
Advanced computational methods X071521-SDE
Lecture 5

1 Other weak schemes

Here, I list out some typical weak schemes. If you are interested in them,
you can read in details.

1.1 Weak Taylor approximations

You can use the Itô-Taylor expansion to generate a lot of schemes. For
example, the Milstein scheme has weak order 1. Previously, we have seen a
weak 2 scheme. For the reference, you can read Chapter 14 of the book by
Kloeden and Platen.

As a side note, for weak approximation, we only care distribution, so
you do not have to use i.i.d Gaussian random variables ∆Wn. For example,
consider the case d = 1 and the SDE

dX = b(t,X)dt+ σ(t,X)dW.

Consider
Xn+1 = Xn + b(tn, X

n)k + σ(tn, X
n)
√
kξn

where ξn’s are i.i.d Bernoulli random variables, i.e. P (ξn = 1) = P (ξn =
−1) = 1

2 . This scheme is weakly convergent.
Exercise: Show the above claim by assuming b and σ are sufficiently nice.

What is the weak order?

1.2 A second order scheme for stationary distribution

In the work “Rational construction of stochastic numerical methods for
molecular sampling”, Leimkuhler and Matthews obtained a modification of
the Euler-Maruyama scheme

Xn+1 = Xn − k∇V (x) +
√

2β
1

2
(∆Wn + ∆Wn+1)

Note that {Xn} is not a Markov chain. This scheme solves the SDE still with
first order but for sampling the stationary distribution π using averages, it
is second order. Hence, it is good for MCMC sampling.
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1.3 Other high order weaks schemes

• In the paper “Weak approximation of stochastic differential equations
and application to derivative pricing”, Ninomiya and Victoir proposed
a splitting type weak second order scheme. The idea behind this is the
Baker-Campbell-Hausdorff formula.

• In the paper ”A Weak Trapezoidal method for a class of stochastic dif-
ferential equations”, Anderson and Mattingly proposed a Trapezoidal
method which is weak second order.

For those interested, you can read.

2 An approach to obtain high order weak schemes

Besides, the Itô-Taylor expansion and Runge-Kutta type methods, there
are many other methods to obtain high order weak schemes. One way could
be the Romberg extrpolation porposed by Talay and Tubaro (“expansion of
the global error for numerical schemes solving stochastic differential equa-
tions”), which uses the solutions with different time steps. Here, I want
to introduce the method proposed by Abdulle et al. in the paper “High
weak order methods for stochastic differential equations based on modified
equations”.

2.1 Idea of the method

Suppose that for SDE

dX = bdt+ σdW

we have a numerical method

Xn+1 = Ψ(b, σ,Xn, k, ξn)

that has order p.
The idea is to consider a modified equation

dX̃ = bk(X̃)dt+ σk(X)dW

where
bk = b+ kb1 + k2b2 + . . . , σk = σ + kσ1 + k2σ2 + . . .
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We then apply the method to this modified equation and get

X̃n+1 = Ψ(bk, σk, X̃
n, k, ξn).

The hope is that this new sequence better approximates the original
SDE.

2.2 The condition for improving accuracy

As we have seen before, we only need to look at the one step operator
S:

Sb,σ(φ) = Eφ(X1|X0 = x).

Suppose that the original scheme has local truncation error of order p+1
so that the global order is p:

Sb,σ(φ)− ekLφ = O(kp+1).

Our goal is to find bh and σh such that

Sbk,σk(φ)− ekLφ = O(kp+r+1).

Assumption 1. Assume that the method has the expansion about k as

Sb,σ(φ) = φ(x) + kA0(b, σ)φ(x) + k2A1(b, σ)φ(x) + . . .

where Ai’s are differential operators. Moreover, we have

Ai(f + εf1, g + εg1) = Ai(f, g) + εÂi(f, f1, g, g1) +O(ε2).

Since the scheme is consistent, we must have

A0(f, g) = f · ∇+
1

2
(ggT ) : ∇2.

For conveneince, denote

bk,s = b(x) + kb1(x) + . . .+ ksbs(x), σk,s = σ(x) + kσ1(x) + . . .+ ksσs(x)

Theorem 1. Suppose for some r ≥ 1 that we have found bk,p+r−2 and
σk,p+r−2 such that

X̃n+1 = Ψ(bk,p+r−2, σk,p+r−2, X̃
n, k, ξn).
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has weak (p+ r − 1)th order accuracy. If the operator

Lp+r−1φ = lim
k→0

ekLφ− Sbk,p+r−1,σk,p+r−1φ

kp+r

can be written as

Lp+r−1 = bp+r−1 · ∇+
1

2

p+r−1∑
`=0

(σ`σ
T
p+r−1−`) : ∇2

for some smooth bp+r−1 and σp+r−1, then the scheme

X̃n+1 = Ψ(bk,p+r−1, σk,p+r−1, X̃
n, k, ξn)

has (p+ r)th order weak accuracy.

Remark 1. If the scheme with b and σ already has pth (p ≥ 2) order
accuracy, we want to improve the order by r = 1, then we can set set
f1, . . . , fp+r−2 to zero. This means the corrected terms appear only at hp+r−1 =
hp in b and σ.

Proof of Theorem 1. Here, I only provide a sketch. You can refer to the
paper for the details.

With the assumption about the original scheme, we have

Sbk,p+r−2,σk,p+r−2φ(x) = φ(x) + kA0(bk,p+r−2, σk,p+r−2)φ(x)

+ . . .+ kp+rAp+r−1(bk,p+r−2, σk,p+r−2)φ(x) +O(kp+r+1)

Inserting the expansions and combining the high order terms into O(kp+r+1),
this should be

φ(x) + kL(b, σ)φ(x) + . . .+
kp+r−1

(p+ r − 1)!
Lp+r−1(b, σ)φ(x)

+ kp+rBp+r(f, g)φ(x) +O(kp+r+1)

By the assumption, we know that

Lp+r−1 =
(L(b, σ))p+r

(p+ r)!
−Bp+r(b, σ).

Now, bk,s and σk,s are modified with kp+r−1bp+r−1 and kp+r−1σp+r−1,
we find that only A0 will contribute hp+r terms to the new scheme. Other
Ai terms contribute to higher orders (including Bp+r+1 and so on).
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Clearly, we have

A0(bk,p+r−1, σk,p+r−1) = A0(bk,p+r−2, σk,p+r−2)

+ kp+r−1(bp+r−1 · ∇+
1

2

p+r−1∑
`=0

(σ`σ
T
p+r−1−`) : ∇2) +O(k2).

The new terms will cancel exactly (L(b,σ))p+r

(p+r)! −Bp+r(b, σ) by the assump-
tion, making

ekLφ(x)− Sbk,p+r−1,σk,p+r−1φ(x) = O(kp+r+1).

This implies the scheme has (p+ r)th weak order.

2.3 An example

Consider the θ-Milstein scheme

Xn+1 = Xn+(1−θ)kb(Xn)+θkb(Xn+1)+σ(Xn)∆Wn+
1

2
σ′(Xn)σ(Xn)(∆W 2

n−k).

Using the fact
E(∆Wn)2 = k, E(∆Wn)4 = 3k2,

we find

Sb,σ(φ)(x) = φ(x) + kA0(b, σ)φ(x) + k2A1(b, σ)φ(x) +O(h3),

where
A0(b, σ) = L

and

A1(b, σ)φ(x) = θ[b′(x)b(x) +
1

2
b′′(x)σ2(x)]φ′(x)

+
1

2
[b2(x) + 2θb′(x)σ2(x) +

1

2
(σ′(x)σ(x))2]φ′′(x)

+
1

2
[σ′(x)σ3(x) + σ2(x)b(x)]φ′′′(x) +

1

8
σ4(x)φ(4)(x).

Remark 2. To get this asymptotic expression, we first set

X1 = x+ k(1− θ)b(x) + θkb(X1) + σ(x)
√
kz +

k

2
σ′(x)σ(x)(z2 − 1).
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Sφ(x) = Eφ
(
x+ k(1− θ)b(x) + θkb(X1) + σ(x)

√
kz +

k

2
σ′(x)σ(x)(z2 − 1)

)
We then do expansion, about x. As you imagine, in the O(h) term and
O(h2) terms, we have f(X1) again. Then, we do expansion again about x.
Do this repeatedly, we eventual will get O(h) and O(h2) terms without X1.

According to the theorem, we perturb

bk,1 = b+ kb1, σk,1 = σ + kσ1.

Clearly,
A1(bk,1, σk,1)φ(x) = A1(b, σ)φ(x) +O(k).

Hence, the difference for the original O(k2) terms are unchanged

L1φ(x) =
1

2
L2φ−A1(b, σ)φ(x)

The good thing is that we have new O(k2) terms from A0 = L:

A0(bk,1, σk,1) = (b+ kb1) · ∇+
1

2
(σ + kσ1)(σ + kσ1)

T : ∇2.

The new O(k2) terms are
b1∂x + σσ1∂xx

We require

b1∂x + σσ1∂xx =
1

2
L2φ−A1(b, σ)φ(x).

This gives

b1 = (
1

2
− θ)b′b+

1

2
(
1

2
− θ)b′′(x)σ2(x), σ1 = (

1

2
− θ)b′σ +

1

2
σ′b+

1

4
σ2σ′′.

The θ = 1 case is suitable for stiff problems.

Remark 3. For Euler-Maruyama scheme, there is no such modified SDE
to improve to second order.

3 Stochastic stability

The theory here is an analogy of the stability region for ODE schemes.
The model problem for which we apply the scheme is the geometric Brownian
motion

dX = λXdt+ µXdW.

(Similar to dX = λXdt for ODEs.)
There are several notions of stability. Here, we consider two of them.
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Definition 1. Given λ ∈ C and µ ∈ C, we say the GBM is mean-square sta-
ble if limt→∞ E|Xt|2 = 0. We say it is asymptotically stable if P(limt→∞ |Xt| =
0) = 1.

The first is satisfies if Re(λ) + 1
2 |µ| < 0 while the second is satisfied if

Re(λ− 1
2 |µ|

2) < 0.
What is the stability condition for Euler-Maruyama? We have the rela-

tion

Xn+1 = (1 + λk + µ∆Wn)Xn ⇒ E|Xn+1|2 = (|1 + λk|2 + |µ|2k)E|Xn|2.

Denote
z = λk, y = µ2k.

We need
|1 + z|2 + y < 1,

for mean-square stable.
For asymptotic stability, one needs

E log |1 + λk + µ
√
kN(0, 1)| < 0.

For deterministic cases, the implicit schemes usually have better stability
conditions. However, for SDE, this is harder. Often, we only make the
deterministic part implicit while the random variable part is still explicit.
For example, the stochstic backward Euler reads,

Xn+1 = Xn + b(Xn+1)k + σ(Xn)∆Wn.
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