
Advanced computational methods-Lecture 1

This course:
Homework: 40%; Final exam: 60%. Alternative projects: This can be

used as an alternative to the final exam. I will take the maximum as the
60% score.

No textbooks. I will upload lecture notes. I will setup a course website.
Try to setup canvas.

Reference books

• Stochastic Numerics for Mathematical Physics. Milstein, Tretyakov.

• Numerical Solution of Stochastic Differential Equations. Loeden, Platen.
Springer.

• Basics of Stochastic Analysis, by Timo Seppalainen

• Brownian motion and Stochastic calculus, by Karatzas, Shreve.

• Data Assimilation: A Mathematical Introduction, by K.J.H. Law,
A.M. Stuart, K.C. Zygalakis

1 Motivation for SDEs

1.1 Dynamical systems with noise

In many problems, the full information is not accessible. For example,
to model the motion of a pollen particle in water (the observation made by
Robert Brown in 1828), the full force acting on the particle is unknown.
Also, what governs the evolution of stock price is not fully clear. In all these
problems, what we observe is oftens some “low dimensional dynamics” of
the true system. In statistical physics, this is often called the open system,
where there is energy exchange with the environment.

To model such systems, we consider an equation with noise.

Ẋ = b(t,X) + σ(t,X)η(t)

where η(t) is the noise. For the noise η(t), we have some intuition:

• Eη(t) = 0

• η(t2) and η(t1) have the same distribution.

• Eη(t)η(s) = δ(t− s).
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The third condition means that the the noise at different times are unrelated.
We make the correlation to be Dirac delta so that the noise has nontrivial
contribution for the system. The Fourier transform of the correlation func-
tion

F(δ(·)) = 1.

This is independent of the frequency and we thus call η(t) the (time-continuous)
white noise.

Remark 1. If the time is discrete, one can also define “white noise”. For
discrete white noise, the distribution may not be Gaussian. However, for
the time-continuous white noise we condiser here, it must be a Gaussian
process.

Now, consider the integral of the white noise:

W (t) =

∫ t

0
η(s) ds.

This has the following properties

• EW = 0

• W (t) has stationary increments

• The increments are independent.

• E(W (t)W (s)) = s ∧ t.

Moreover, if we expect W to have continuous paths, then W (t) is in fact
unique. This is called the Wiener process, or standard Brownian motion.
Hence, the white noise is the derivative of Brownian motion.

Exercise: Using the above three properties to derive that

W (t)−W (s) ∼ N (t− s).

Remark 2. In the theory of random fields, the white noise is generalized
to a L2(Ω)-valued measure (i.e. a mapping from Borel sets to L2 random
variables). Then, Bt = η([0, t]) ∈ L2(Ω).
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1.2 Stochastic differential equations in a formal way

With the understanding above, the dynamic system with noise can be
written as

dX = b(t,X)dt+ σ(t,X)dW,

or in integral form, we have

X(t) = X0 +

∫ t

0
b(s,X(s)) ds+

∫ t

0
σ(s,X(s))dW (s).

Such kind of equations are call stochastic differential equation (SDE)
driven by Brownian motions. Of course, we have SDEs driven by other
processes, which we will not touch in this course.

If σ is a constant, the integral of the last term gives σW (t), which is
easy to understand. However, in general σ(t,X) is random. We must un-
derstand how σ and dW are multiplied together. This will be answered by
Itô integrals.

2 A glimpse of stochastic processes

The rigorous theory will be established on probability spaces using mea-
sure theory. Here, we look at these concepts briefly.

2.1 Preliminaries: notations and concepts

The probability sapce/sample space (Ω,F ,P) is used to caputre the ran-
domness of stochastic phenomenon.

• Each ω ∈ Ω is called a sample point and you can understand that it
corresponds to one realization of the random phenomenon.

• F is the set (sigma algebra) of some subsets of Ω. These sets are called
events.

• P : F → R is the probability measure, which is a nonnegative measure
with P(Ω) = 1.

A stochastic process {Xt} is a family of random variables defined on
(Ω,F , P ) indexed by t, taking values in a second measurable space, called the
state space. In our course, the state space will usually be Rd. Alternatively,
we can also understand it as a [0,∞)→ S function valued random variable
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X(·, ω) on the probability space. Every such function is called a sample
path (trajectory).

A process X is called measurable if for every B ∈ B, {(t, ω) : Xt(ω) ∈ A}
is in B([0,∞))⊗F . In this sense, X is a measurable function of two variables,
i.e. X = X(t, ω).

We some times do not distinguish two processes. Here are different
notions.

We say two stochastic processes X and Y are indistinguishable if their
sample paths almost agree; more precisely:

P[Xt = Yt; ∀t <∞] = 1.

This means that the set {ω : X(ω, t) = Y (ω, t), ∀t} has probability 1.
We say Y is a modification of X if for any t ≥ 0,

P[Xt = Yt] = 1.

Since [0,∞) is uncountable, the second is strictly weaker than
the first one.

Remark 3. Of course, the index ‘t’ sometimes are taken to be in N, then
one has the discrete time stochastic processes.

To describe the information that an observer of a process knows, we use
a family of σ-algebras. A filtration {Ft : t ∈ R+} is a collection of σ-algebras
on the probability space such that

Fs ⊂ Ft ⊂ F 0 ≤ s < t <∞.

For the convenience, we define

F∞ = σ(∪t≥0Ft).

We say X is adapted to the filtration {Ft} if X(t) ∈ Ft. (This means

{ω : X(t, ω) ∈ B} ∈ Ft, for all Borel set B)

Often, we choose the minimal filtration for the process

Ft = σ{Xs : 0 ≤ s ≤ t}

This represents all the information brought by X up to time t.
A stochastic process X is called progressively measurable with respect

to the filtration {Ft} if for each t ≥ 0 and B ∈ B (i.e. B is a Borel set),
{(s, ω) : 0 ≤ s ≤ t,Xs(ω) ∈ A} is in B([0, t]⊗Ft).
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Proposition 1. If X is measurable and adapted to a filtration, then it has
a progressively measurable modification.

Proposition 2. If X is adapted to a filtration {Ft} and every sample path
is right-continuous (or every sample path is left-continuous), then X is pro-
gressively measurable with respect to the filtration.

The proof can be performed by observing that X is the pointwise limit
of the sequence X(n) by right continuity (or left continuity) for any fixed
t > 0.

X(n)
s = X(k+1)t/2n(ω), ∀s ∈ (

kt

2n
,
k + 1

2n
t].

Exercise: fill in the details of the proof.

2.2 Stopping times

The motivation of is that we sometimes care about the occurance of a
phenomenon. For example, the first time your amount of money exceeds
100,000 dollars. Intuitively, whether the event occurs prior to or at t should
be part of the information known by the observer of the process at t. This
then motivates the definition of stopping times.

Definition 1. Let the measureable space (Ω,F) equipped with a filtration
Ft. A stopping time τ of the filtration is a random variable such that

{ω : τ ≤ t} ∈ Ft, ∀t ≥ 0.

An optional time T of the filtration is a random time T such that

{ω : T < t} ∈ Ft, ∀t ≥ 0.

Exercise: If the filtration is right continuous, i.e. ∩ε>0Ft+ε =: Ft+ = Ft,
then any optional time is also a stopping time.

For more rigorous and complete discussion of filtrations, stopping times,
read the book draft written by Timo, available on his website.

Definition 2. Let τ be a stopping time. Then, the σ-field Fτ is defined by

Fτ = {A : A ∩ {τ ≤ t} ∈ Ft}

Proposition 3. Consider two stopping times T, S.

1. If A ∈ FS, then A ∩ {S ≤ T} ∈ FT .
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2. FS∧T = FT ∩FS. The events {S < T}, {S ≤ T} and {S = T} are all
in FT ∩ FS.

The usefulness of stopping times is that we sometimes only care about the
processes before a certain event happens. Techniquely, “stopped” processes
will have better regularity.

Proposition 4. Let X be a progressively measurable process for filtration
{Ft}, and τ is a stopping time. Then, the random variable Xτ := Xτ(ω)(ω)
is Fτ measurable. Also, the stopped process Xτ∧t is progressively measurable.

Xτ∧t is often a regularized process and it will be used to approximate
Xτ as t→∞.

Example: consider a gambling game, wher the probability you win in
each time is 1/2. You now use a strategy: Starting from betting 1 dollar,
every time you lose, you double the bet in the next game until you win. Let
τ be the stopping time which describes the first time you win. Then, τ <∞
a.s. and thus

Xτ = 1, a.s.

This seems that you will always win. However, Xτ∧t is a process with

EXτ∧t = 0, ∀t ∈ N.

This means that at any finite time, you will not win. The expectation is
zero! The tricky part is Eτ = +∞. Hence, unless the amount of the money
you have is infinity and you play the game forever, otherwise, you cannot
win. As a corollary, in this example, Xτ∧t converges almost surely to Xτ

but not in L1.

3 A biref introduction to Brownian motions

Definition 3. Let (Ω,F ,P) be a probability space, and {Ft} is a filtration.
An adapted real-valued process {Bt} is called a one dimensional Brownian
motion if

1. t 7→ B(t, ω) is continuus almost surely.

2. Bt−Bs is independent of Fs and normally distribution with mean zero,
variance t− s.

Moreover, if further B0 = 0 almost surely, we call it the standard Brownian
motion, or Wiener process, denoted also by W (t).
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If there is no filtration mentioned in the Brownian motion, then we use
the filtration naturally associated with B:

Ft = σ(Bs : 0 ≤ s ≤ t).

However, this filtration is not right continuous. Using some technique, one
an enlarge it to be right continuous and the {Bs} is also a Brownian motion
for this new filtration.

The d-dimensional Brownian motion is similarly defined. We omit.
If you are interested in the basic constructions of Brownian

motions and the Wiener measures, you may refer to section 2.2-
2.4 in the book “Brownian motions and stochastic calculus”.

Remark 4. We say the Wiener process is the standard Brownian motion.
In fact it is the specific one by one of the constructions here.

One useful consequence from this construction is the Wiener measure
defined on C[0,∞), denoted by P0. It is the measure induced by the standard
Brownian motions. For example, let A = {f ∈ C[0,∞) : f(t) ∈ E}, and
A1 = {f ∈ C[0,∞) : f(0) = 0, f(t) ∈ E}. Then,

P0(A) = P0(A1) =
1√
2πt

∫
E
e−

x2

2t dx.

The measure induced by Brownian motion by Brownian motions starting
from x is denoted by Px. Hence,

Px(E) = P0(E − x).

Remark 5. There is another Levy’s theorem about Brownian motion that
may be useful sometimes: If a martingale M has continuous paths and the
quadratic variation is [M,M ] = t, then M is the standard Brownian motion.

3.1 Markov property and strong Markov property

The Brownian motion satisfies the Markov properties:

Pµ(Xt+s ∈ E|Fs) = Pµ(Xt+s ∈ E|Xs)

Also,
Px[Xt+s ∈ E|Xs = y] = Py[Xt ∈ E], PxX−1s , a.e. y.

As a corollary,

Px(θ−1t A|Fs) = PXt(A), Px − a.s.,
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where θsω(t) = ω(t+ s).
Moreover, it satisfies the strong Markov property. Strong Markov prop-

erty basically says we can replace s by a stopping time S. We omit the
details.

As a corollary, Bt+S − BS is a standard Brownian motion if S is a
stopping time. (If S in general is a random time, the increment may not be
a Brownian motion.)

3.2 The reflection principle

Let τ be a stopping time. Then, the probabilities that Bτ+t is above Bτ
and below Bτ are equal. In fact, starting from any point, if you reflect the
Brownian motion about this line, it is still a Brownian motion.

With this observation, we let τb = inf{t : Bt = b} for b > 0. Then,

P0(τb < t) = P0(τb < t,Bt < b) + P0(Bt > b).

By the reflection principle (in fact, due to strong Markov property), it can
be viewed as starting from τb and reach Bt. However, this is equal to the
probability that it goes above Bτb . This means P0(τb < t,Bt < b) = P0(Bt >
b).

Hence,
P0(τb < t) = 2P0(Bt > b).

Exercise: derive the density of τb.

3.3 sample path properties

• Wt
t → 0 by law of large numbers.

• The path is monotone in no interval.

• It is nowhere differentiable.

• lim supt→0
W (t)√

2t log log(1/t)
= 1 and lim supt→+∞

W (t)√
2t log log(t)

= 1. By

symmetry, the lim inf will then be −1.

• The continuity is like
√

2h log(1/h). In other words,

P

[
lim sup
h→0+

1√
2h log(1/h)

sup
|s−t|≤h,s,t≤1

|W (t)−W (s)| = 1

]
= 1.

For other properties, like exit time, passage time, running max-
imum, read the book by Karatzas.
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