
Advanced computational methods X071521-SDE
Lecture 6

In this lecture, we study long time behaviors of SDEs and numerical
schemes of SDEs. We will mainly look at the paper “Ergodicity for SDEs
and approximations: locally Lipschitz vector fields and degenerate noise” by
Mattingly, Stuart and Higham.

I plan to write another lecture notes based on Talay’s paper , but this
will not be gone over in class. This will be left as free reading.

1 Two conditions ensureing geometric ergodicity

We will first of all present two conditions that guarantee the geometric
ergodicity with certain weights.

The first one is a Dooblin condition or minorization condition. The
second condition is regarding existence of Lyapunov functions.

The existence of Lyapunov function in some sense means that the system
will be pulled back to some central compact region if it escapes away. This
is some recurrent condition. In discretization, this is usually the one that
can be lost.

The minorization condition is a property that says a certain point in a
compact set C is uniformly reachable from inside of C. This is a property
on compact set and it is often satisfied after discretization.

1.1 A discrete example regarding the minorization property
and geometric ergodicity

To enter our main theory, we first of all look at a simple example and
try to get the ideas.

Suppose there is a Markov chain taking values in discrete space. Without
loss of generality, we label them to be 1, 2, . . .. The transition probability is

pij = P(Xn+1 = j|Xn = i),
∑
j

pij = 1.

Assume that there exist values cj such that

inf
i
pij ≥ cj ≥ 0, c :=

∑
j

cj > 0.
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This implies that there exists j∗ such that cj∗ > 0. In other words, there
is a special state such that all other states jump to this state with a signifi-
cant probability. This condition is called the Doeblin’s condition, which
somehow will be similar to the minorization condition as we shall see.

We define a probability measure

νj := cj/c.

Now, we split this from the transition probability as

pij = (1− c)p̃ij + cνj .

It is easy to verify that p̃ij ≥ 0 and it is also a transition probability.
The idea is to use ν as the coupling measure. The idea is to construct

a coupling betweent two chains. We consider two chains X1 and X2 with
initial distributions α and β. We now sample i.i.d random variables Un ∼ ν.
We also sample i.i.d Bernoulli random variables αn with P(αn = 1) = c. We
set τ = 0. We now define the following transitions recursively as follows for
n ≥ 1:

• If τ = 0, then we sample Y n
1 with P(Y n

1 = j|Xn
1 = i) = p̃ij and

Xn
1 = (1− αn)Y n

1 + αnUn.

Similarly, we get Xn
2 . If αn = 1, we set τ = 1. Move to next n.

• If τ = 1, then Xn
1 = Xn

2 and the value is determined by the transition
probability pij . Move to next n.

Define the stopping time

N = inf{n ≥ 1 : αn = 1}.

We have P(Xn
2 = i,N ≤ n) = P(Xn

2 = i,N ≤ n). Therefore,

|P(Xn
1 = i)− P(Xn

2 = i)| = |P(Xn
1 = i,N > n)− P(Xn

2 = i,N > n)|
≤ P(Xn

1 = i,N > n) + P(Xn
2 = i,N > n).

Taking sum on i, we find

TV (αPn, βPn) ≤ 2P(N > n) = 2(1− c)n.

If β is the stationary distribution µ, then µPn = µ and thus

TV (αPn, µ) ≤ 2(1− c)n.

If we do coupling on the initial distribution as well, the bound can be
reduced to 2TV (α, β)(1− c)n.
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Remark 1. Another common way to prove convergence is to use the Perron-
Frobenious theorem and spectral gaps. This is more close to functional anal-
ysis for the semigroups (involving log Sobolev inequality, hypercontractivity
and so on).

Remark 2. If the force field is contracting and the noise is additive, we can
do synchronized coupling. For example,

dX = b(X)dt+ dW

with (b(X) − b(Y )) · (X − Y ) ≤ −r|X − Y |2. Then, we can consider two
processes so that they are given the same Brownian motion. This will not
affect the distribution. Then, we have E|X−Y |2 ≤ −rE|X−Y |2. This gives
the gemeotric convergence in Wasserstein distance. We will not cover this
in class.

1.2 The Doeblin and minorization condition

Let X(t) (t ∈ R+ or t ∈ N) be a Markov chain taking values in Rd.
Denote the transition kernel

Pt(x,A) := P(X(t) ∈ A|X(0) = x), A is a Borel set.

To consider the ergodicity, we will look at the Markov chain at discrete
times. In particular, assume we observe the Markov chain at t = nT for
T ∈ I. Define the transition kernel

P (x,A) := PT (x,A).

Let {Xn} be the Markov chain generated by the kernel P (x,A). The filtra-
tion {Fn} is the one associated with {Xn}.

Condition 1. The Markov chain {X(t)} and its transition kernel Pt(x,A)
satisfy the following, for some fixed compact Borel set C ⊂ Rd:

1. There exists y∗ ∈ int(C) such that for any δ > 0, there is t1 ∈ I with

Pt1(x,B(y∗, δ)) > 0, ∀x ∈ C.

2. For all t ∈ I, the transition kernel has a density pt(x, y) on C such
that

Pt(x,A) =

∫
A
pt(x, y) dy, ∀x ∈ C,A ∈ B(Rd) ∩B(C).

Moreover, pt(·, ·) is continuous on C × C.
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Clearly, this condition is an analogy of the Doeblin’s condition mentioned
above. This condition implies the following minorization condition

Lemma 1. Assume Condition 1 holds. Then, there exist T ∈ I, η > 0 and
a probability measure ν supported on C (i.e. ν(C) = 1) such that

P (x,A) ≥ ην(A), ∀A ∈ B(Rd), x ∈ C.

Proof. By Condition 1, there exists δ1 > 0 and t2 > 0 such that

B(y∗, δ1) ⊂ C, Pt2(y∗, B(y∗, δ2)) > 0.

Together with the continuity of the density, there exists z∗ ∈ B(y∗, δ2) ⊂
C such that

pt2(y, z) ≥ ε, ∀y ∈ B(y∗, δ3) ⊂ C, z ∈ B(z∗, δ4) ⊂ C,

with some δ3 > 0 and δ4 > 0.
Hence, for all y ∈ B(y∗, δ3),

Pt2(y,A) ≥
∫
A∩B(z∗,δ4)

pt2(y, z) dz ≥ ε|A ∩B(z∗, δ4)|.

Now, by the first assumption in Condition 1, we can find t1 > 0 such
that

Pt1(x,B(y∗, δ3)) > 0, ∀x ∈ C.
By the continuity of the density and dominate convergence theorem, x 7→
P (x,B(y∗, δ3)) is continuous. It follows from the compactness of C that

inf
x∈C

Pt1(x,B(y∗, δ3)) ≥ γ > 0.

Taking T = t1 + t2, for all x ∈ C, we have by Markov property that

P (x,A) ≥
∫
B(y∗,δ3)

pt1(x, y)Pt2(y,A) dy

≥ ε|A ∩B(z∗, δ4)|
∫
B(y∗,δ3)

pt1(x, y) dy ≥ εγ|A ∩B(z∗, δ4)|.

Define

ν(A) =
|A ∩B(z∗, δ4)|
|B(z∗, δ4)|

.

We find that ν is a probability measure supported on C. Setting

η = εγ|B(z∗, δ4)|

then finishes the proof.
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With the minorization condition, we can do the same thing as above.
Namely, we construct explicit coupling using ν ad random iterated functions
(Kifer, 1988).

We define transition kernel

P̃ (x,A) =

{
P (x,A), x ∈ Cc,
1

1−η [P (x,A)− ην(A)], x ∈ C.

According to the construction of in Kifer, 1988, P̃ (x,A) can be realized by
iteration of random family

h̃(x,w), x ∈ Rd,

where w ∈ Ω is a random vector. Then, one can define a new random
function as

g(x, ω) = 1C(x)[φh̃(x,w) + (1− φ)ξ] + (1− 1C(x))h̃(x,w).

Here, ω = (w, φ, ξ) with P(φ = 1) = 1 − η, P(φ = 0) = η, whereas ξ ∼ ν.
Clearly, the transition kernel given by g is also P (x,A).

Therefore, we can generate

X ′n+1 = g(X ′n, ωn), ωn = (wn, φn, ξn) i.i.d.

to get a chain that has the same distribution as {Xn}.
For the coupling construction, we do the same thing. Consider another

chain
Y ′n+1 = g(Y ′n, ηn), ηn = (Wn, φn, ξn).

Here, φn and ξn are the same. Wn is has the same distribution as wn.
Before φn = 0, Wn is independent of wn. After φn = 0, we take Wn = wn.
Therefore, as long as φn = 0, after that X ′n = Y ′n.

It is clear now that the measure ν is like an atom. If the chains touch,
then they move in the same way. Next, we will check the Lyapunov function
condition to guarantee that the two chains return back to C fequently so
that there is a high chance that X ′n = Y ′n.

Remark 3. Regarding the minorization condition, we required the existence
of density that is continuous. For SDEs, this condition can be guranteed by
the hypoelliptic condition of the Fokker-Planck operator ∂t−L∗. A classical
theorem regarding this hypoellipticity is the Hörmander’s theorem. Roughly
speaking, this requires the vector fields associated with the SDE and their
iterated Poisson brackets will be d-dimensional for each point x ∈ Rd.
Another condition is the irreducibility.
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1.3 The Lyapunov function condition

Condition 2. With the choice of T ∈ I above, there is a function V : Rd →
[1,∞), lim|x|→∞ V (x) = ∞, and real numbers α ∈ (0, 1), β ∈ [0,∞) such
that

E[V (Xn+1)|Fn] ≤ αV (Xn) + β.

For SDEs, this condition can be ensured by some condition on the gen-
erator of SDEs.

Lemma 2. Consider the SDE dX = b(X)dt + σ(X)dW . If there is a
function V : Rd → [1,∞) with lim|x|→∞ V (x) =∞ such that

LV (x) ≤ −aV (x) + d,

for some a > 0 and d > 0, then the above Lyapunov conditon holds for any
T > 0.

For any γ ∈ (α, 1) and s ∈ [1,∞), we can define

c(s) =
sβ

γ − α
,

and set
C(s) = {x : V (x) ≤ c(s)}.

With Condition 2, we find easily that

E(V (Xn+1)|Fn) ≤ γV (Xn) + sβ1C(s)(Xn).

Fixing s = 2, and define c := c(s), C := C(2). Then, we have the following
result

Lemma 3. Let N be a stopping time and fix n ≥ 0. Under Condition 2,
we have

E[V (Xn)1N≥n] ≤ κγn
V (x0) + E(

n∧N∑
j=1

γ−j1C(Xj−1))


Proof. Using the inequaltiy, E(V (Xn+1)|Fn) ≤ γV (Xn) + sβ1C(s)(Xn), it is
natural to consider the random varible

Mn = γ−nV (Xn).
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With the stopping time, we use the technique from Martingale

EMn∧N = EM0 +
n∑
j=1

E(1j≤N (Mj −Mj−1))

Since {j ≤ N} = {N ≤ j − 1}c ∈ Fj−1, we find

E(1j≤N (Mj −Mj−1)) = E(1j≤NE(Mj −Mj−1|Fj−1))

Using E(Mj −Mj−1|Fj−1) ≤ γ−j(2β1C(Xj−1)) (recall s = 2), we have

EMn∧N ≤ V (x0) +

n∑
j=1

γ−j2βE(1j≤N 1C(Xj−1))

Finally, noting that Eγ−nV (Xn)1N≥n ≤ EMn∧N and letting κ = 2β, the
claim follows.

Corollary 1. Assume Condition 2 holds. Let γ and C be defined as above
(Note that C depends on γ). Define τC = inf{n > 0 : Xn ∈ C}. Then,

P(τC > n) ≤ κ1γn(V (x0) + 1),

and

E(
1

γ
)τC ≤ κ2(V (x0) + 1).

In fact, E(
∑n∧N

j=1 γ−j1C(Xj−1) = γ−11C(X0) (only the first term is
nonzero). Moreover, the left handside is estimated as E[V (Xn)1τC≥n] ≥
E[V (Xn)1τC>n] ≥ cP(τC > n). The second claim follows by definition

E(
1

γ
)τC =

∞∑
n=1

(γ−1)nP(τC = n).

Clearly, P(τC = n) ≤ P(τC > n − 1) ≤ κ3γ
−n+1
1 where α < γ1 < γ. Then,

done.
Lastly, we use the control above to conclude the existence of invariant

measure.

Lemma 4. Assume Condition 2 holds. Then, Xn has an invariant measure.
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Taking N = n, one find that supn≥0 EV (Xn) ≤ κ(V (x0)+1)
1−γ . It follows

that
lim
R→∞

sup
n

P(|Xn| ≥ R) = 0.

Define the sequence of mesures

µn(A) =
1

n

n∑
k=0

P(Xk ∈ A).

The above property implies that µn is tight. (There is a compact set so that
supn µn(Ac) < ε for any given ε). Then, there is a subsequence that con-
verges weakly to a probability measure µ. The limit measure is an invariant
measure.

2 The ergodicity theorem and the proof

Theorem 1. Consider the Markov chain {X(t)} with transition kernel
Pt(x,A). Assume that there is T ∈ I such that the minorization condition
in Lemma 1 and Condition 2 hold with

C =

{
x : V (x) ≤ 2β

γ − α

}
,

where γ ∈ (α1/2, 1). Then, the embedded chain {Xn} has a uniqe invariant
measure π. Further, there exist r ∈ (0, 1) and κ > 0 such that for any f
with |f | ≤ V , we have∣∣∣∣Exf(Xn)−

∫
f dπ

∣∣∣∣ ≤ κV (x)rn.

The proof will rely on the coupling argument as above. Recall that
we have constructed two chains {X ′n} and {Y ′n} with random variables
ωn(wn, φn, ξn) and ηn = (Wn, φn, ξn). After φn = 0, the two chains become
the same. Moreover, we enlarge the filtration to Fn that are generated by X ′n
and Y ′n. The lemma proved above are still valid. Without loss of generality,
we can assume f is nonnegative because any function can be decomposed
into the difference of two nonnegative functions f = f+ − f−.

Consider the coupling time (which is a stopping time)

ζ := inf{n ≥ 0 : (X ′n, Y
′
n) ∈ C × C, φn = 0}.
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Using this definition, we have:

E(f(X ′n)−f(Y ′n)) = E((f(X ′n)−f(Y ′n))1ζ>n) ≤ max{E(V (X ′n)1ζ>n),E(V (Y ′n)1ζ>n)}.

We first of all establish the following key result:

Lemma 5. With the assumptions and notations in the theorem, for any
γ ∈ (α1/2, 1), we have that

max{E(V (X ′n)1ζ>n),E(V (Y ′n)1ζ>n)} ≤ κ[E(V (X0) + V (Y0)) + 1]rn,

with some r ∈ (0, 1) and κ > 0.

Proof. The proof here relies on the lemmas applied to the Markov chain

Zn := (X ′n, Y
′
n),

with Lyapunov function

U(z) = V (x) + V (y).

Clearly, we have
E(U(Zn+1)|Fn) ≤ αU(Zn) + 2β.

Similarly, we have

E(U(Zn+1)|Fn) ≤ γU(Zn) + 2β1C1(Zn),

where

C1 = {z = (x, y) : U(z) ≤ 2β

γ − α
} ⊂ C × C.

Now, it is exactly this reason why we choose s = 2 above.
Similarly, define the coupling time

θ = inf{n ≥ 0 : Zn ∈ C1, φn = 0}.

Then,we have ζ ≤ θ and

max{E(V (X ′n)1ζ>n),E(V (Y ′n)1ζ>n)} ≤ E(V (X ′n)1ζ>n+V (Y ′n)1ζ>n) ≤ E(U(Zn)1θ>n)

Hence, it sufficies to consider E(U(Zn)1θ>n).
For θ > n, there are typically two cases: The chain returns to C1 but at

the time when it returns φ = 1; the second case is that the chain Zn never
comes back to C1. Intuitively, both cases are unlikely. We need to make the
intuition rigorous.
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We define τk to be the kth time that the chain returns to C1, which is
clearly a stopping time. We also define τ0 = 0. For real number s, τs is
understood as τk with k being the smallest interger no less than s. Fix

a ∈ (0, 1)

to be determined.
Then,

E(U(Zn)1θ>n) = E(U(Zn)1θ>n1τan ≤ n) + E(U(Zn)1θ>n1τan>n) = I1 + I2.

We consider I1:

E(U(Zn)1θ>n1τan ≤ n) ≤ E(U(Zn)1τan<θ1τan ≤ n)

= E(1τan≤nE(U(Zn)1θ>τan |Fτan))

Note that {τan ≤ n} ∈ Fτan .
Next, we apply Lemma 3 to the conditional expectation using strong

Markov property. We then have

E(U(Zn)1θ>τan |Fτan) ≤ κγn−τanU(Xτan) + κ

θ∧n−τan∑
j=1

γn−τan−j

Therefore, we have

1τan≤nE(U(Zn)1θ>τan |Fτan) ≤ κ‖U‖L∞(C1)γ
n−τan + κ11τan<θ

Clearly, if there is no θ, the second term will be O(1) (τan could be small).
For the second term:

I2 = E(U(Zn)1θ>n1τan > n) ≤
[an]−1∑
k=0

E(U(Zn)1τk≤n1τk+1>n)

=

[an]−1∑
k=0

E(1τk≤nE(U(Zn)1τk+1>n|Fτk))

We apply Lemma 3 again using strong Markov property:

E(U(Zn)1τk+1>n|Fτk) ≤ γn−τkκ(U(Zτk) + γ−1) ≤ κγn−τk

The second term is like that because Zm /∈ C1 for any m ∈ (τk, n].
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Overall, we therefore have

I1 + I2 ≤ κγn
[an]−1∑
k=0

Eγ−τk + κE1τan<θ ≤ κγn
[an]−1∑
k=0

Eγ−τk + κ(1− η)an

For the first term, we use strong Markov property.

Eγ−τk = E(γ−τk−1E(γ−(τk−τk−1)|Fτk−1
)) ≤ LE(γ−τk−1)

for some L > 1 independent of k by Corollary 1. Therefore, we finally have

I1 + I2 ≤ κ(γnLan + (1− η)an)

Choose a close to 1, we have γLa < 1 and (1− η)a < 1, and the claim then
follows.

Now, we finish the proof:
Since the chain has an invariant measure, we can then let Y ′0 to have the

distribution as π. Then, it will preserves to have this distribution.

|Exf(X ′n)−
∫
f dπ| ≤ 2κ[V (x) +

∫
V dπ + 1]rn.

The uniqueness of invariant measure and the claim all follow.
Above, we only proved the ergodicity for tn = nT with T ∈ I. What

about general t ∈ I? In fact, the time at t′n = nT + δ can be viewed as the
Markov chain starting with initial value X(δ). The same estiamtes given
that

|Ef(X(t′n))−
∫
f dπ| ≤ Brn

for some B related to X(δ). Since δ < T , B can be uniformly controlled.
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