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1 Elliptic equation and the 5-point scheme

Consider the 2D poisson equation

−∆u = f, Ω = [0, 1]× [0, 1],

u = g, ∂Ω.

A first way to approximate the Laplacian: 5 point stencil.
For simplicity, we use uniform step size for both directions:

∆x = ∆y = h = 1/(m+ 1).

uij represents the value at x = xi = ih, y = yj = jh. We approximate
∆h = D2

x +D2
y:

−∆huij = −ui+1,j − 2uij + ui−1,j

h2
− ui,j+1 − 2uij + ui,j−1

h2
= fij = f(xi, yj).

This is called 5-point stencil since we only used five points.
To set up the matrix, we must order the points. The most straightfor-

ward way is to order them as follows:

u = (u11, u21, . . . , um1, u12, u22, . . . , um2, . . . , umm).

This is convenient in Matlab since this actually corresponds to reshaping by
columns of matrices. Other ordering may be possible to make the matrix
even sparser.

How do we set up the matrix? The most convenient way is to introduce

~uj = (u1j , u2j , . . . , umj).

Consider

e = ones (m, 1 ) ;
A1 = spd iags ( [ e −2∗e e ] , −1:1 , m, m) ;

Then, we have

− 1

h2
A1~uj −

1

h2
(~uj+1 − 2~uj + ~uj−1) = ~fj
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fi1 = f(xi, y1) + 1
h2
g(xi, 0), fim = f(xi, ym) + 1

h2
g(xi, 1) and fij = f(xi, yj)

for others. From this equation, it’s clear that the big matrix M has m ∗m
blocks. The (p, p) block is − 1

h2
(A1 − 2I) and the (p, p − 1) and (p, p + 1)

blocks are − 1
h2
I. Note that ~u0 and ~um+1 can be determined by the boundary

values and can be moved to right hand side.
The big matrix can be constructed using

A1=spd iags ( ones (m, 1 ) ∗ [ 1 −2 1 ] , −1:1 , m, m) ;
M=−(kron (A1 , speye (m))+ kron ( speye (m) , A1) )/ h ˆ2 ;

1.1 Analysis of the scheme

Consistency: the LTE is defined to be

τij = −u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2

− u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

h2
− f(xi, yj),

which measures how the true solution satisfies the numerical approximation.
Direct Taylor expansion shows that τij = O(h2). As before, consistency
means ‖τ‖ → 0 as h→ 0.

By the analysis here, we have

Theorem 1. Suppose that the exact solution u ∈ C4(Ω). Then, there exists
h0 > 0, C1 > 0, C2 > 0 such that for all h < h0:

‖τ‖`2 ≤ C1h
2

and
‖τ‖`∞ ≤ C2h

2.

1.2 Analysis of the scheme: `2 stability and convergence

One way is to check the eigenvalues. Here we provide another proof,
which is interesting itself. Consider the case g = 0 for simplicity. g 6= 0 case
can be shown as well.

The method here is analogy to the continuous PDE:

−∆u = f, x ∈ Ω, u = 0, x ∈ ∂Ω.

Multiplying u and taking integral, we have∫
|∇u|2 dx =

∫
fu dx ≤ ‖f‖2‖u‖2.
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Then, we need the Poincare inequality:

‖u‖2 ≤ C(Ω)‖∇u‖2.

Then, we get

1

C2(Ω)
‖u‖22 ≤ ‖f‖2‖u‖2,⇒ ‖u‖2 ≤ C2(Ω)‖f‖2.

Now, we move onto the discrete case following similar ideas:

Theorem 2. Consider g = 0, and define ‖w‖2 =
√
h2

∑
i,j |wij |2. Then,

‖u‖2 ≤
1

2
‖∆hu‖2 =

1

2
‖f‖2.

In other words, the 5-point stencil is `2 stable.

The proof follows from the following two lemmas. The first is the discrete
Poincare inequality:

Lemma 1. If g = 0, then

‖u‖2 ≤
1

2
(‖D+,xu‖2 + ‖D+,yu‖2)

where D+,xuij = (ui+1,j − uij)/h and D+,xum+1,j = 0. D+,y is defined
similarly

The second is the discrete Green’s identity:

Lemma 2. Suppose both v and w vanish on the boundary, then

−〈∆hv, w〉 = 〈D+,xv,D+xw〉+ 〈D+,yv,D+yw〉,

where

〈v, w〉 = h2
m+1∑
i=0

m+1∑
j=0

vijwij .

Proof. For the Poincare:

|uij |2 = |
m∑
p=i

(up+1,j − upj)|2 = (
m∑
p=i

h|D+,xupi|)2

≤ (
m∑
p=i

h|D+,xupj |2)(
m∑
p=i

h) ≤
m∑
p=0

h|D+,xupj |2.
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Hence,

‖u‖22 =
∑
i,j

h2|uij |2 ≤
∑
i,j

h3
m∑
p=0

|D+,xupj |2 =
∑
p,j

h2|D+,xupj |2.

or
‖u‖2 ≤ ‖D+,xu‖2.

Similarly,
‖u‖2 ≤ ‖D+,yu‖2.

Adding these two yields the desired inequality.
For the discrete Green’s identity:

− 〈∆hv, w〉 = −
m+1∑

i=0,j=0

h2∆hvijwij = −
m∑
i=1

m∑
j=1

h2∆hvijwij

=

m∑
i=1

m∑
j=1

(2vij − vi+1,j − vi−1,j)wij +

m∑
i=1

m∑
j=1

(2vij − vi,j+1 − vi,j−1)wij .

The first term equals

m∑
i=1

m∑
j=1

(vij − vi−1,j)wij −
m∑
i=1

m∑
j=1

(vi+1,j − vi,j)wij

=

m−1∑
i=0

m∑
j=1

(vi+1,j − vij)wi+1,j −
m∑
i=1

m∑
j=1

(vi+1,j − vi,j)wij

=
m∑
i=0

m∑
j=0

(vi+1,j − vij)wi+1,j −
m∑
i=0

m∑
j=0

(vi+1,j − vi,j)wij

=
m∑
i=0

m∑
j=0

h2D+,xvijD+,xwij = 〈D+,xv,D+xw〉.

The second term is similarly computed. Hence, the claim discrete Green’s
identity holds.

The theorem is easy to prove now using these two lemmas:

‖u‖22 ≤
1

4
(‖D+,xu‖2+‖D+,yu‖2)2 ≤ 1

2
(‖D+,xu‖22+‖D+,yu‖22) =

1

2
〈−∆u, u〉 ≤ 1

2
‖∆hu‖2‖u‖2.

Corollary 1. ‖E‖2 = ‖u− û‖2 → 0 as h → 0 where û consists of the true
values at the grid points.
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1.3 Analysis of the scheme: `∞ stability and convergence

Here, we focus on the l∞-stability (not in the book). The goal is then to
show that there exists C independent of h such that

‖u‖∞ ≤ C(‖f‖∞ + ‖g‖∞).

To prove this, we first show the discrete maximum principle:

Theorem 3. Let Ωh be the set of all interior points, i.e. Ωh = {(xi, yj)}\∂Ω.
Let Γh be the grid points on ∂Ω.

Suppose ∆hui,j ≥ 0 for all (xi, yj) ∈ Ωh. Then maxΩh
u ≤ maxΓh

u.
Further, if maxΩh

u = maxΓh
, then u is a constant.

Proof. The first condition implies

uij ≤
1

4
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1).

Suppose maxΩh
u ≥ maxΓh

u and the maximum is achieved at (xi∗ , yj∗)
which is inside. The values at all the neighbors are no bigger than ui∗,j∗ .
Since it is the maximum, by the inequality, they must be equal. For the
interior point in the neighbors, the same argument applies. Then, the values
at all interior points and their neighbors are equal. This means u is a
constant. Hence, the bigger sign never holds and the claim follows.

Theorem 4. The 5-point stencil has a unique solution for any f, g and it
is `∞-stable.

Proof. For the uniqueness, suppose there are two solutions u1 and u2. Then,
∆2
h(u1 − u2) = 0 and the boundary values of u1 − u2 are zero. The discrete

maximum principle implies that u1 − u2 ≤ 0 for all interior points. Then,
switching the roles of u1 and u2, we have u2 − u1 ≤ 0. Hence, u1 = u2.

For the l∞ stability, consider an auxiliary function φ such that ∆hφ = 1.
Then,

∆h(u+ φ‖f‖∞) = −f + ‖f‖∞ ≥ 0.

The discrete maximum principle implies that

u+ φ‖f‖∞ ≤ max
Γh

(g + φ‖f‖∞)⇒ u ≤ ‖g‖∞ + 2‖φ‖∞‖f‖∞.

Then, one applies the same argument for −u. The claims follows. To finish
the proof, we must show that φ exists. One example is

φ =
1

4
((x− 1

2
)2 + (y − 1

2
)2).
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Corollary 2. ‖E‖∞ = ‖u− û‖∞ → 0 as h→ 0 where û consists of the true
values at the grid points.

2 Schemes for ODEs

The discretization of ODEs is very important for time discretization of
evolutionary PDEs.

Consider the ODE

u′(t) = f(t, u(t)), u(0) = u0,

where u could be a vector valued function. Any ODE can be reduced to a
first order system, so this is general enough.

The ODE solvers are all approximations to

u(tn+1) = u(tn) +

∫ tn+1

tn

f(s, u(s))ds.

∫ tn+1

tn
f(s, u(s)) will be approximated by data u0, u1, . . . , un+1.

(Sections 5.3-5.9 in Leveque’s book.)

2.1 One-step method

• If we approximate f(s, u(s)) ≈ f(tn, u
n), then we have the forward

Euler:
un+1 = un + kf(tn, u

n)

• f(s, u(s)) ≈ f(tn+1, u
n+1), we have the backward Euler:

un+1 = un + kf(tn+1, u
n+1)

• f(s, u(s)) ≈ 1
2(f(tn, u

n)+f(tn+1, u
n+1)), then we have the trapezoidal

method:

un+1 = un +
k

2
(f(tn, u

n) + f(tn+1, u
n+1))

• Runga-Kutta methods (multi-stage, one-step methods)

The idea of RK is to approximate the integral with more grid points
so that it is more accurate:∫

≈ k
r∑
j=1

bjf(tn + λj , y(tn + λj))
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Motivated by this formula, we can write the general r-stage Runga-
Kutta method is

un+1 = un + k
r∑
j=1

bjf(tn + cjk, Yj),

Yi = un + k

r∑
j=1

aijf(tn + cjk, Yj), i = 1, 2, . . . , r

Some necessary conditions for the r-th order accuracy:

– Yi is an approximation of the value at tn+cik. Hence,
∑r

j=1 aij =
ci.

– We apply the method to the model problem with f(t, u) = λu.
Then,

Yi = un + k
r∑
j=1

aijλYj , un+1 = un + k
r∑
j=1

bjλYj

However, we know that u(tn+1) = eλku(tn). Note

eλk =
∑
n≥0

(λk)n

n!

We can therefore solve Yj out in the first equation and determine
the coefficients in∑

n≥0

(λk)n

n!
un = un + k

r∑
j=1

bjλYj ,

by comparing the powers of k.

The most frequently used schemes are RK2, RK3, RK4. In general,
they are not unique. For example, there are two typical RK2 schemes:

un+1 = un +
1

2
(f(tn, un) +K2),

K2 = f(tn + k, un + kK1)

and

un+1 = un + kK2,

K1 = f(tn, un), K2 = f(tn + k/2, un + kK1/2)

All the above methods are the one-step method because we only use un

to compute un+1.
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2.2 LMM

Linear Multistep Methods (LMM) are another class of ODE solvers.
The solvers involve the values at several steps. The most frequently used
are the Adams methods

un+r = un+r−1 + k
r∑
j=0

βjf(tn+j , u
n+j).

If βr = 0, we have the Adams-Bashforth methods.

3 Local truncation error and consistency for schemes
of ODEs

3.1 Basic concepts

The consistency is measured by the local truncation error (LTE) where
un is replaced by u(tn),:

LTE =
1

k
(LHS −RHS)

note that we have divided k here because un+1−un
k is in the same order as

the derivative. This is different from the so-called one-step error.
Example: For the forward Euler (FE):

τn =
1

k
(u(tn+1)−u(tn)−kf(tn, u(tn))) =

1

k
(u(tn+1)−u(tn)−ku′(tn)) = O(k).

The ODE solvers are said to be consistent if the local truncation error
goes to zero as k → 0.

The order of the method is the order of the LTE. Direct Taylor expan-
sion shows that the two Euler methods are first order while the trapezoidal
method is a second order method.

An ODE solver is convergent if for a problem u′ = f(t, u) where f is
continuous and Lipschitz continuous in u on [0, T ], we have

lim
k→0,nk=T

|un − u(T )| = 0,

where T is in the largest interval of existence.
f is Lipschitz in u means

sup
0≤t≤T

|f(t, u1)− f(t, u2)| ≤ L(T )|u1 − u2|
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3.2 Convergence for one-step method

Claim:
For one step solvers, un+1 = un+kΨ(un, tn, k), as long as Ψ is continu-

ous and Lipschitz continuous in u, the solver is stable. Here, ‘stable’ means
that the global error introduced by the m-th step error will not be amplified
too much. If further it is consistent, then it is convergent.

We take the forward Euler as the example. Again f is assumed to be
Lipschitz.

Let τj be the local truncation error. Then, the one step error is

u(tj+1)− u(tj)− kf(tj , u(tj)) = kτj = O(k2).

Let Ej = |u(tj)− uj |. Then, we have

Ej+1 ≤ Ej + k|f(tj , u(tj))− f(tj , uj)|+ k|τj | ≤ Ej + kLEj + Ck2.

Then,

En ≤ E0enkL +

n−1∑
j=0

k|τn−1−j |(1 + kL)j ≤ CeTLk

In this proof, we have implicitly use the stability. The error term kτj is
amplified by (1 + kL)n−j which is uniformly bounded by eTL, so we have
stability.

This verifies the claim.
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