
Advanced computational methods
X071521-Lecture 3

1 Analysis of schemes for ODEs-Continued

1.1 Convergence for one-step method

Claim:
For one step solvers, un+1 = un + kΨ(un, tn, k), if Ψ is continuous and

Lipschitz continuous in u with the Lipschitz constant being uniform in tn, k,
then the solver is stable. Here, ‘stable’ means that the global error intro-
duced by the m-th step error will not be amplified too much. If further it is
consistent, then it is convergent.

Let τj be the local truncation error. Then, the one step error is

u(tj+1)− u(tj)− kΨ(u(tn), tn, k) = kτj .

Let Ej = |u(tj)− uj |. Then, we have

Ej+1 ≤ Ej + k|Ψ(u(tn), tn, k)−Ψ(un, tn, k)|+ k|τj | ≤ Ej + kLEj + k|τj |.

Then,

En ≤ E0enkL +

n−1∑
j=0

k|τn−1−j |(1 + kL)j ≤ CeTL‖τ‖∞.

In this proof, we have implicitly use the stability. The error term kτj is
amplified by (1 + kL)n−j which is uniformly bounded by eTL, so we have
stability.

This verifies the claim.

2 Zero stability and convergence for LMMs

(Chap. 6 in Leveque.)
Previously, we have seen that the stability for a one-step consistent

method implies convergence. In this section, we look at a theory, which
is particularly useful for LMMs.

Zero stability
Consider the LMM

r∑
j=0

αju
n+j = k

r∑
j=0

βjf(un+j , tn+j).
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The zero stability considers the stability for k → 0. Hence, we have

r∑
j=0

αju
n+j = 0,

which is a linear difference equation. This equation is the same as the
equation when we apply the method to u′ = 0.

The characteristic equation is

ρ =
r∑
j=0

αjζ
j ,

and the general solution is determined by the roots.
Since it is equivalent to f = 0, then u should not grow. If we find

|un| → ∞ as n→∞, then the method must be unstable.
The root condition is

Condition 1. Suppose ζj are the roots of the characteristic equation. We
require

|ζj | ≤ 1

and |ζj | < 1 if it is repeated.

The LMM is said to be zero stable if the root condition is satisfied.
Dahlquist proved that

Theorem 1. When we apply LMMs for u′ = f(t, u) with f being Lipschitz,
then:

Zero stability + consistency ↔ convergence.

Though FE, BE and trapezoidal methods are one-step methods, they
can be regarded as special cases of LMM. For them, there is only one root
ζj = 1. They are zero-stable.

3 Stability region

(Chap. 7 in Leveque.)
We have seen that zero stability can ensure the convergence of LMMs.

However, the convergence is in the k → 0 limit. For some problems, we
must choose very small k to get convergence though it is zero stable. To
figure out the behavior for finite k and the restriction on the step size, we
need the notion of stability region.
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Now, we look at another concept that is useful for ODE solvers. Apply
the method on the test equation u′ = λu and define z = kλ. Usually, the
method yields

un+1 = R(z)un

for one step method and

r∑
j=0

(αj − zβj)un+j = 0.

for LMMs.
The stability region is the set of complex z-values for which the solu-

tions un is guaranteed to be bounded:

|un| < C.

For one step method, we require |R(z)| ≤ 1. For LMM, we require,

π = ρ(ζ)− zσ(ζ) =
r∑
j=0

(αj − zβj)ζj

to satisfy the root-condition.

Corollary 1. An LMM is zero stable if and only if z = 0 is in the stability
region.

It is clear that now we should choose k so that kλ falls into the stabil-
ity region for any eigenvalue with Re(λ) < 0. The method is then stable
whenever z falls into the region of stability.

Remark 1. The above analysis is reasonable since λ can be understood as
the Jacobian at t = tn, and it is general enough.

Examples:

• Note that the midpoint method (leapfrog method) un+1 = un−1+
2kf(tn, u

n) is unstable for any finite k but it is zero-stable.

un+1 = un−1 + 2zun ⇒ ζ2 − 2zζ − 1 = 0.

For |ζ| ≤ 1, both roots must have magnitude 1 since their product
is −1. ζ1 = eiθ and ζ2 = −e−iθ. z = 1

2(ζ − 1
ζ ) = i sin θ if ζ = eiθ.

θ 6= ±π/2 since ζ1 6= ζ2. Hence, the stability region is the open interval
from −i to i.
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• The stability region of the backward Euler is {z : |z − 1| ≥ 1}.

un+1 = un + zun+1 ⇒ un+1 =
1

1− z
un.

Hence, ζ = 1
1−z and | 1

1−z | ≤ 1.

• For the fourth order Runge-Kutta:

Y1 = un

Y2 = un +
1

2
zY1 = (1 +

1

2
z)un

Y3 = un +
1

2
zY2 = (1 +

1

2
z(1 +

1

2
z))un

Y4 = un + zY3 = un(1 + z +
1

2
z2 +

1

4
z3)

un+1 = un +
z

6
(Y1 + 2Y2 + 2Y3 + Y4) = (1 + z +

1

2
z2 +

1

3!
z3 +

1

4!
z4)un

Hence, the stability region is determined by

|1 + z +
1

2
z2 +

1

3!
z3 +

1

4!
z4| ≤ 1

Note that the RK method always has Taylor polynomials of ez as the
characteristic polynomial.

4 Stiff problems

In the so-called stiff problems, we care about a slowly varying solution
while solutions nearby are rapidly varying with much smaller time scales.
In some typical physical applications, the transition to the equilibrium so-
lution is fast but the equilibrium solution itself changes slowly. We care the
equilibrium solution instead of the fast transition.

For stiff problems, designing numerical schemes is challenging since the
fast transition corresponds to negative eigenvalues with large absolute value.
For the method to be stable, we need kλ to fall into the stability region.
However, for explicit methods, the intersection of the stability region and
negative real axis usually has a finite length. The explicit schemes requires
that k to be very small for stiff problems.

The issue is that we don’t care the fast transition, i.e. we only care the
smaller eigenvalues but the eigenvalues for fast transition put restrictions.
We hope k ∼ 1/|λslow| instead of 1/|λfast|.
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A scheme is said to be A-stable if its stability region contains the whole
left half plane. A scheme is said to be A(α)-stable if the region π − α ≤
arg(z) ≤ π + α lies in the stability region.

Clearly, if we use A-stable schemes, we won’t face instability even if our
k is large.

Sometimes, this is not enough since we hope the modes for the fast
transitions to damp instead of just being stable. Then, we require a scheme
to be L-stable.

Consider that a method applied to u′ = λu and we have un+1 = R(z)un.
The method is said to be L-stable if it’s A-stable and lim|z|→∞R(z) = 0.

Example: The trapezoidal method is A-stable but not L-stable. The
backward Euler is L-stable. Actually, for trapezodial, we have

un+1 − un

k
=

1

2
λ(un + un+1)⇒ R(z) =

1 + z/2

1− z/2
.

Similarly, for backward Euler, we have

R(z) =
1

1− z
.

5 FDM for PDE, Method of lines

(Sec. 9.2 and 10.2)
Idea: Approximate the spatial differential operators with finite difference

and then we get a system of ODEs. Applying suitable ODE solvers, we then
get the discretization of the PDEs.

• For the heat equation ut = uxx, we can approximate uxx by the cen-
tered difference and have

u′j(t) =
1

h2
(uj+1(t)− 2uj(t) + uj−1(t)).

If we then apply the forward Euler method, we obtain the scheme:

un+1
j − unj

k
=

1

h2
(unj+1 − 2unj + unj−1),

where unj means the the numerical value at xj = jh, tn = nk.

• For the advection equation ut+aux = 0 on [0, 1] with periodic bound-
ary condition u(0, t) = u(1, t) (if it’s not periodic, then, the boundary
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condition must be imposed at the boundary where the characteristics
come out), we may again use centered difference:

u′j(t) = − a

2h
(uj+1 − uj−1).

With the forward Euler, we have

un+1
j − unj

k
= − a

2h
(unj+1 − unj−1).

In the methods generated by MOL, the same ODE solver is used for all
spatial discretization, which is sometimes not efficient and not appropriate.
MOL, however, provides a useful tool and it is helpful for understanding the
stability, as we’ll see below.

Stability for MOL

We say a scheme is stable if

sup
n:nk≤T

‖un‖ ≤ C(T )‖u0‖,

for some norm ‖ · ‖.
Analyzing stability in the viewpoint of MOL is often for l2 stability anal-

ysis (the domain for x is usually bounded and we have boundary conditions).
As in the ODE theory, we require kλ to be in the stability region of the

ODE method for any eigenvalue λ of the spatial discretization.

• Consider the scheme

un+1
j − unj

k
=

1

h2
(unj+1 − 2unj + unj−1)

for ut = uxx with Dirichlet boundary conditions, the matrix A is
tridiagonal and the eigenvalues of the matrix are given by

λp =
2

h2
(cos(pπh)− 1), p = 1, 2, . . . ,m.

Note that cos(ξ) − 1 is decreasing on [0, π], so the eigenvalues are
roughly in the interval (−4

h2
, λ1) ≈ (−4

h2
,−π2). Hence, we require − 4k

h2

to be in the stability region of the ODE method. The stability region
of the forward Euler is |1+z| ≤ 1. Hence, the condition for the scheme
to be stable is

4k

h2
≤ 2.
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Hence, the time step is roughly the square of the spatial step. This is
a severe restriction. Explicit schemes for parabolic equations usually
have such restrictions.

• For the scheme

un+1
j − unj

k
= − a

2h
(unj+1 − unj−1)

with periodic boundary conditions, the matrix A has eigenvalues

λp = − ia
h

sin(2πph), p = 1, 2, . . . ,m+ 1.

We therefor need the interval (−iakh , i
ak
h ) which is on the imaginary

axis to be in the stability region. The stability region of the forward
Euler is however |1 + z| ≤ 1. This means this scheme is unstable for
any fixed ration k/h > 0.

However, we consider the convergence in the limit k, h → 0. If the
ratio k/h → 0, then kλ will tend to the origin. We know forward
Euler is zero stable, so we may expect the convergence if k/h → 0.
Actually, if k = O(h2), the convergence can be shown rigorously (read
P205).

If we instead use Leapfrog for time discretization:

un+1
j − un−1j

2k
= − a

2h
(unj+1 − unj−1)

we will however get stability for ak/h < 1.

6 Convergence: Lax Equivalence Theorem

Roughly speaking, this theorem says: for linear equations, a method is
convergent if it is consistent and stable.

Consistency: Local truncation error

(Sec. 9.1)
Given a scheme for a PDE, we use the local truncation error to measure

the consistency.
We insert the exact solution u(x, t) and determine how good it satisfies

the PDE.
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• For scheme
un+1
j − unj

k
=

1

h2
(unj+1 − 2unj + unj−1),

the local truncation error is given by

τ(x, t) =
u(x, t+ k)− u(x, t)

k
− 1

h2
(u(x+h, t)−2u(x, t)+u(x−h, t))

= (ut − uxx) +
1

2
uttk +

1

12
uxxxxh

2 + . . .

The error is O(k + h2), which is first order in time and second order
in space.

• Similarly, the scheme for the advection equation we just proposed is
also O(k + h2).

The Lax equivalence theorem

Suppose a method can be written as

un+1 = B(k)un + bn(k),

where un = (unj ) is a vector.
The method is called Lax-Richtmyer stable if for any fixed T > 0, there

exists a constant CT such that

‖B(k)n‖ ≤ CT ,

whenever nk ≤ T .

Theorem 2. Any consistent method of the above form is convergent if and
only if it is Lax-Richtmyer stable.

The ‘if’ part is straightforward. Suppose u(x, t) is the exact solution,
and ū consists of the values of the exact solutions, then we have

ūn+1 = B(k)ūn + bn(k) + kτn,

where τn is the local truncation error and goes to zero as k → 0 since the
method is consistent. Then, En = un − ūn and we have

En+1 = BEn − kτn.

This relation implies that

‖EN‖ ≤ CT ‖E0‖+ TCT max
n
‖τn‖.

For the ‘only if’ part, it involves some uniform boundedness principle. We
ignore it. Those who are interested can read the paper by Richtmyer.
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7 Von Neumann-analysis for linear PDEs (Fourier
analysis)

This is convenient for l2 stability analysis for a unbounded domain or
domain with periodic boundary condition. Suppose we have sample points
xj = jh : j : −∞ → ∞. We have uj defined at xj . Let’s define the
semi-discrete Fourier transform:

û(ξ) =
h√
2π

∞∑
j=−∞

uje
−ixjξ =

h√
2π

∞∑
j=−∞

uje
−ijhξ, ξ ∈ [−π/h, π/h].

Then, we can recover uj by

uj =
1√
2π

∫ π/h

−π/h
û(ξ)eijhξdξ.

We have the Parseval’s equality:

‖u‖2 =

√
h
∑
j

u2j = (

∫ π/h

−π/h
|û(ξ)|2dξ)1/2 = ‖û‖2.

The l2 stability requires that ‖un‖2 is bounded. Hence, it is enough to check
the L2 norm of û.

Usually, for the FDM of a linear PDE, the Fourier modes eixjξ are de-
coupled. Just like the dispersion relation for linear PDE, for the discrete
case, we’ll have

ûn+1(ξ) = g(ξ)ûn(ξ).

Theorem 3. If there exists α ≥ 0 such that the amplification factor g
satisfies

|g(ξ)| ≤ 1 + αk,

then the method is l2 stable.

Proof.
‖ûn+1‖2 ≤ sup

ξ
|g(ξ)|‖ûn‖2 ≤ (1 + αk)‖ûn‖2.

Hence,

‖ûN‖2 ≤ (1 + αk)N‖û0‖2 ≤ exp(αNk)‖û0‖2 = exp(αT )‖û0‖2.
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To figure out g(ξ), we can simply assume that unj = eijhξ and then

compute un+1
j = g(ξ)eijhξ. (This works since unj is just the superposition of

these modes. We can check what happens for each mode.)

• Consider again the scheme

un+1
j − unj

k
=

1

h2
(unj+1 − 2unj + unj−1).

If we plug in unj = exp(ijhξ), we have

un+1
j = eijhξ +

k

h2
(eihξ − 2 + e−ihξ)eijhξ = g(ξ)eijhξ.

Hence, we find g(ξ) = 1 + k
h2

2(cos(ξh)− 1). We find 2(cos(ξh)− 1) ∈
[−4, 0]. Then, if −4k/h2 ≥ −2, |g| ≤ 1, the method is stable. (Due
to 1/h2, it’s not possible to expect positive α.) We obtain the same
requirement.

• For the method,

un+1
j − unj

k
= − a

2h
(unj+1 − unj−1),

we find g(ξ) = 1 + ak
2h2i sin(ξh). Then,

|g| =
√

1 + a2
k2 sin2(ξh)

h2
. 1 + a2

k2

2h2
.

Then, if k/h2 is fixed. The method is stable. For any fixed k/h ratio,
the method is unstable.

Remark 2. Besides the MOL and Fourier analysis, other method for sta-
bility include energy method, discrete maximal principle, direct estimation
of the growth matrix et al.
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