
Advanced computational methods
X071521-Selected Topics: MCMC

In the following, we will focus on Markov Chain-Monte Carlo (MCMC)
algorithms.

1 Motivation and foundation

1.1 Motivation

In many applications, we care about a probability distribution ν which
cannot be written out or dealt with directly. For example, in Bayesian infer-
ence or data assimilation, we care about the posterior distribution P (u|y),
where y is some observed data.

One possible approach is to use so-called empirical measure

ν ≈ 1

N

N∑
n=1

δ(x−Xi).

Such an approach is called Monte Carlo sampling (Xi ∼ ν i.i.d). Ac-
cording to law of large numbers, as N → ∞, the empirical measure can
converge in weakly to the measure ν (In fact, also in some metric spaces,
like Wasserstein spaces). Traditional sampling methods include rejection
sampling (acceptance-rejection method), importance sampling.

However, often the exact sampling from ν is not possible. If this is
the case, we can choose to generate a artificial Markov chain to get some
approximate samples. Such a type of method will be called Markov chain
Monte Carlo(MCMC).

• In data assimilation, we have some observations of a dynamical vari-
ables. We hope to know more of the dynamic variable using the ob-
served data. As mentioned, MCMC can be used for sampling posterior
distribution in data assimilation. This in fact corresponds to a class
of methods, called smoothing algorithms in data assimilation. Often,
people care about online algorithms and prediction, then another class
of algorithms in data assimilation is the filtering algorithms. If we have
time, we will touch the basic Kalman filter later.

• In Bayesian inference, it is assumed there is some hidden parameters
θ to govern the distributions of data. We then use the observed data
to get more estimates of θ using the posterior distribution. Clearly,
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MCMC can also be used for Bayesian inference. Another popular class
of algorithms is the variational inference, where we find a member from
a family of distributions that is closet to the posterior distribution.

• Besides data assimilation and Bayesian inference, MCMC can also used
for sampling some complicated probability measures, like the Gibbs
measure exp(−V (x)). This is particularly important in molecular dy-
namics, where the free energy surface V is unknown (we can compute,
however, −∇V (x) for each given x through some algorithms).

1.2 The foundation of MCMC

We aim to find a Markov chain such that the desired measure ν is in-
variant under the dynamics, and the law of the chain converges to ν. This
is related to the so-called ergodicity. If we have ergodicity, then the running
time average of the chain converges to average with respect to ν.

To be precise, we have

Theorem 1. Assume that ν is an invariant measure of a Markov chain Xn

valued in Rd with Lebesgue density ρ. If the chain is ergodic, then for every
bounded continuous function ϕ, we have

1

N

N∑
n=1

ϕ(Xn)→ Eνϕ(X), a.s.

for a. s. X0 ∼ ν. If moreover the Doeblin’s condition holds: there exists a
probability measure p such that for all x ∈ Rd, and all Borel set A, we have
P (x,A) ≥ εp(A), then

TV (Pn(x, ·), ν) ≤ 2(1− ε)n.

Further,

1

N

N∑
n=1

ϕ(Xn)− Eνϕ(X) = KξNN
−1/2

where ξN converges in law to N (0, 1).

Above, P (x,A) is the transition measure. This theorem guarantees the
convergence MCMC, and characterizes the convergence rate.
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2 A basic MCMC: Metropolis-Hastings method

A very basic and widely used MCMC algorithm is the Metropolis-Hastings
method. In this method, an accept/reject step is added to ensure the in-
variance with respect to ν.

In fact, a sufficient condition that enforces invariance is the detailed
balance condition. Suppose p(x, z) is the transition density so that

P (x,A) =

∫
A
p(x, z) dz.

We say the detailed balance condition holds if there exists a density
function ρ such that

ρ(x)p(x, y) = ρ(y)p(y, x), ∀x, y ∈ Rd.

This basically means the mass moved from x to y equals the mass moved
from y to x. Using this detailed balance condition, we find easily that ρ is
the density of an invariant measure:

ρ(x) =

∫
ρ(x)p(x, y) dy =

∫
ρ(y)p(y, x) dy.

The idea of Metropolis-Hastings is then to guarantee the detailed balance.
Suppose we have a Markov chain with transition kernel q(x, y). Define

a(x, y) = 1 ∧ ρ(y)q(y, x)

ρ(x)q(x, y)

Then, the algorithm is as follows:

1. Choose X0 ∈ Rd.

2. For n ≥ 1, do

• Draw Y n ∼ q(Xn−1, ·) by running the given Markov chain.

• Choose X(n) such that P(Xn = Y n) = a(Xn−1, Y n) and P(Xn =
Xn−1) = 1− a(Xn−1, Y n).

Clearly, {Xn} is a Markov chain and this will approximate the proba-
bility measure ν = ρ dx.

We have the following

Lemma 1.
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The Metropolis-Hastings MCMC ensures the detailed balance with transition
kernel

p(x, y) = q(x, y)a(x, y).

The claim is trivial and we omit. In fact, according to the detailed
balance condition, the acceptance function should satisfy

a(x, y)

a(y, x)
=
ρ(y)q(y, x)

ρ(x)q(x, y)
.

The function a is not unique. One has other choices.

Remark 1. Above, we mentioned the algorithm for continuous state space.
If the state space is discrete, the algorithm can be modified correspondingly
easily. The ergodicity can be verified by more easily checked conditions:
aperiodicity and positive recurrence. Of course, the Doeblin’s condition is
still a sufficient condition for geometric ergodicity.

Remark 2. In many applications, we only know ρ up to a multiplicative
factor, such as the Gibbs measure

ρ ∝ exp(−V (x)).

The M-H algorithm only requires the ratio so we do not have to compute the
normalization constant.

The convergence of Metropolis-Hastings follows from the general theorem
above. We need to verify the conditions. For details, one can refer to, for
example, ”Rates of convergence of the Hastings and Metropolis algorithms”
by Mengersen and Tweedie.

2.1 An illustrating example

Suppose that we want to sample from the exponential distribution:

ρ(x) = 1x>0 exp(−x).

Assume that we know already how to sample from a normal distribution.
We then define the transition probability as

q(x, y) =
1√
2π

exp(−(y − x)2

2
).

In other words,

Y ∗|Xn ∼ N (Xn, 1) = Xn +N (0, 1).
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Since q(x, y) = q(y, x), we find

A =
ρ(Y ∗)

ρ(Xn)

Note that since Xn has already been accepted, Xn > 0.
Then, we generate z ∼ U(0, 1). If z ≤ A, we set

Xn+1 = Y ∗;

otherwise
Xn+1 = Xn.

2.2 extensions

There are many extensions of M-H algorithms. For example, the slice
sampling.

3 Gibbs sampler

This was introduced by brothers of Stuart and Geman in 1984. Gibbs
sampler is commonly used for Bayesian inference. Compared with the tra-
ditional EM (expectation-maximization) algorithm, it is a stochastic one.

This is applicable when the joint distribution is not known or hard to
sample but the conditional distribution (not marginal) is easier to sample
from.

3.1 The basic version

Suppose we want to sample a multivariate distribution ρ(Z) = ρ(Z1, Z2, . . . , ZM ),
we know all the marginal distributions. Suppose we have already sampled
Zn, we do the following to get Zn+1:

• Zn+1
1 ∼ p(z1|Zn2 , Zn3 , . . . , ZnM ).

• Zn+1
2 ∼ p(z2|Zn+1

1 , Zn3 , . . . , Z
n
M ).

• Zn+1
3 ∼ p(z3|Zn+1

1 , Zn+1
2 , . . . , ZnM ).

• . . .

• Zn+1
M ∼ p(zM |Zn+1

1 , . . . , Zn+1
M−1).
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We first of all claim that the joint distribution is invariant. Consider the
jump from (Zmj , Z

n
i ) to (Zmj , Z

n+1
i ). The transition probability is given by

q(x, y|Zmj ) = p(y|Zmj ).

The desired distribution is the joint distribution ρ(Z). The detailed balance
hods for this ρ

ρ(Zmj , x)q(x, y|Zmj ) = ρ(Zmj , y)q(y, x|Zmj ).

This is found easily by the definition of the conditional distribution p(y|Zmj ).
With the detailed balance, we find that this basic version can be viewed

as a special case of Metropolis-Hastings. In fact, the function a(x, y|Zmj )
is always 1 and the samples are always accepted. This can therefore be
regarded as an MH algorithm. However, its extensions can be more general.

When n is large enough, the distribution of Zn is close to the joint
distribution. In practice, one may disregard some initial samples. Also, we
may only want every n1th sample. The first is because the distribution will
be close to the stationary distribution only after some steps. The second is
considered because the adjacent data are usually not independent.

3.2 Some extensions

The obvious extension is to consider a stochastic version of the Gibbs
sampler:

• We choose an index i randomly from {1, 2, . . . ,M}

• We sample ξ ∼ p(z|Z−i), where Z−i means the vector by deleting Zi.

• Set Zi = ξ. In other words, the new random variable is

Z = (Z1, . . . , Zi−1, ξ, Zi+1, . . . , ZM ).

Other variants include blocked Gibbs sampling, in which we may sample
several Zi’s by conditioning on others.

Another variant is the collapsed Gibbs sampling. Imagine that we want
to sample from p(x, y|z). In the Gibbs sampler above, we can do xn+1 ∼
p(x|yn, z) and yn+1 ∼ p(y|xn+1, z). In the collapsed version, we do the
following

yn+1 ∼ p(y|z), xn+1 ∼ p(x|yn+1, z).

Here, p(y|z) =
∫
p(x, y|z) dx. Note that the one with one variable integrated

must be sample first. Otherwise, the distribution we are sampling from is
not correct.
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4 Hamiltonian MCMC

Clearly, in the running average, the two adjacent data are not indepen-
dent. If we run Metropolis-Hastings, we need the time to be longer than
the correlation time (the correlation between Xn and Xn+m decays expo-
nentially with m. Hence, we need m bigger than some time that ensures the
correlation to be smaller than a given value.)

The Hamiltonian MCMC is designed by Duane, Kennedy, et al in 1987 to
reduce the correlation using a Hamiltonian evolution. It also allows a higher
acceptance rate. Interestingly, the original name by the authors is ’Hybrid
Monte Carlo’, which is ’HMC’ in short. Nowadays, it is better known as
’Hamiltonian Monte Carlo’, which is also ’HMC’ in short.

For more details, see review articles ”MCMC using Hamiltonian dynam-
ics”, ”A conceptual introduction to Hamiltonian Monte Carlo”.

4.1 Motivation and idea

In statistical mechanics, it is well-known that a system with Hamiltonian
H(p, q) that interacts with the surrounding heat bath could result in the the
canonical distribution:

ρ(p, q) ∝ exp(−βH(p, q)),

in the thermoequilibrium. Often, the Hamiltonian is given by

H(p, q) =
p2

2m
+ U(q),

where the first term is the kinetic energy while the second is the potential
energy. The marginal distribution on q is therefore

exp(−βU(q)).

Hence, if we choose

U(q) = − 1

β
log ρ(q),

we can run the dynamics of the system to obtain the desired distribution
ρ(q).

This motivates the HMC and Langevin MC. In HMC, the system is
closed and evolves according to Hamilton ODEs while in Langevin dynamics,
we have whilte noise and friction that describe the interaction with heat
bath.
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4.2 The Hamiltonian system and its discretization

In the Hamilton mechnics, H(p, q) is the energy functional. The dynam-
ics is given by

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

.

It is convenient to introduce the matrix

J =

[
0 I
−I 0

]
.

The dynamics is written as

dz

dt
= J∇zH,

where z = [q, p]T .
Often, the Hamiltonian is given by

H(p, q) = U(q) +K(p),

and

K(p) =
1

2
pTM−1p,

and M = diag(m1, . . . ,md). There are several properties

• Reversible. According to the dynamics, if the state goes from (q0, p0)
to (q1, p1), we negate p and then have (q1,−p1). From this state, after
the same time, it will arrive at (q0,−p0).

• The Hamiltonian is conserved. d
dtH(p(t), q(t)) = 0.

• Volume-preserving. The dynamics is dz
dt = V (z) := J∇zH. We can

verify easily that
∇z · V (z) = 0.

• Symplectic. Let the flow map be Tt and the corresponding Jacobi
matrix be Bt. Then,

BT
t J
−1Bt = J−1.
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To discretize, the naive idea is to use forward Euler,

pn+1 = pn − τ∇qU(q),

qn+1 = qn + τ
pn
m

This scheme, however, behaves poorly in practice. The reason is that the
volume in phase space is not preserved, and the Hamiltonian is not preserved.

A simple modified scheme

pn+1 = pn − τ∇qU(qn),

qn+1 = qn + τ
pn+1

mi

behaves much better. The reason is that it preserves the volume. In fact,
this is related to a large class of methods, called symplectic methods for
Hamiltonian discretizations.

The following leapfrog method, which shares some flavor of Strang split-
ting, is as follows

pn+1/2 = pn − (τ/2)∇qU(qn),

qn+1 = qn + τ
pn+1/2

mi
,

pn+1 = pn+1/2 − (τ/2)∇qU(qn+1).

This is a symplectic method.

4.3 Hamiltonian MC

The motivation comes from the canonical distribution in statistical me-
chanics. In the thermo-equilibrium, the probability that a configuration
appears is

p(q, p) =
1

Z
exp(−H(q, p)).

Of course, the canonical distribution is not for a Hamiltonian system, be-
cause for a closed system, the energy is conserved. This is for a system in a
heat bath. The system has its own Hamitonian, but it also has interaction
with the enviroment so that its energy can be changed. Anyway, this gives
us the motivation to use the Hamilton system for sampling.

Suppose we want to sample from ρ(q). Then, we construct a Hamiltonian

H(q, p) = − log ρ(q) +K(p) =: U(q) +K(p).

Then, the marginal distribution of the canonical distribution is exactly what
we want. Hence, we have the following HMC
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• Sample pn ∼ p(p|qn) ∝ exp(− |p|
2

2 ).

• Here, we apply Metropolis update. Run the Hamiltonian dynamics
from state (qn, pn) to (q∗n+1, p

∗) using the leapfrog scheme, with step
size τ for L steps. (It other words, we have ‘time’ consumed to be Lτ).
Then, we negate p so that the proposed state is (q∗n+1, p

∗
n+1). With

probability

min(1, exp(−H(q∗n+1, p
∗
n+1) +H(qn, pn)))

we accept the state and then qn+1 = q∗n+1. Otherwise, qn+1 = qn.

Remark 3. • In the Metropolis update, since the dynamics is reversible,
so q(x, y) = q(y, x) and hence, the function a is determined totally by
the desired canonical distribution (Gibbs distribution).

• Since the Hamiltonian is symmetric about the momentum, we do not
really need to negate the momentum p∗.

• The resampling of p at the beginning is very important. Otherwise, the
distribution of q will not range over the desired distribution exp(−U(q))

To verify that the method works, one should check that the canonical
distribution is invariant under the process. This is straightforward to see.

A second thing is to gurantee the ergodicity. This is not very clear for
HMC. In fact, in some cases, the chain is not aperiodic so that it is not
ergodic. However, this is very rare to happen. However, to make sure the
ergodicity, one may make the running time random. We will not go into
details for these issues.

5 Langevin MCMC

In Hamiltonian MCMC, there is no noise. If we consider the dynamical
system with white noise, we can have the following system of equation

dx = v dt,

mdv = −γv dt−∇xU(x) dt+
√

2γ/βdW,

where v = p/m. The distribution can be proven to converge to the Gibbs
measure

∝ exp(−β(U(x) +
m|v|2

2
))
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The marginal distribution is what we want.
We can also consider the overdamped regime:

dx = −1

γ
∇xU dt+

√
2

γβ
dW

The invaraint measure of this SDE is

∝ exp(−βU(x))

Hence, we can use both to do the MCMC.
For the exponential convergence of the overdampled case for sampling

and the Metropolis-adjusted discretization, you may read ”Exponential con-
vergence of Langevin distributions and their discrete approximations” and
“Sampling from a strongly log-concave distribution with the unadjusted
Langevin algorithm”. For the underdamped one (with momentum), the
reference is “Underdamped Langevin MCMC: a nonasymptotic analysis”.

5.1 A version of Langevin MCMC: the overdamped case

We take the temperature parameter to be β = 1, and consider the fol-
lowing SDE

dX = −∇U dt+
√

2 dB.

Recall that
U = − log ρ.

We hope U to be strongly convex so that we need ρ to be log concave.
A version of simple Langevin MC is therefore given by the Euler-Maruyama

scheme
Xn+1 = Xn − γn+1∇U(Xn) +

√
2γn+1Zn+1

where Zn+1 ∼ N (0, 1).
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