Advanced computational methods-Lecture 12

1 Detailed balance in SDEs and a splitting strategy

Let us consider the general SDE:

$$
d X=b(X) d t+\sigma(X) d W
$$

where σ is a $d \times m$ matrix while W is an m-dimensional standard Wiener process.

1.1 The detailed balance

Proposition 1. If $b=-\nabla V$ and $\sigma=\sqrt{2 / \beta} I$, then the SDE has invariant measure

$$
\begin{equation*}
\pi(z) \propto \exp (-\beta V) \tag{1}
\end{equation*}
$$

Moreover, if $p\left(z, t ; x_{i}\right)$ denotes the transition density from x_{i}, then the detailed balance condition holds

$$
\begin{equation*}
\pi\left(x_{i}\right) p\left(x_{i}^{*}, t ; x_{i}\right)=\pi\left(x_{i}^{*}\right) p\left(x_{i}, t ; x_{i}^{*}\right) \tag{2}
\end{equation*}
$$

Proof. The law of X (or the density of the law of X), $p(x, t)$, satisfies the Fokker-Planck equation:

$$
\begin{equation*}
\partial_{t} p=-\nabla \cdot(b p)+\frac{1}{2} \sum_{i, j=1}^{d} \partial_{i j}\left(\Lambda_{i j} p\right)=: \mathcal{L}^{*} p \tag{3}
\end{equation*}
$$

where $\Lambda=\sigma \sigma^{T}$ and the operator

$$
\mathcal{L}^{*}=-\nabla \cdot(b \cdot)+\frac{1}{2} \sum_{i, j=1}^{d} \partial_{i j}\left(\Lambda_{i j} \cdot\right)
$$

is the dual operator of the generator of the SDE [?, Theorem 7.3.3] given by

$$
\mathcal{L}:=-b \cdot \nabla+\frac{1}{2} \Lambda: \nabla^{2} .
$$

Let $p\left(\cdot, t ; x_{i}\right)$ be the Green's function which is the solution of Eq. (3) with initial condition $p(x, 0)=\delta\left(x-x_{i}\right)$ and gives the transition density starting from x_{i} :

$$
p\left(\cdot, t ; x_{i}\right)=e^{t \mathcal{L}^{*}} \delta\left(\cdot-x_{i}\right)
$$

The detailed balance condition is therefore the distributional identity

$$
\pi\left(x_{i}\right) \mathcal{L}_{z}^{*} \delta\left(z-x_{i}\right)=\pi(z) \mathcal{L}_{x_{i}}^{*} \delta\left(x_{i}-z\right)
$$

We pick a test function φ. It can be shown easily that

$$
\left\langle\pi\left(x_{i}\right) \mathcal{L}^{*} \delta\left(\cdot-x_{i}\right), \varphi(\cdot)\right\rangle=\pi\left(x_{i}\right) \mathcal{L} \varphi\left(x_{i}\right)
$$

and that

$$
\left\langle\pi(z) \mathcal{L}_{x_{i}}^{*} \delta\left(x_{i}-\cdot\right), \varphi(\cdot)\right\rangle=\mathcal{L}_{x_{i}}^{*}\left(\varphi\left(x_{i}\right) \pi\left(x_{i}\right)\right)
$$

Hence, to verify the detailed balance condition, one needs the following

$$
\begin{equation*}
\pi\left(x_{i}\right) \mathcal{L} \varphi\left(x_{i}\right)=\mathcal{L}_{x_{i}}^{*}\left(\varphi\left(x_{i}\right) \pi\left(x_{i}\right)\right) \tag{4}
\end{equation*}
$$

which is reduced to

$$
-\pi b+\frac{1}{2} \nabla \cdot\left(\sigma \sigma^{T} \pi\right)=0
$$

This holds for b being a gradient field and σ being square with $\sigma \propto I$.

1.2 A splitting strategy

Consider that we want to sample from some density ρ. Then, we can define

$$
U=-\frac{1}{\beta} \log \rho
$$

This potential U may have some singularity.
Consider decomposing the potential as

$$
U=U_{1}+U_{2}
$$

Given some X_{n-1}, we run the following SDE

$$
d Y=-\nabla U_{1} d t+\sqrt{\frac{2}{\beta}} d W
$$

for some time $T>0$, with initial data

$$
Y(0)=X_{n-1}
$$

Then, we compute

$$
\alpha=\min \left(1, \exp \left[-\beta\left(U_{2}(Y(T))-U_{2}\left(X_{n-1}\right)\right)\right]\right)
$$

With probability, we accept $Y(T)$ as the new sample $X_{n}=Y(T)$, and otherwise, $X_{n}=X_{n-1}$.

This can be viewed as special case of the Metropolis-Hastings algorithm. In fact, for the SDE step:

$$
e^{-\beta U_{1}(x)} p(x, y ; T)=e^{-\beta U_{1}(y)} p(y, x ; T)
$$

Then, by MH algorithm:

$$
\frac{e^{-\beta U(y)} p(y, x ; T)}{e^{-\beta U(x)} p(x, y ; T)}=\exp \left[-\beta\left(U_{2}(y)-U_{2}(x)\right)\right]
$$

The SDE step can be finished by typical SDE schemes and maybe applying minibatch technique, like in SGLD.

Example: sampling from the Gibbs distribution for many body systems.

