic case and

√
5/2 as η→∞ as predicted earlier for the

perfectly aligned case. The O(k∗2) correction to σ in (3.22) captures the change in
the growth rate as we depart from the long-wave limit. As η→ 0, this correction
asymptotes to −15/14 as predicted by (3.16). Further, it approaches zero for large η,
consistent with the prediction of (3.19) that the growth rate in the perfectly aligned
case takes the constant value of

√
5/2 independent of wavenumber.

The zero-wavenumber growth rate σm = σ(η; k = 0) following (3.22) is plotted in
figure 5(b) and is overlaid upon the full spectral solution data in figure 3(b), where
we see that for β � 1 the effects of Brownian motion and flexibility occur almost
exclusively through their influence on the base state, rather than through the terms
of order Pe−1 and β−1 in (3.6), which were neglected when deriving (3.22) above.
Therefore, the instability is predominantly affected by the anisotropy of the base state
in this regime. The departure from the above prediction as seen in figure 3(b) for large
values of η is the result of these terms coming into play, and this suppressive effect
of diffusion and flexibility will be considered in § 3.4.

The dependence of the zero-growth-rate wavenumber on η may be calculated
by seeking the value of k for which ω0 = 0. For this, we use (3.7) and note that
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∇pΨ0 =−4uηΨ0(I − pp) · ẑ to rewrite the dispersion relation (3.10) as

N

k2

∫
Ω

Ψ ( p · k)( p · ẑ)[3+ 4η(1− ( p · ẑ)2)]
ω0 + λ2( p · k)( p · ẑ)

d p= 1. (3.25)

Letting ω0 = 0, this simplifies to

k2λ2

N
= 3+ 4η

∫ 1

−1
e−2ηu2

(1− u2) du∫ 1

−1
e−2ηu2

du
, (3.26)

where the case of η=0 yields the value of km obtained previously in the isotropic case.
The integrals can be evaluated, and after scaling by km we express the zero-growth-rate
wavenumber as

k∗m(η)=
[

1+ 4
3

√
η

2π

e−2η

erf(
√

2η)
+ 4η− 1

3

]1/2

. (3.27)

The range of unstable wavenumbers is shown in figure 5(c), and is found to
grow without bound as

√
η for large η (which, at a fixed value of the Péclet

number, corresponds to increasing elastic flexibility of the filament backbones). Of
course, we recall that values of η are limited by the underlying assumptions of the
micromechanical model in § 2.1, which is only valid for relatively stiff filaments
(β & 1). Another limitation also exists on the value of k−1, which must be much
greater that the particle length: under the present non-dimensionalization, this restricts
the validity of the solution to k∗ .

√
λ2/3N .

A full solution to the dispersion relation (3.10) for arbitrary k cannot be obtained
analytically. However, we solve it numerically using an end-corrected trapezoidal
quadrature and a secant method to find the roots, and the solution ω0(k) is shown
for different values of η in figure 5(a). In agreement with the previous analyses, we
recover the case of isotropically oriented rigid rods as η→ 0, whereas increasing η
causes both the range of unstable wavenumbers and the value of the growth rate to
increase. In the limit of η→∞, the solution asymptotes to the constant value of
σ =√5/2 for a perfectly aligned suspension.

3.4. Direct effect of flexibility and Brownian motion
We now turn our attention to the direct effect of flexibility and Brownian motion
through the terms of order β−1 and Pe−1 in the eigenvalue problem (3.6), which were
previously neglected in the discussion of § 3.3. Hoffman & Shaqfeh (2009) previously
analysed the effect of Brownian motion in the case of rigid rods, and found that it
stabilizes the suspension by randomizing orientations. On the other hand, flexibility
causes reorientation perpendicular to gravity. This reorientation competes against
alignment by the disturbance flow and is now expected to suppress the instability.
This is indeed observed in the spectral solution presented in figure 6: for a given
value of η (i.e. for a given base-state distribution), we found that increasing flexibility
causes a decrease in the maximum growth rate below the prediction of (3.25) for the
base-state effect, as a result of the independent contribution of the O(β−1) terms in
the linearized equation (3.6).
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FIGURE 6. (Colour online) Suppression of the instability due to fibre flexibility for fixed
η: (a) η= 3.68 and (b) η= 36.68. The symbols denote the spectral solutions for: (a) β =
0.1,Pe=103 (�); β=1,Pe=104 (4); β=10,Pe=105 (◦); and (b) β=0.1,Pe=104 (�);
β = 1, Pe= 105 (4); β = 10, Pe= 106 (◦). The solid line in each panel is the prediction
for the effect of the base state alone, following (3.25). The suppression of the growth rate
as β decreases (i.e. the filaments are made more flexible) is clear.

It is useful to remember that, for a fixed value of η, specifying either Pe or β
implicitly defines the other. This suggests that the terms capturing the direct effects
of Brownian motion and flexibility in (3.6) can be expressed in terms of only one
parameter when η is given. In the subsequent analysis, we choose to use Pe−1 as
the expansion parameter, though exactly the same results could be obtained with the
alternate choice of β−1. Substituting β−1 = (4λ3η/A)Pe−1 into (3.6) lets us recast the
eigenvalue problem as

−i[ω+ λ2( p · k)( p · ẑ)]ψ̃ + iF c̃+ Pe−1[λ1k2 + λ2( p · k)2]ψ̃
− λ3Pe−1

∇p · [∇pψ̃ − 2ηψ̃ sin(2θ) θ̂ ] = 0, (3.28)

where η is fixed and finite and Pe−1 is assumed to be small. It is worth reiterating
here that we are considering the regime where the effects of Brownian motion and
flexibility are weak and of comparable magnitude, i.e. both Pe and β are large. The
eigenfunction and eigenvalue can then be expanded as

ψ̃ = ψ̃0 + Pe−1ψ̃1 +O(Pe−2), (3.29)
ω = ω0 + Pe−1ω1 +O(Pe−2), (3.30)

and substituted into (3.28). The leading-order terms follow (3.9), where Pe and β only
affect the base state through their ratio appearing in Ψ0. The next order in Pe−1 then
gives us

ω0ψ̃1 +ω1ψ̃0 + λ2( p · k)( p · ẑ)ψ̃1 −F c̃1 + i (G −H )= 0, (3.31)

where we have defined

G = [λ1k2 + λ2( p · k)2]ψ̃0, (3.32)

H = λ3∇p · [∇pψ̃0 − 2ηψ̃0 sin(2θ) θ̂ ]. (3.33)
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This can be rearranged to read

ω0 + λ2( p · k)( p · ẑ)
F

ψ̃1 + ψ̃0

F
ω1 − c̃1 + i

G −H

F
= 0. (3.34)

A simple expression for the first-order correction ω1 of the complex frequency due
to Brownian motion is then easily obtained after multiplication of (3.34) by ψ̃0 and
integration over the sphere of orientations Ω:

ω1 =−i

∫
Ω

(G −H )ψ̃0

F
d p∫

Ω

ψ̃2
0

F
d p

, (3.35)

where we have used (3.9) to cancel the first and third terms in (3.34).
We now proceed to evaluate each term in (3.35) in the long-wave limit. Using the

leading-order equation (3.28) to substitute for ψ̃0 and taking c̃0 = 1 without loss of
generality, we find that the denominator is∫

Ω

ψ̃2
0

F
d p=

∫
Ω

F

[ω0 + λ2( p · k)( p · ẑ)]2 d p. (3.36)

Following the same procedure as in § 3.3, we expand the right-hand side to O(k4) and
integrate by parts using the divergence theorem (3.20) to obtain∫

Ω

ψ̃2
0

F
d p=−N λ2

ω3
0

[
J1(η)+ 3

8

(
λ2

ω0

)2

J2(η) k2

]
+O(k4), (3.37)

where J1(η) and J2(η) were previously defined in (3.23) and (3.24). In a similar
fashion, we can evaluate the first part of the numerator as∫

Ω

G ψ̃0

F
d p =

∫
Ω

[λ1k2 + λ2( p · k)2]F
[ω0 + λ2( p · k)( p · ẑ)]2 d p (3.38)

= −N λ2

ω3
0

[
λ1K1(η)+ 3λ2

4
K2(η)

]
k2 +O(k4), (3.39)

where the two functions K1(η) and K2(η) are given by

K1(η)=

∫ 1

−1
e−2ηu2

u2(1− u2)(4η(1− u2)+ 3) du∫ 1

−1
e−2ηu2

du
(3.40)

and

K2(η)=

∫ 1

−1
e−2ηu2

u2(1− u2)2(4η(1− u2)+ 3) du∫ 1

−1
e−2ηu2

du
. (3.41)
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Finally, after integration by parts, the second part of the numerator becomes∫
Ω

H ψ̃0

F
d p=−λ3

∫
Ω

[∇pψ̃0 − 2ηψ̃0 sin(2θ) θ̂ ] · ∇p

[
1

ω0 + λ2( p · k)( p · ẑ)

]
d p.

(3.42)
We substitute again for ψ̃0 from the leading-order equation, and integrate an expansion
in small k. All calculations done, this yields∫

Ω

H ψ̃0

F
d p= N λ2λ3

2ω3
0

[
L1(η)+

(
λ2

ω0

)2

L2(η)k2

]
+O(k4), (3.43)

where L1(η) and L2(η) are defined as

L1(η) =
∫ 1

−1
e−2ηu2[−(24η+ 12)u2(1− u2)+ (4η+ 3)(1+ u2)

− 4η(u2 + u4)+ 32η(1− u2)u4] du
/∫ 1

−1
e−2ηu2

du (3.44)

and

L2(η) =
∫ 1

−1
e−2ηu2

{
−(156η+ 90)u4(1− u2)2

+ 10(4η+ 3)
[

u4(1− u2)+ 3
4

u2(1− u2)2
]

− 40η
[
(1− u2)u6 + 3

4
(1− u2)2u4

]
+ 192η(1− u2)2u6

}
du
/∫ 1

−1
e−2ηu2

du. (3.45)

We now have all the ingredients to estimate the correction to the growth rate.
Substituting (3.37), (3.39) and (3.43) into (3.35), we obtain an approximation for the
correction to the eigenvalue in the limit of low wavenumbers:

ω1 =−i
λ3

2
L1

J1
− ik2

[
−λ2λ3

N

L2

J2
1
+ λ1K1

J1
+ 3λ2

4
K2

J1
+ 3λ2λ3

8N

L1J2

J3
1

]
+O(k4). (3.46)

The stabilizing effect of Brownian motion is best illustrated in the long-wavelength
limit. At k= 0, the growth rate is given by

σ Pe
m (Pe; η)= σm − λ3

2ωm

L1

J1
Pe−1 +O(Pe−2), (3.47)

where we have again normalized with respect to the isotropic rigid-rod limit of
ωm. The subscript m indicates that this is the maximum growth rate reached in the
long-wave limit, and σm is the base-state effect following (3.22) evaluated at k = 0.
Equation (3.47) captures the leading correction to the growth rate due to thermal
diffusion, and is compared to the spherical harmonics solution to the full eigenvalue
problem in figure 7. As expected, Brownian motion leads to the randomization



The instability of a sedimenting suspension of weakly flexible fibres 955

0.2

0.4

0.6

0.8

1.0

1.2

0
10–6 10–5 10–4 10–3 10–2 10–1

FIGURE 7. (Colour online) Suppression of the growth rate due to Brownian motion. The
solid line shows the leading-order correction to the maximum growth rate as obtained in
(3.47). The symbols are spectral solutions of the full eigenvalue problem obtained using
spherical harmonics, all for β = 106.
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FIGURE 8. (Colour online) Suppression of the growth rate due to fibre flexibility. The
solid line shows the leading-order correction to the maximum growth rate as obtained in
(3.48). The symbols are spectral solutions of the full eigenvalue problem obtained using
spherical harmonics for different Péclet numbers: Pe=108 (�), 107 (◦), 106 (�), 105 (4),
104 (⊗) and 103 (?). The self-similar behaviour continues as low as Pe ∼ 104, beyond
which diffusion independently suppresses the growth rate.

of individual particle orientations and hence stabilizes the suspension. A similar
conclusion was reached by Hoffman & Shaqfeh (2009), who considered the effect
of Brownian motion on a suspension of polarizable rods placed in an electric field
and also derived an expression similar to (3.22) in the simpler case of an isotropic
base state.

As we explained earlier, Pe and β are interchangeable for a given value of η up to
a constant factor depending on particle shape. Within the framework of the asymptotic
expansion above, it is therefore possible to rewrite (3.47) in terms of β as

σ βm (β; η)= σm − A
8ωmη

L1

J1
β−1 +O(β−2), (3.48)
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providing the leading effect of flexibility on the growth rate. This expression is shown
to compare excellently with the numerical solution to the full eigenvalue problem in
figure 8. Once again, it should be kept in mind that the asymptotic expansion is valid
for β & 1, and (3.48) does an excellent job of predicting the behaviour as the direct
effect of flexibility becomes significant. The dual effect of flexibility is now obvious.
On the one hand, we saw in § 3.3 that it creates a base state that is more prone to
instability, and this effect is the dominant one for stiff filaments. On the other hand,
at the next order flexibility causes alignment of the filaments perpendicular to gravity
in a way that hinders their rotation in the disturbance flow and therefore suppresses
the growth rate. In the limit of large η, L1/J1 asymptotes to 4η. This means that
the correction due to flexibility in (3.48) above goes like β−1 as flexibility becomes
more important. The suppression of the growth rate as seen in figure 8 then becomes
independent of η for sufficiently small values of β, which explains the collapse of all
the curves corresponding to different values of Pe onto a single one. Finally, recall that
the expansion is still first order in Pe−1, and this means that the prediction becomes
less accurate as rotational diffusion becomes stronger as was observed in figure 7. The
same is the case again in figure 8 where the spectral solution departs slightly from
the prediction for the smallest value of Péclet number shown.

3.5. Effect of flexibility in the perfectly aligned state
Finally, we also analyse the effect of flexibility in the perfectly aligned state (absent
Brownian motion), with the base orientation distribution given by Ψ0= δ(θ −π/2)/2π

corresponding to fibres aligned perpendicular to gravity. As seen in (3.48), by letting
η→∞, the direct effect of flexibility at first order is to reduce the zero-wavenumber
growth rate by the value A/(2ωmβ). However, thanks to the special form of the base-
state distribution in this case, we show here that we are in fact able to find the exact
dispersion relation analytically for all permissible values of k and β. Two identities
for the Dirac delta function δ(θ −π/2) are useful in the derivation below:

h(θ)δ′ =−h′(π/2)δ + h(π/2)δ′, (3.49)
h(θ)δ′′ = h′′(π/2)δ − 2h′(π/2)δ′ + h(π/2)δ′′. (3.50)

Inserting the expression for Ψ0 into (3.8) for F yields

F =−N

k2
∇p · [Ψ0( p · k)(I − pp) · ẑ] = N

2πk
cos ϕ δ′. (3.51)

Upon inspection of the dispersion relation (3.6) in the limit of Pe→∞,

{−iω− ik · (λ1I+λ2 pp) · ẑ+Aβ−1(3 cos2 θ −1)}ψ̃+ A
2β

sin(2θ)
∂ ψ̃

∂θ
+ iF c̃=0, (3.52)

we are led to consider the ansatz ψ̃ = f1(ϕ)δ(θ − π/2) + f2(ϕ)δ
′(θ − π/2), so that

(3.52) then reduces to

−(iω+ Aβ−1)( f1δ + f2δ
′)− iλ2k cos ϕ f2δ + A

2β
(2f1δ + 4f2δ

′)+ i
N

2πk
cos ϕ c̃ δ′ = 0.

(3.53)
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Expressions for f1 and f2 are determined without difficulty, and the eigenvalue problem
is thus solved exactly. With the normalization requirement

∫
Ω
ψ̃ d p = c̃, the exact

formulae for the dispersion relation and the growth rate σ =ωI/ωm are given by

ω = − iA
2β
± i

√
A2

4β2
+ λ2N

2
, (3.54)

σ = − A
2ωmβ

±
√

A2

4ω2
mβ

2
+ 5

2
· (3.55)

The O(β−1) correction to the zero-wavenumber growth rate is −A/(2ωmβ), which
agrees with the limit of η→∞ in (3.48). From this more complete expression, we
see that the dispersion relation is independent of the wavelength of the horizontal
perturbation in the perfectly aligned state as previously found in § 3.3.2 in the analysis
of the effect of the base state.

Using the same approach, we can also obtain the dispersion relation for a more
general initial perturbation with arbitrary wave direction k̂= (sin α, 0, cos α) and find
that

ω=−λ1k cos α − iA
2β
± i

√
A2

4β2
+ λ2N sin4 α

2
. (3.56)

For a perturbation wavevector parallel to gravity (α= 0), (3.56) shows that ω is real,
so the initial response of the suspension is a propagating density wave. Physically,
the perturbation takes the form of regions of higher and lower fibre density layered in
the direction of gravity, which travel vertically due to sedimentation. Instability only
occurs when α 6= 0, and in agreement with Koch & Shaqfeh (1989) we find that the
maximum growth rate is achieved for a horizontal wave (α = π/2). Equation (3.56)
also shows that the growth rate is wavelength-independent even for non-horizontal
perturbations, and perturbations of all wavelengths are therefore equally unstable in
this case. To understand this curious result, we first note that the shear flow velocity
set up by the initial perturbation scales as ∇xud ∼ 1/k. For small departures of
fibre orientations from π/2, Jeffery’s equation (2.3) then gives ṗ ∼ 1/k. Then, since
the horizontal translational velocity of the fibres due to their rotation in the flow
scales approximately as u1 ∼ 1/(kω), the conservation of particles ∂tc1 ∼ ∂x(c0u1)
results in ω ∼ 1/ω, indicating a growth rate independent of k. In other words,
the larger sedimentation speed of particles in the more concentrated regions for
higher-wavenumber perturbations balances the decreasing number of nearby fibres
that are migrating into these regions.

4. Conclusion
We have investigated the effects of flexibility on the stability of a suspension

of sedimenting fibres. Specifically, we considered the dynamics of weakly flexible
fibres, characterized by large elasto-gravitation numbers, which are resistant to large
deformations during the sedimentation process. In particular, we exploited two facts
that are known about the sedimentation of isolated flexible filaments (Li et al. 2013):
to leading order in the inverse elasto-gravitation number, a fibre translates with the
same velocity as if it were a rigid rod and maintains a nearly straight shape as it
sediments. We were therefore able to treat the suspension as one composed of rigid
rods with the added ingredient of individual fibre reorientation during sedimentation.
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We developed a mean-field model much akin to the one first described by Koch
& Shaqfeh (1989), in which the probability density function describing the filament
positions and orientations evolves according to a Smoluchowski equation. We first
derived the statistical base state in the undisturbed and spatially homogeneous situation
and found that it is in general anisotropic in the fibre orientation. In terms of a new
variable η, which is a scaled ratio of the Péclet number to the elasto-gravitation
number, the base state describes on one hand the isotropic distribution of rigid rods
(η = 0), and on the other the perfectly aligned distribution that results when the
suspension is athermal (η → ∞). Speculating based on the mechanism that leads
to an instability in the case of a suspension of rigid rods, we surmised that an
anisotropic suspension composed of fibres oriented perpendicular to gravity would be
more unstable to concentration fluctuations, owing to the fact that individual particles
are more likely to be reoriented by the disturbance flow in a way that enhances the
instability. This speculation was confirmed when we perturbed the governing equation
about the base state and performed a linear stability analysis. The resulting eigenvalue
problem is defined on the sphere of orientations, and admits a spectral solution on the
basis of spherical harmonics. A numerical solution did indeed show that the system
not only has a larger growth rate with increasing fibre flexibility, but also renders
more wavenumbers unstable.

We then proceeded to examine separately the contributions of the anisotropic base
state and of the direct effect of flexibility (or Brownian motion, which may be
interpreted alternatively through the variable η). Expanding the eigenvalue problem
in an asymptotic series in β−1 and Pe−1, we first saw that the base state is almost
entirely responsible for the enhancement of the instability, unless flexibility-induced
reorientation is very strong. We showed that the growth rate increases monotonically
with the variable η, continuously interpolating between the previously known value
in the case of a suspension of isotropically distributed rigid rods to the limit of a
perfectly aligned suspension where the growth rate is a factor of

√
5/2 faster. The

range of unstable wavenumbers, too, was shown to grow with increasing values of η,
and the window of instability in fact expands indefinitely as the suspension becomes
more anisotropic.

Next, we derived the correction to the growth rate due to the terms of order β−1

and Pe−1, thereby capturing the direct effect of flexibility and rotational diffusion –
that which would be present even if not for the anisotropic base-state distribution.
Since β and Pe are related through the variable η, flexible reorientation and rotational
diffusion could both be studied simultaneously, and both effects were found to
stabilize the suspension. These results confirmed intuition, as reorientation towards
the direction perpendicular to gravity competes against rotation in the disturbance
flow: this has the effect of preventing particles from migrating into already dense
clusters and thereby suppresses the growth of the instability. Similarly, increased
thermal motion randomizes fibre orientations and disrupts the mechanism that would
entrain more particles into regions of higher concentration.

The results of this work are summarized in a phase diagram in figure 9. The phase
boundaries are only to guide the eye, and the transitions are by no means sharp. The
axes cover the range of β and Pe discussed here, as well as the pertinent range of
the variable η. Contour lines of the maximum (zero-wavenumber) growth rate trace
out regions where the growth rate is predicted to be negative, positive or greater than
unity (which, under our normalization, is the case of a suspension of rigid rods). The
entire phase space can be qualitatively divided into regions where one effect or the
other becomes predominant. Here, (A) corresponds to the case of a base state that is



The instability of a sedimenting suspension of weakly flexible fibres 959

108

107

106

105

104

103

102

101

100

10–110–2 100 101 102 103 104 105 106

(A)

(C)

(E) (D)

(B)

FIGURE 9. (Colour online) A summary of the effects of flexibility and diffusion on the
stability of a suspension. The dotted lines denote the η co-ordinate, and solid lines are
contours of the maximum growth rate σm at the indicated values. The dashed lines are
meant to qualitatively divide the phase space into regions labelled (A)–(E): (A) negligible
diffusion and fibre flexibility, and a near isotropic orientation distribution in the base state;
the dynamics is indistinguishable from the case of a rigid-rod suspension. (B) Negligible
direct effect of diffusion and fibre flexibility, although the base state is rendered
anisotropic and a self-similar enhancement of the instability is seen. (C) Stabilization due
to the direct effect of fibre-flexibility-induced reorientation. (D) Stabilization due to the
direct effect of rotational diffusion. (E) Combined non-trivial effects of flexibility and
Brownian motion.

nearly isotropic, and the independent effects of fibre flexibility and thermal fluctuations
are negligible. We dealt with this in § 3.3.1 and saw that σm= 1 in this regime, and in
figure 9 we concede a departure of ±0.01 from unity to define this regime. Regime
(B) is encountered as one departs from (A) along the η coordinate, and we saw in
§ 3.3.3 that this corresponds to the self-similar enhancement of the rigid-rod instability,
solely due to the anisotropy of the base-state distribution. Particles preferentially align
perpendicular to gravity, which increases their chance of migrating into dense regions
as a result of hydrodynamic interactions, thereby enhancing the instability. Here, again,
the independent effects of flexibility and Brownian motion are negligible. Increasing
the fibre flexibility takes us to (C), where the independent effect of flexibility was
shown in § 3.4 to be stabilizing. The propensity of individual particles to reorient
perpendicular to gravity during sedimentation hinders their horizontal migration and
thus stabilizes the suspension. Regime (D) depicts the regime where randomization
due to thermal fluctuations suppresses the growth rate, which we named the direct
effect of Brownian motion and analysed quantitatively in § 3.4. Finally, regime (E)
is where the independent effects of both fibre flexibility and diffusion are significant
and the observed stabilization cannot be individually attributed to either mechanism
alone. Further, there are more regimes that can be identified and that are not shown
in figure 9 for the sake of simplicity. For instance, near the border between (B) and
(D) lies a region where the anisotropic base state enhances the instability but Brownian
motion suppresses it.

We have assumed throughout that the base state has already been established, and
restricted our attention to the linear stability of perturbations with respect to such
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an orientation distribution. In a well-stirred suspension, particles can be assumed
to be isotropically oriented, and it remains to be seen how the time over which
such a base state is achieved compares with the growth rate of disturbances in an
isotropically oriented suspension. Quantitatively, this is decided by the solution to
an advection–diffusion equation in orientation space. Qualitatively, assuming weak
diffusion, the base state is established on a time scale |ṗs|−1 ∼ 2β/A. Balancing this
with the time scale ω−1

m associated with the instability in an isotropic suspension, we
find the condition N . A2/λ2β

2 on the effective volume fraction of particles. This
essentially states that the concentration has to be sufficiently low that hydrodynamic
interactions do not hinder the establishment of the base state. The condition points to
a very dilute suspension, which may require a very large container for the instability
to be observed. Nevertheless, in a hypothetical infinite suspension, the instability does
exist regardless of dilution since the maximum growth rate is achieved in the limit
of k→ 0. Furthermore, the suppression of the instability due to individual particle
reorientation (direct effect of flexibility) is expected to occur no matter whether the
base-state distribution has been reached, and this effect can be relevant even in nearly
isotropic suspensions.

In this work we have neglected the effect of the disturbance field on the shape
of each fibre: strong interactions could potentially deform individual fibres from the
assumed straight orientation, and change the settling dynamics. However, such detailed
internal dynamics is not straightforward to describe in a mean-field kinetic model such
as the one we have developed. Furthermore, it would seem to be a fair assumption that
the diluteness of the suspension prevents particles from imposing strong disturbance
fields upon one another. The same rationale applies to neglecting excluded-volume
effects and steric interactions between fibres. Particle inertia, which we have neglected
here as well, has been shown to eliminate growth at zero wavenumber (Dahlkild 2011)
and could be relevant in rationalizing the formation of finite-sized vertical structures
seen in experiments (Metzger et al. 2007). Particle simulations could hold the key to
revealing microstructural changes and detailed internal dynamics in dilute as well as
concentrated suspensions, and test the validity of our predictions as other physical
effects become relevant. Further, while we have considered an infinite domain for
analytical convenience, simulations could also lead the way in describing the effects
of walls, which are known to become vital in real systems (Brenner 1999; Ladd
2002; Saintillan et al. 2006a). As a closing statement, we note that the stronger
instability associated with the anisotropic base state described here is not necessarily
exclusive to flexible fibres, and the approach used here can in principle apply to any
suspension wherein a physical mechanism exists that causes orientable particles to
align perpendicular to the direction of forcing.
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Appendix A. Spherical harmonics expansion
The full eigenvalue problem (3.6) is too complicated to be solved analytically in

the general case owing to the additional terms arising from flexibility and thermal
diffusion and to the non-trivial form of the base-state distribution (2.17). Instead,
noticing that (3.6) is in the form L [ψ̃]= iωψ̃ , where L is a linear integro-differential
operator, we seek numerical solutions to the eigenvalues ω by projecting ψ̃ onto an
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appropriate basis. As ψ̃ is defined continuously on the sphere of orientations, a
natural choice is Laplace’s spherical harmonics,

Ym
` (θ, ϕ)=

√
2`+ 1

4π

(`−m)!
(`+m)! P

m
` (cos θ) eimϕ, (A 1)

where Pm
` are the associated Legendre polynomials. Projecting the unknown

eigenfunctions onto this basis,

ψ̃(θ, ϕ)=
∞∑
`=0

`∑
m=−`

a`mYm
` (θ, ϕ), (A 2)

the linearity of the operator L then implies that

∞∑
`=0

`∑
m=−`

a`mL [Ym
` ] = iω

∞∑
`=0

`∑
m=−`

a`mYm
` . (A 3)

The spherical harmonics are orthonormal over the orientational space:

〈Ym
` , Ym′

`′ 〉 =
∫
Ω

Ym
` Ȳm′

`′ d p= δ``′δmm′, (A 4)

where the overbar denotes the complex conjugate. Using this property, we multiply
(A 3) by Ȳm′

`′ and integrate over all orientations to obtain

∞∑
`=0

`∑
m=−`

a`m〈L [Ym
` ], Ym′

`′ 〉 = iωa`′m′ . (A 5)

Truncating the expansion at `=M (where we choose M= 30 in the results presented
here), (A 5) then yields an algebraic eigenvalue problem of the form L · a= iωa, where
L is an (M+1)2× (M+1)2 matrix with entries 〈L [Ym

` ],Ym′
`′ 〉 and the vector a contains

the coefficients a`m of the spectral expansion of the eigenfunction. Solving this system
provides a discrete set of (M + 1)2 eigenvalues ω. We verify a posteriori that only
one of these eigenvalues is unstable (ωI > 0), consistent with the results of Koch &
Shaqfeh (1989).

The following properties of spherical harmonics are useful in evaluating the
matrix L: ∫

Ω

Ym
` d p= 2

√
π δl0δm0, (A 6)

∇2
p Ym

` =−`(`+ 1)Ym
` , (A 7)

∂Ym
`

∂θ
= 1

sin θ

` cos θ Ym
` −

√
(2`+ 1)(`2 −m2)

2`− 1
Ym
`−1

 . (A 8)
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Appendix B. The divergence theorem in orientational space
The divergence theorem (3.20) in orientational space follows directly from Gauss’s

theorem. Let w( p) be any smooth function defined on the surface Ω of a unit sphere.
We also define v(r, p)= rnw, where n> 1 to ensure regularity. Now, the unit ball is
B= {rΩ | 06 r6 1} and Gauss’s divergence theorem reads∫

B
∇ · v dV =

∫
Ω

p · v dp. (B 1)

Noticing that ∇= p ∂/∂r+ (1/r)∇p, the left-hand side can be shown to be∫
B
(nrn−1p ·w+ rn−1

∇p ·w) dV =
∫
Ω

(
n

n+ 2
p ·w+ 1

n+ 2
∇p ·w

)
dp, (B 2)

where we have used dV = r2 dr dp. The right-hand side of (B 1) simplifies readily as
v =w on Ω . Rearranging the terms, we obtain the desired result.
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