
Advanced computational methods X071521-SDE
Lecture 2

We try to go over some properties of Itô equations and the diffusion
processes.

1 SDE example continued

Example 2. Geometric Brownian motion

dX = µXdt+ σXdB, X(0) = x0.

For the integrating factor, one may guess to use

Z = exp(−µt− σBt)

and get
X = X0 exp(µt+ σBt)

This turns out to be wrong. In fact,

d(XZ) = XdZ + ZdX + d[Z,X] =
1

2
XZσ2dt+ d[Z,X]

The quadratic variation part is nonzero:

d[X,Y ] = −σ2XZdt.

Hence,

d(XY ) = −1

2
XZσ2dt.

What is the correct integrating factor? Motivated by the above compu-
tation, we try into the factor

Z = exp(−µt− σBt + rσ2t)

Then,

d(XZ) = XdZ + ZdX + d[X,Z] = (
1

2
+ r)σ2XZdt− σ2XZdt.

Clearly, we need r = 1
2 .
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Hence, the geometric Brownian motion should be solved as

Xt = X0 exp

(
(µ− 1

2
)σ2t+ σBt

)
.

To verify this is a solution, we need to check all the assumptions in the
derivation above are valid. Alternatively, one can check directly by inserting
this into the integral equation.

2 Existence and uniqueness of strong solutions for
Itô equations

Recall that we have a probability space (Ω,F ,P) with filtration {Ft}.

Definition 1. We say a process X on (Ω,F ,P) is a strong solution to the
Itô equation with initial data ξ ∈ F0 if

P{∀T > 0,

∫ T

0
|b(x,Xs)|ds+

∫ T

0
|σ(s,Xs)|2 ds <∞} = 1,

and the integral equation

Xt = ξ +

∫ t

0
b(s,Xs)ds+

∫ T

0
σ(s,X − s)dBs

holds (in the sense that both sides are distinguishable processes).

There is also definition of weak solutions for Itô equations, and I will
skip this here.

There is a classical result regarding the wellposedness of the equation

Theorem 1. Assume b : R+ × Rd → Rd and σ : R+ × Rd → Rd×m satisfy
the Lipschitz condition

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|

and
|b(t, x)|+ |σ(t, x)| ≤ L(1 + |x|)

then there exists a unique continuous process X on (Ω,F ,P) adapted to the
filtration {Ft} that is a strong solution.

Here, we present the proof of a simpler version:
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Theorem 2. Besides the conditions above, if moreover, Eξ2 <∞, then there
exists a unique continuous process X on (Ω,F ,P) adapted to the filtration
{Ft} that is a strong solution, and

E( sup
t∈[0,T ]

|Xt|2) ≤ C(1 + Eξ2).

Moreover, let X̃ be a solution corresponding to initial data ξ̃ ∈ L2(P), then

E( sup
0≤s≤t

|Xs − X̃s|2) ≤ C(t)E|ξ − ξ̃|2.

Proof. Consider the Picard iteration X0 = ξ and

Xn+1(t) = ξ +

∫ t

0
b(s,Xn(s))ds+

∫ t

0
σ(s,Xn(s))dBs.

Clearly,

E(

∫ t

0
|b(s,Xn)|2ds+

∫ t

0
|σ(s,Xn(s))|2ds) ≤ 4L2t(1 + sup

s∈[0,t]
E|Xn(s)|2)

Since ξ ∈ L2(P), by induction, we have

E sup
s∈[0,t]

|Xn(s)|2 <∞.

This means Xn+1 is well-defined.
Moreover,

E sup
0≤s≤t

|Xn+1|2 ≤ CEξ2+C(t)

∫ t

0
E|Xn(s)|2 ds ≤ A+C(t)

∫ t

0
E sup

0≤τ≤s
|Xn(τ)|2 ds.

From here, we find that yn(t) := sup0≤s≤t |Xn(s)|2 satisfies that

yn+1(t) ≤ A+ C(T )

∫ t

0
yn(s) ds,

for all t ∈ [0, T ].
This gives a uniform bound:

yn(t) ≤ u(t)

where u′(t) = C(T )u with u(0) = A.
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Now, we consider

zn(t) := E sup
0≤s≤t

|Xn+1(t)−Xn(t)|2

Then, we have

zn(t) ≤ 2E sup
0≤s≤t

(

∫ s

0
|b(τ,Xn)−b(τ,Xn−1)| dτ)2+2E sup

0≤s≤t
(

∫ s

0
(σ(τ,Xn)−σ(τ,Xn−1))dBτ )2

The first term is controlled trivially by t
∫ t
0 E(b(τ,Xn) − b(τ,Xn−1))

2ds ≤
C(T )

∫ t
0 zn−1 ds.

For the second term, we apply Doob’s inequality for martingales

E( sup
0≤s≤T

Mp
s ) ≤ (

p

p− 1
)pEMp

t ,

to the stochastic integral and have

E sup
0≤s≤t

(

∫ s

0
(σ(τ,Xn)−σ(τ,Xn−1))dBτ )2 ≤ 4E

∫ t

0
|σ(s,Xn)−σ(s,Xn−1)|2 ds ≤ C

∫ t

0
zn−1(s) ds.

Direct computation shows z0 ≤ B(T ). Then,

zn ≤ B(T )
Cntn

n!

This implies that
∑

n ‖ sup0≤s≤t |Xn+1(t)−Xn(t)|‖2 converges.
Moreover, by Chebyshev inequality

P ( sup
0≤s≤t

|Xn+1(t)−Xn(t)| > 2−n) ≤ B4nCntn

n!

This is summable. The Borel-Cantelli lemma implies that Xn(t) converges
in C([0, T ]) almost surely to some continuous process X(t).

Then, by Fatou’s lemma

E‖ sup
0≤t≤T

|X(s)−Xn(s)|‖2 ≤ lim inf
m→∞

m−1∑
k=n

‖ sup
0≤s≤t

|Xk+1(t)−Xk(t)|‖2

This is arbitrarily small if n is large enough. Hence, Xn → X in L2(0, T ;L2).
Moreover, X has the same second moment bounds.

Then, taking n→∞ in the Picard iteration, we find that X is a solution.
Lastly, the estimate for two solutions is very similar to the estimate of

E sup0≤s≤t |Xn+1 −Xn|2 above. We skip the details. The uniqueness then
follows from this estimate.
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Remark 1. The conditions imposed b(·) is too strong for many applications.
In fact, it is also known that locally Lipschitz and confinement conditions
can imply the existence and uniqueness of solutions (For example, in The-
orem 2.3.5 of the book ’Stochastic Differential Equations and applications’
(Horwood, 97) by X. Mao, it is shown that max(x · b(x), |σ|2) ≤ C1 +C2|x|2
is enough for the well-posedness, which allows b like −(1 + |x|2)px).

3 The generator, semigroups

Let µt be the law of X(t), which is a measure in Rd. Then we have

Ef(X(t)) = 〈µt, f〉 =

∫
Rd

f dµt.

For smooth bounded function f(x), define

u(x, t) = Exf(Xt).

By Itô’s formula, u satisfies

∂tu(x, t) = ExLf(Xt),

where L is the generator of the process

L := b · ∇+
1

2
Λij∂ij ,

where we used Einstein summation convention (i.e. Λij∂ij ≡
∑d

i,j=1 Λij∂xixj )
and

Λ = σσT .

This is a special case of Dynkin’s formula. The density of the law of X(t)
starting x, denoted by p(t, y;x), is called the Green’s function. When Λ is
positive definite, p(t, x, y) is a smooth function for t > 0. Dynkin’s equation
implies that p(t, y;x) satisfies the forward Kolmogorov equation, or
Fokker-Planck equation for t > 0:

∂tp = −∇y · (b(y)p) +
1

2
∂yiyj (Λij(y)p) := L∗yp,

where the subindex y means that the derivatives are taken on y variable.
By the well-posedness of the SDE, we have∫

Rd

p(t, y;x) dy = 1, ∀x ∈ Rd, t > 0.
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Clearly, for general starting probability measure µ0, the law of X(t) also
satisfies the Fokker-Planck equation in the distributional sense:

d

dt
〈µt, f〉 = 〈µt,Lf〉.

Moreover, let v : (x, t) 7→ v(x, t) solve the backward Kolmogorov equa-
tion

∂tv = Lv = b · ∇v +
1

2
Λij∂ijv

with initial condition v(x, 0) = f(x). Let X(t) be the process satisfying the
SDE with initial condition X(0) = x. We check that Ys = v(X(s), t− s) is
a martingale and therefore

v(x, t) = Y0 = EYt = Ev(X(t), 0) = Ef(X(t)) = u(x, t).

This means that u solves the backward Kolmogorov equation. Combin-
ing with Dynkin’s formula, we can infer that the Green’s function satisfies
L∗yp(t, x, y) = Lxp(t, x, y), or

−∇y · (b(y)p(t, x, y)) +
1

2
∂yiyj (Λij(y)p(t, x, y)) =

b(x) · ∇xp(t, x, y) +
1

2
Λij(x)∂xixjp(t, x, y).

We now define the semigroup generated by L:

St = etL,

which means
d

dt
St = LSt.

In other words, let u0 be a suitable function, then u(t) = etLu0 is the solution
of the backward Kolmogorov equation at t with initial data u0.

Similarly, we define
S∗t = etL

∗
.

Hence, for a given initial density p0, then

pt = etL
∗
p0

is the probability density at t.
Using the above representation we have the following observation
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Proposition 1. etL
∗

is nonnegativity preserving, integral preserving and it
is L1 non-expansive (‖S∗t ‖L1→L1 ≤ 1). Meanwhile, etL is L∞ non-expansive
and nonnegativity preserving.

The second claim follows from the fact (L1)′ = L∞. Also can be seen by
the representation

u(x, t) =

∫
p(t, y;x)u(y, 0) dy.

In fact, if we look at the PDEs:

∂tu = Lu = b · ∇u+ Λ : ∇2u.

On the right hand side there is no u term. Such equations are known to
have maximal principle and thus L∞ non-expansive.

The Fokker-Planck equation is in conservative form

∂tp = L∗p.

If we expand the derivatives, it has constant term, so it does not have
maximal principle.

4 Dynkin and Feynman-Kac

Above, we have seen a special case of Dynkin’s formula. In fact, for
stopping time τ with P(τ <∞) = 1, the Dynkin’s formula still holds

Exg(Xτ ) = g(x) + Ex
∫ τ

0
Lg(Xs)ds.

Here, a stopping time τ : Ω→ [0,∞) is a random variable such that

{τ ≤ t} ∈ Ft, ∀t ≥ 0.

intuitively, this means whether we stop the process at time t or not can be
known by the the information given up to t. Typical stopping time is the
hitting time of a given domain.

Consider the ellitpic PDE with Dirichlet boundary condition

Lu = f, u(x ∈ ∂D) = ϕ(x)

Then, Dynkin’s formula tells us that

Exu(Xτ ) = u(x) + Ex
∫ τ

0
Lu(Xs)ds.

7



If we pick τ to be the hitting time, then u(Xτ ) = ϕ(Xτ ). The second term
on the right hand side is Ex

∫ τ
0 f(Xs)ds. Hence, overall, we have

u(x) = Exϕ(Xτ )− Ex
∫ τ

0
f(Xs)ds.

A particularly interesting case is when f = −1 and ϕ = 0. This means

u(x) = Exτ,

solves the PDE
Lu = −1, u(x ∈ ∂D) = 0

The Dynkin’s formula works for test function that does not depend on
time. If, however, the test function depends on time, we should have the
Feynman-Kac formula

Exg(τ,Xτ ) = g(0, x) + Ex
∫ τ

0
(∂tg + Lg)(s,Xs) ds.

5 Convergence to equilibrium

Assumption 1. Suppose b and σ are smooth. The function b satisfies

b(x) · x ≤ −r|x|2 (1)

when |x| > R for some R. Also, σ satisfies ‖σ‖∞ < ∞ and Λ = σσT ≥
S1I > 0.

The process has certain recurrent properties so that the SDE has a
unique stationary distribution π [1, sect. 4.4-4.7]. Moreover, π has a den-
sity with respect to Lebesgue measure [1, Lemma 4.16]. If σσT is positive
definite everywhere, we have π(y) > 0.

Note that stationary distribution means that the law of X(t) converges in
some sense to a distribution. Or, in other words, the process X(t) converges
in distribution to some random variable X∞. However, X(t) never converges
pointwise (there is Brownian motion always, so X(t, ω) cannot tend to some
value). π is also called the invariant measure.

Hence, one desired to show the convergence to the invariant measure.
Some ways to prove

• Regarding the convergence of u(·, t) to 〈π, f〉 or µt to π using coupling
argument for SDEs. In particular, we have the V -uniform geometric
ergodicity for u(·, t)→ 〈π, f〉 ([2, 3]) or geometric convergence of µt →
π in Wasserstein space ([4, 5]).
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• Prove the geometric convergence of u(·, t) to 〈π, f〉 in Lp(π) spaces
using spectral gap and Perron-Frobenius type theorems (see [2, Chap.
20]; [6, 7, 8] for example).

• PDE techniques. Use the Fokker-Planck equation and some functional
inequalities (Poincaré inequality, or log Sobolev inequality etc). These
functional inequalities will imply spectral gaps of the semigroups.

Here, I will mention a method using the PDE technique to study a special
case:

dX = −∇V (X)dt+
√

2dWs,

where V is strongly convex. Some of the calculation here can be found in
[9].

In this case, using the Fokker-Planck equation, we can verify that

π(x) = C exp(−V (x)),

where C is some normalization constant.
Define

q(x, t) :=
p(x, t)

π(x)
≥ 0,

Note that Λij is symmetric and

−∇ · (bπ) +
1

2
∂ij(Λijπ) = 0, (2)

we have

∂tq =
( 1

π
∇ · (Λπ)− b

)
· ∇q +

1

2
Λij∂ijq. (3)

If the detailed balance condition

b =
1

2π
∇ · (Λπ) (4)

holds (for example, Λ = 2DI and b = −∇V ), then we have the useful
identity

L∗(fπ) = πLf + fL∗π = πLf. (5)

Then (3) can be rewritten as

∂tq = b · ∇q +
1

2
Λij∂ijq, (6)
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which is the backward equation.
Now, we take

ϕ(q) = q log q − q + 1,

and have
∂

∂t
ϕ(q) = ϕ′(q)L(q) = Lϕ(q)−Dϕ′′(q)|∇q|2.

Hence, we have

d

dt

∫
ϕ(q)π dx = −D

∫
ϕ′′(q)|∇q|2π dx

We define

H(ρ|e−V ) =

∫
ϕ(q)π dx =

∫
q log qπ dx =

∫
ρ log

ρ

Ce−V
dx =

∫
ρ log

ρ

e−V
dx−C1

This is known as the relative entropy

ϕ′′(q)|∇q|2π =
π

q
|∇q|2 = ρ|∇(log q)|2 = ρ|∇(log

ρ

e−V
)|2.

We define

I(ρ|e−V ) =

∫
|∇q|2

q
π, dx =

∫
ρ|∇(log

ρ

e−V
)|2 dx

to be the relative Fisher information.
Hence,

d

dt
H(ρ|e−V ) = −I(ρ|e−V ).

Our goal is then to show

I(ρ|e−V ) ≥ 2λH(ρ|e−V ).

If a measure e−V satisfies this inequality, we say it satisfies a logarithmic
Sobolev inequality with constant λ.

Remark 2. The original Log Sobolev inequality is for Gaussian measure.
Let γ = (2π)−d/2 exp(−|x|2/2). Then,∫

u2 log u2 dγ − (

∫
u2dγ) log(

∫
u2 dγ) ≤ 2

∫
|∇u|2 dγ.

This means we have the embedding H1(dγ) ⊂ L2 logL2(dγ). This Sobolev
inequality is then equivalent to

H(ρ|γ) ≤ 1

2
I(ρ|γ)
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Here, we have two facts.
The first is the Holley-Stroock perturbation lemma (the paper title is

”Logarithmic Sobolev inequalities and stochastic Ising models”):

Lemma 1. If V = V0 + v where e−V0 satisfies the log Sobolev inequality
with constant λ and osc(v) := sup v − inf v < ∞, then e−V satisfies the log
Sobolev inequality with constant λe−osc(v).

The second is a more fundamental result by Bakry and Emery in 1985.

Lemma 2. If ∇2V ≥ λId, then e−V satisfies the Log Sobolev inequality with
constant λ.

Since we aim to be simple and consider strongly convex V , so I will prove
the second lemma only.

Proof. We first of all assume ρ0 ∈ C∞ and decays exponentially fast as
|x| → ∞. Let ρ be the solution to the Fokker-Planck equation.

d

dt
I(ρ|e−V ) =

d

dt

∫
ρ|∇(log

ρ

e−V
)|2 dx

Now, we perform a tedious calculation. For convenience, let us denote µ =
e−V and q = ρ/e−V . This q also satisfies the backward equation.

d

dt

∫
ρ|∇ log q|2 dx =

∫
∂tρ|∇ log q|2 + 2

∫
ρ∇ log q∇∂tq

q

=

∫
∂tρ|∇ log q|2 − 2

∫
(∇ρ∇ log q + ρ∆ log q)

∂tq

q

=

∫
∂tρ|∇ log q|2 − 2

∫
(µ∇q · ∇ log q − qµ∇V · ∇ log q + ρ∆ log q)

∂tq

q

= −
∫
∂tρ|∇ log q|2 + 2

∫
∇V · ∇ log q∂tρ− 2

∫
(∆ log q)∂tρ =: −J

Now, we know
∂tρ = ∇ · (e−V∇(eV ρ)),

then we can reduce the above to

J =

∫
eV ρ∇ · (e−V∇(|∇ log q|2 − 2∇V · ∇ log q + 2∆ log q)) dx

= −
∫
ρ∇V ·∇(|∇ log q|2−2∇V ·∇ log q+2∆ log q)+

∫
ρ∆(|∇ log q|2−2∇V ·∇ log q+2∆ log q)
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Now, consider∫
ρ(−2∆(∇V ·∇ log q)) dx = 2

∫
∇ρ·∇(∇V ·∇ log q) = 2

∫
ρ(∇ log q−∇V )·∇(∇V ·∇ log q)

Adding this back, we have

J = −
∫
ρ∇V ·∇(|∇ log q|2+2∆ log q)+

∫
ρ∆(|∇ log q|2)+2

∫
∆ρ∆ log q+2

∫
ρ∇ log q·∇(∇V ·∇ log q)

Note that

∇ log q · ∇(∇V · ∇ log q) = ∇ log q · ∇2V · ∇ log q +
1

2
∇V · ∇|∇ log q|2

we find

J = −2

∫
ρ∇V ·∇∆ log q+

∫
ρ∆(|∇ log q|2)+2

∫
∆ρ∆ log q+2

∫
ρ∇ log q·∇2V ·∇ log q

Now,

−2

∫
ρ∇V ·∇∆ log q+2

∫
∆ρ∆ log q = −2

∫
(ρ∇V+∇ρ)·∇∆ log q = −2

∫
ρ∇ log q·∇∆ log q

Moreover, we have the identity

−∇u · ∇∆u+ ∆
1

2
|∇u|2 = ∇2u : ∇2u.

Hence, we eventually find

J = 2

∫
ρ∇2 log q : ∇2 log q+2

∫
ρ∇ log q·∇2V ·∇ log q ≥ 2λ

∫
ρ|∇ log q|2 = 2λI(ρ|e−V )

This means
I(ρ|e−V ) ≤ I(ρ0|e−V )e−2λt

which implies that

H(ρ0|e−V ) =

∫ ∞
0

I(ρ|e−V )dt ≤ 1

2λ
I(ρ0|e−V ).

If we recall ρ0 is arbitrarily smooth functions that decay fast enough, by
some density argument, this can be generalized to probability densities with
bounded Fisher information.

Hence, we have established the Log Sobolev inequality.
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Remark 3. The computation above is really mysterious. In fact, if we look
at them in viewpoint of gradient flows in Wasserstein spaces, this will be
very natrual by the uniform displacement convexity.

As soon as we have the Log Sobolev inequality, we then have

H(ρ|e−V ) ≤ H(ρ0|e−V )e−2λt.

Finally, we use the Pinsker’s inequality or Csiszar-Kullback inequality,
we have

‖ρ− Ce−V ‖1 ≤
√

2H(ρ|Ce−V )

where C is normalized so that Ce−V is a probability density. This then
shows the exponentially fast convergence of the probability distribution in
total variation norm.
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