
Advanced computational methods X071521-SDE
Lecture 1

1 Motivation for SDEs

We consider a dynamics system with noise.

Ẋ = b(t,X) + σ(t,X)η(t)

where η(t) is the noise. For the noise η(t), we have some intuition:

• Eη(t) = 0

• η(t2) and η(t1) have the same distribution.

• Eη(t)η(s) = δ(t− s).

The third condition means that the the noise at different times are unrelated.
We make the correlation to be Dirac delta so that the noise has nontrivial
contribution for the system. The Fourier transform of the correlation func-
tion

F(δ(·)) = 1.

This is independent of the frequency and we thus call η(t) the white noise.
Now, consider the integral of the white noise:

W (t) =

∫ t

0
η(s) ds.

This has the following properties

• EW = 0

• W (t) has stationary increments

• The increments are independent.

• E(W (t)W (s)) = s ∧ t.

Moreover, if we expect W to have continuous paths, then W (t) must be the
Brownian motion, and

W (t)−W (s) ∼ N(t− s).

This means that
EW (t)W (s) = min(s, t).

Hence, the white noise is the derivative of Brownian motion.
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Remark 1. In the theory of random fields, the white noise is generalized
to a L2(Ω)-valued measure (i.e. a mapping from Borel sets to L2 random
variables). Then, Bt = η([0, t]) ∈ L2(Ω).

Remark 2. There is another Levy’s theorem about Brownian motion that
may be useful sometimes: If a martingale M has continuous paths and the
quadratic variation is [M,M ] = t, then M is the standard Brownian motion.

With the understanding above, the dynamic system with noise can be
written as

dX = b(t,X)dt+ σ(t,X)dW,

or in integral form, we have

X(t) = X0 +

∫ t

0
b(s,X(s)) ds+

∫ t

0
σ(s,X(s))dW (s).

Such kind of equations are call stochastic differential equation (SDE)
driven by Brownian motions. Of course, we have SDEs driven by other
processes, which we will not touch in this course.

If σ is a constant, the integral of the last term gives σW (t), which is
easy to understand. However, in general σ(t,X) is random. We must un-
derstand how σ and dW are multiplied together. This will be answered by
Itô integrals.

2 Itô integrals

The rigorous theory will be established on probability spaces using mea-
sure theory. For the measure space (Ω,F , P ). Here, F is the set (sigma
algebra) of some subsets of Ω. These sets are called events. P is the proba-
bility measure. Each ω ∈ Ω is called a sample point and you can understand
that it corresponds to one realization of the Brownian motion.

2.1 Some basic definitions

A filtration {Ft : t ∈ R+} is a collection of σ-algebras on the probability
space such that

Fs ⊂ Ft ⊂ F 0 ≤ s < t <∞.

This models the increasing information of a system: Ft represents the cur-
rent information we know.

A stochastic process {Xt} is a family of random variables defined on
(Ω,F , P ) indexed by t. Hence, X = X(t, ω). Alternatively, we can also
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understand it as a [0,∞) → S function valued random variable X(·, ω) on
the probability space. Every such function is called a path.

We say X is adapted to the filtration {Ft} if X(t) ∈ Ft. (This means

{ω : X(t, ω) ∈ B} ∈ Ft, for all Borel set B)

Often, we choose the minimal filtration for the process

Ft = σ{Xs : 0 ≤ s ≤ t}

This represents all the information brought by X up to time t.
For more rigorous and complete discussion of filtrations, stopping times,

read the book draft written by Timo, available on his website.

Definition 1. Given a process Y , the quadratic variation [Y ] is a stochastic
process such that t 7→ [Y ](t, ω) is nondecreasing for all ω and

[Y ](t, ω) = lim
mesh→0

n∑
i

(Yti+1 − Yti)2, in probability

Exercise: Prove that if X(t) is a continuously differentiable,
then [X] = 0. Prove that the quadratic variation is given by [W ] = t.

Since Brownian motion has rough paths, the quadratic variation is nonzero.
In fact,

[W ] = t.

This formally means
(dW )2 = dt.

This explains why in usual ODEs, we only have df(X) = f ′(X)dX but for
diffusion processes the differential of f(W ) contains other terms.

The quadratic covariation is

[X,Y ] = [
1

2
(X + Y )]− [

1

2
(X − Y )]

Intuitively, this is to define∑
i

(Xti+1 −Xti)(Yti+1 − Yti)

The previous definition is used due to some path properities.
Hence, formally, we have

d[X,Y ] = dXdY.

As we have seen, the quadratic variation is introduced because (dW )2 has
nontrivial contribution.
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Remark 3. In general, if we consider diffusion processes driven by Brown-
ian motions, we need to consider quadratic variation and

d(XY ) = Y dX +XdY + d[X,Y ]

Here, Y dX should be understood in Itô sense as we shall see soon.

Definition 2. A real valued stochastic process M = {Mt : t ∈ R+} is
called a martingale with respect to the filtration {Ft} if M is adapted to the
filtration and

E(Mt|Fs) = Ms, s < t.

Often, the martingales in M2 is good:

‖M‖M2 =
∞∑
k=1

2−k(1 ∧ ‖Mk‖L2(P)).

2.2 stochastic integrals

Suppose we want to define
∫ t

0 WdW . Consider the Riemann sum

S(π) =
∑
i

Wsi(Wti+1 −Wti)

where
si = (1− u)ti + uti+1.

The computation starts with the following algebra identity

b(a− c) =
1

2
(a2 − c2)− 1

2
(a− c)2 + (b− c)2 + (a− b)(b− c)

Taking the sum, the first term is simply 1
2W

2
t . The second term is the

quadratic variation. The third term, by similar computation of quadratic
variation, we can show that it converges in L2 to ut:

E(
∑
i

(Wsi −Wti)
2) =

∑
i

u(ti+1 − ti) = ut,

V ar(
∑
i

(Wsi −Wti)
2) =

∑
i

V ar((Wsi −Wti)
2) =

∑
i

2(si − ti)2 ≤ 2tmesh(π)→ 0.

The third term has mean zero and variance converging to zero. Hence, the
L2 limit is given by

1

2
W 2
t −

1

2
t+ ut.

We conclude the following

4



• The limit of the Riemann sum depends on the choice of sample point!

• If u = 1/2, we have the chain rule. However, 1
2W

2
t is not a martingale.

• If u = 0, we do not have chain rule but 1
2W

2
t − t

2 is a martingale.

If we choose the midpoint as the sample point, we get the Stratonovich
integral. If we use the left point, the resulted integral is the Itô integral.
Since the Itô integrals give martingales

Remark 4. Show that if F has bounded total variation, then

lim
mesh(π)→0

∑
i

Fsi(Fti+1 − Fti)

is independent of the choice of u.

Remark 5. For the stochastic integral with respect to cadlag semimartin-
gales, the integrand should be predictable to make sense.

Rigorous definition of Itô integral

The rigorous stochastic integral can be established for X ∈ L2([0, T ]×Ω),
i.e.

‖X‖2L2([0,T ]×Ω) := E
∫

[0,T ]
|X(t, ω)|2dt <∞.

• First of all, for the simple predictable process

Xt(ω) = η0(ω)1(0)(t) +
n−1∑
i=1

ξi(ω)1(ti,ti+1](t)

where 0 = t1 < t2 < . . . < tn. Predictable means that the state at t
can be referred by the information in s < t. Also, ξi should be square
integrable. The stochastic integral is defined by

(X ·B)(t) =

∫ t

0
XdB =

n−1∑
i=1

ξi(ω)(Bti+1∧t(ω)−Bti∧t(ω))

Clearly, X ·B is a martingale in M2 and we have the Itô isometry:

E[(X ·B)2
t ] = E

∫ t

0
X2
s ds, ∀t ≥ 0.
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• The significant fact of the Itô isometry is that if {Xn} is a sequence
of simple predictable processes and Xn → X in L2([0, T ] × Ω), then
Xn · B is a Cauchy sequence in M2. Then, the limit is defined to be
(X ·B)(t) =

∫ t
0 XdB.

This is good enough because any X ∈ L2([0, T ] × Ω) can be approxi-
mated by simple predictable processes.

In the example above,
∑

iBti1(ti,ti+1] approximates B, and this corre-
sponds to u = 0.

To summarize, for X ∈ L2([0, T ] × Ω), we can define X · B =
∫ t

0 XdB
which is a martingale and the Itô isometry holds

E(

∫ t

0
XdB)2 = E

∫ t

0
X2
s ds

There are extensions to processes that are not in L2. Those who are
interested can read the reference.

3 Itô formula

As we have seen, the Brownian motion has rough paths and d[B,B] = dt.
Intuitively, this means (dB)2 = dt. Hence, if we expand f(B), the quadratic
variation term will be nontrivial. Then, we have

f(B) = f(B0) +

∫ t

0
f ′(Bs) dBs +

1

2

∫ t

0
f ′′(Bs) d[B]s.

For standard Brownian motion W0 = 0. However, we can also consider
non-standard Brownian motion

B(t) = B0 +W (t).

That is why we have B0.
This is the special case of the Itô’s formula. The most general Itô’s

formula is valid for stochastic integrals with respect to semi-martingales.
Here, I only list the case for Brownian motions in Rd.

Theorem 1. Let B = (B1, B2, . . . , Bd) be a Brownian motion in Rd with
random initial data B(0). Let f ∈ C2(Rd). Then, we have

f(B(t)) = f(B(0)) +

∫ t

0

∑
i

∂if(Bs)dBs +
1

2

∫ t

0
∆f(Bs) ds.

We will omit the proof. To memorize this, you can understand it as

dBidBj = δijdt, dBidt = 0, (dBi)
p = 0, p ≥ 3.

6



4 Stochastic differential equations

The general stochastic differential equations are given by

dX = dH + F (t,X)dY

where Y is a general cadlag semimargingales. In this course, we only focus
on the Itô equations

dX = b(t,X)dt+ σ(t,X)dBt, X0 = ξ.

This equation is defined by the following integral equation

X(t) = ξ +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs)dBs.

The integral is in the Itô sense.
b is Rd valued and is called the drift vector. σ is called the dispersion

matrix which has size d×m. The matrix σσT is called the diffusion matrix.
The solution of Itô equations will be called the diffusion processes.

Before we go to the rigorous theory, let us look at two examples.
Example 1: the Ornstein-Uhlenbeck process

dX = −αXdt+ σdWt.

Assume the initial data X0 is independent of the Brownian motion.
Mimicking the technique for ODE, we want to try integrating factor.

However, the processes we have all nontrivial quadratic variation.

d(ZX) = ZdX +Xdz + d[Z,X]

Let us try
Z = exp(αt)

Then, [Z,X] = 0 because dBdt = 0. Then,

d(ZX) = −αZXdt+ σZdB + αZXdt = σZdB.

Hence, we in fact have the usual formula as in ODE.
The OU process is then solved to be

Xt = X0e
−αt + σe−αt

∫ t

0
eαsdWs.
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Of course, this is formal guess, you may need to verify that it satisfies
the integral equation by Itô formula, which is left for exercise.

Exercise: Compute the mean and the variance of the 1D OU process.
Since the dispersion matrix does not depend on the process X, X is a Gauss-
sian process, write out the density of Xt.

Example 2. Geometric Brownian motion

dX = µXdt+ σXdB, X(0) = x0.

For the integrating factor, one may guess to use

Z = exp(−µt− σBt)

and get
X = X0 exp(µt+ σBt)

This turns out to be wrong. In fact,

d(XZ) = XdZ + ZdX + d[Z,X] =
1

2
XZσ2dt+ d[Z,X]

The quadratic variation part is nonzero:

d[X,Y ] = −σ2XZdt.

Hence,

d(XY ) = −1

2
XZσ2dt.

What is the correct integrating factor? Motivated by the above compu-
tation, we try into the factor

Z = exp(−µt− σBt + rσ2t)

Then,

d(XZ) = XdZ + ZdX + d[X,Z] = (
1

2
+ r)σ2XZdt− σ2XZdt.

Clearly, we need r = 1
2 .

Hence, the geometric Brownian motion should be solved as

Xt = X0 exp

(
(µ− 1

2
)σ2t+ σBt

)
.

To verify this is a solution, we need to check all the assumptions in the
derivation above are valid. Alternatively, one can check directly by inserting
this into the integral equation.

Exercise: Use Itô’s formula to find an ODE for u(t) = EX2 for the
geometric Brownian motion. Then, find u(t).
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