
Advanced computational methods-Lecture 2

1 Brief Introduction to martingales

Below, it will be assumed that X is a real valued process, adapted to
some given filtration {Ft} with E|Xt| <∞.

Definition 1. The process X = {Xt} adapted to {Ft} is called a submartin-
gale (resp. supermartingale) if for all 0 ≤ s < t < ∞, E(Xt|Fs) ≥ Xs a.s.
(resp. E(Xt|Fs) ≤ Xs) The process is called a martingale if it is both a
submartingale and a supermartingale, i.e.

E(Xt|Fs) = Xs, a.s.

Proposition 1. Suppose the filtration {Ft} is right continuous, and F0

contains all measure zero sets in F . Let X be a submartingale such that
t 7→ EXt is right-continuous. Then, there is a modification of X which is
cadlag (right continuous with left limits).

Jensen’s inequality tells us that if X is a submartingale, then for any
convex function, ϕ(X) is a submartingale if ϕ(X) is integrable.

1.1 Optional stopping

Optional stopping basically wants to investigate what would happen if
we stop a martingale at stopping times. The motivation is from gambling
games. A natural question is whether one can choose the time to quit in
a fair game to gain fortune. The answer basically is ‘no’, and this is what
optional stopping studies.

Theorem 1. Let X be a submartingale with right continuous paths and σ, τ
be two stopping times. Then, for any T > 0, one has

E[Xτ∧T |Fσ] ≥Mσ∧τ∧T .

From this theorem, it is clear that for a martingale, we have the equality
holds. Hence, one has

Corollary 1. Let M be right continuous martingale. The stopped process
M τ := {Mτ∧t} is also a martingale. If M is square integrable, so is M τ .
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This corollary basically says there is no strategy to gain fortune in a fair
game.

In general, if we drop the T variable, the conclusion no longer holds.
Thinking about the example in the previous lecture, Mn := −Xn is a mar-
tingale and .. The reason is that Mn does not converge in L1.

However, if the martingale has a last element, i.e. there exists M∞ such
that Mt →M∞ a.s., and E(M∞|Ft) = Mt (which is equivalent to Mt →M∞
in L1(P)), then one can expect the equality to hold.

Proposition 2. If X = {Xt} is a submartingale with last element X∞.
Then, for any two stopping times σ ≤ τ , one has

E(Xτ |Fσ) ≥ Xσ.

The equality holds when X is a martingale with a last element.

In the example previously, Xτ = 1. If we take σ = t, clearly, the equality
does not hold.

1.2 Important inequalities and martingale convergence the-
orem

The first inequality is to control the maximum of the martingale.

Theorem 2. Let X be a right continuous submartingale. Then, for any
r > 0 and T > 0:

P

(
sup

0≤t≤T
Xt ≥ r

)
≤ r−1E[X+

T ],

and

P
(

inf
0≤t≤T

Xt ≤ −r
)
≤ r−1(E[X+

T ]− E[X0]).

The Doob’s inequality is more useful:

Theorem 3. Let X be a nonnegative right continuous submartingale. Then,
for any p ∈ (1,∞):

E

[
( sup
0≤t≤T

Xt)
p

]
≤ (

p

p− 1
)pE[Mp

T ].

Imagine that you have some martingale M = (Mt). Then, |Mt| and M+
t

are submartingales. Then, for example, the moments of sup0≤t≤T |Mt| can
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be controlled by the moments of |MT | (or the moments of MT if p is even).
This is particularly useful when esitmating the stochastic integral in SDEs.
Note that T can be replaced by bounded stopping times.

Another important inequality for martingale is the Burkholdr-Davis-
Gundy inequalities (see Theorem 3.28 in the book by Karatzas and Shreve).
It uses the quadratic variation of a martingale to control the moments of
sup0≤t≤T |Mt|. We omit it here. If you are interested, you may read.

By estimation of the so-called ‘upcrossing’, one can have the following
martingale convergence theorem (see Theorem 3.15 in the book by Karatzas
and Shreve):

Theorem 4. Let X be a right-continuous submartingale with supt≥0 EX+
t <

∞. Then, Xt converges almost surely to some X∞ a.s. with E|X∞| <∞.

Intuitively, this is like the basic claim in calculus: an increasing sequence
with an upper bound has a limit. This martingale convergence theorem is
also not quite related to stochastic integration and our course.

1.3 Doob-Meyer decomposition

The intuition of this decomposition is that if you subtract kind of “mean”
from a submartingale, the remaining part will be fluctuation with mean zero,
and then it is like a martingale. This intuition then leads to the Doob-Meyer
decomposition.

Definition 2. We say X is of class DL if for any u ∈ (0,∞), the random
variables {Xτ : τ is a stopping time with τ ≤ u} is uniformly integrable.

Lemma 1. A right-continuous nonnegative submartingale is of class DL. In
particular, if M is a square integrable martingale, then M2 if of calss DL.

The Doob-Meyer decomposition says

Theorem 5. Let the filtration be right continuous and complete. Let X
be a right continuous submartingale of class DL. Then, there is a unique
nondecreasing predictable process A such that X −A is a martingale.

Predictable means {Xt ≤ t} ∈ Ft− . Intuitively, this says one can predict
the near future using current information.(This does not say the process
can then be determined totally since the information in the filtration is not
solely given by the process.) In many texts, people say “A is increasing and
natural”. The definition of natural process is given in these books. One can
show that if the process is nondecreasing, the being predictable is the same
as being natural.
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1.4 A metric space for martingales

Often we consider the space of square integrable martingales, M2:

‖M‖M2 =

∞∑
k=1

2−k(1 ∧ ‖Mk‖L2(P)).

It can be verified easily that

(M2, ‖ · ‖M2)

is a metric space. Due to 1 ∧ ·, this is not a Banach space.
Note that if you remove 1 ∧ ·, then the space cannot contain all square

integrable martingales, but then the quantity ‖ · ‖ becomes a norm.

2 Quadratic variation

2.1 quadratic variation with right continuous paths

Definition 3. Given a process Y , the quadratic variation [Y ] is a stochastic
process such that t 7→ [Y ](t, ω) is nondecreasing for all ω and

[Y ](t, ω) = lim
mesh→0

n∑
i

(Yti+1 − Yti)2, in probability

Exercise: Prove that if X(t) is a continuously differentiable, then [X] =
0. Prove that the quadratic variation is given by [W ] = t.

Since Brownian motion has rough paths, the quadratic variation is nonzero.
In fact,

[W ] = t.

This formally means
(dW )2 = dt.

This explains why in usual ODEs, we only have df(X) = f ′(X)dX but for
diffusion processes, df(W ) contains other terms besides f ′(W )dW .

Theorem 6. Let M be a right continuous martingale. The quadratic vari-
ation [M ] = ([M ]t) exists and there is a version such that the paths are
non-decreasing, and right continuous, adapted to the underlying filtration
with [M ]0 = 0. If M is continuous, [M ] is also continuous.

Exercise: show that E[M ]t = M2
t −M2

0 .
In fact,
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Proposition 3. If M is a right continuous L2 martingale, then M2
t − [M ]t

is a martingale.

The quadratic covariation is

[X,Y ] = [
1

2
(X + Y )]− [

1

2
(X − Y )]

Intuitively, this is to define∑
i

(Xti+1 −Xti)(Yti+1 − Yti)

The previous definition is used due to some path properities.
Hence, formally, we have

d[X,Y ] = dXdY.

Remark 1. As we have seen, the quadratic variation is introduced because
(dW )2 has nontrivial contribution. In general, if we consider diffusion pro-
cesses driven by Brownian motions, we need to consider quadratic variation
and the following product rule holds

d(XY ) = Y dX +XdY + d[X,Y ]

Here, Y dX,XdY should be understood in Itô sense as we shall see soon.

2.2 Predictable quadratic variation

Using the Doob-Meyer decomposition, one may find another option to
define quadratic variation. In fact, M2 is right continuous submartingale,
so it is of class DL. Hence, by Doob-Meyer decomposition we can write

M2 = 〈M〉+ (M2 − 〈M〉),

such that M2 − 〈M〉 is a martingale. The process 〈M〉 is predictable, non-
decreasing, and unique, called the predictable quadratic variation.

In general, [M ] is not the same as 〈M〉 because the former is right-
continuous while the latter is predictable. However, if the process M is
continuous, [M ] is also continuous, and thus predictable. Then, [M ] = 〈M〉.
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3 Stochastic integration

3.1 Stochastic integration with respect to Brownian motions

Suppose we want to define
∫ t

0 WdW . Consider the Riemann sum

S(π) =
∑
i

Wsi(Wti+1 −Wti)

where
si = (1− u)ti + uti+1.

The computation starts with the following algebra identity

b(a− c) =
1

2
(a2 − c2)− 1

2
(a− c)2 + (b− c)2 + (a− b)(b− c)

Taking the sum, the first term is simply 1
2W

2
t . The second term is the

quadratic variation. The third term, by similar computation of quadratic
variation, we can show that it converges in L2 to ut:

E(
∑
i

(Wsi −Wti)
2) =

∑
i

u(ti+1 − ti) = ut,

V ar(
∑
i

(Wsi −Wti)
2) =

∑
i

V ar((Wsi −Wti)
2) =

∑
i

2(si − ti)2 ≤ 2tmesh(π)→ 0.

The third term has mean zero and variance converging to zero. Hence, the
L2 limit is given by

1

2
W 2
t −

1

2
t+ ut.

We conclude the following

• The limit of the Riemann sum depends on the choice of sample point!

• If u = 1/2, we have the chain rule. However, 1
2W

2
t is not a martingale.

• If u = 0, we do not have chain rule but 1
2W

2
t − t

2 is a martingale.

If we choose the midpoint as the sample point, we get the Stratonovich
integral. If we use the left point, the resulted integral is the Itô integral.
Since the Itô integrals give martingales

Remark 2. Show that if F has bounded total variation, then

lim
mesh(π)→0

∑
i

Fsi(Fti+1 − Fti)

is independent of the choice of u.

Remark 3. For the stochastic integral with respect to cadlag semimartin-
gales, the integrand should be predictable to make sense.
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Rigorous definition of Itô integral

The rigorous stochastic integral can be established for X ∈ L2([0, T ]×Ω),
i.e.

‖X‖2L2([0,T ]×Ω) := E
∫

[0,T ]
|X(t, ω)|2dt <∞.

• First of all, for the simple predictable process

Xt(ω) = η0(ω)1(0)(t) +
n−1∑
i=1

ξi(ω)1(ti,ti+1](t)

where 0 = t1 < t2 < . . . < tn. Predictable means that the state at t
can be referred by the information in s < t. Also, ξi should be square
integrable. The stochastic integral is defined by

(X ·B)(t) =

∫ t

0
XdB =

n−1∑
i=1

ξi(ω)(Bti+1∧t(ω)−Bti∧t(ω))

Clearly, X ·B is a martingale in M2 and we have the Itô isometry:

E[(X ·B)2
t ] = E

∫ t

0
X2
s ds, ∀t ≥ 0.

• The significant fact of the Itô isometry is that if {Xn} is a sequence
of simple predictable processes and Xn → X in L2([0, T ] × Ω), then
Xn · B is a Cauchy sequence in M2. Then, the limit is defined to be
(X ·B)(t) =

∫ t
0 XdB.

This is good enough because any X ∈ L2([0, T ] × Ω) can be approxi-
mated by simple predictable processes.

In the example above,
∑

iBti1(ti,ti+1] approximates B, and this corre-
sponds to u = 0.

To summarize, for X ∈ L2([0, T ] × Ω), we can define X · B =
∫ t

0 XdB
which is a martingale and the Itô isometry holds

E
(∫ t

0
XdB

)2

= E
∫ t

0
X2
s ds

There are extensions to processes that are not in L2. Those who are
interested can read the reference.
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3.2 Stochastic integration with respect to continuous square
integrable martingales

Since we will consider SDEs like dX = b(X)dt+ σ(X)dW and consider
increment of the form df(X). This will leads to integration with respect
to X. Hence, it is necessary to consider integration with respect to general
continuous martingale. For martingales with possible jumps, see the remark
below or the discussion in Timo’s notes.

Now, for a general continuous square integrable martingale, the space of
integrands becomes L2([0, T ]×Ω, µM ) with the measure µM on ([0, T ]×Ω,R)
defined by

µM (A) = E
∫

[0,∞)
1A(t, ω)d[M ]t.

Here, R is the so-called predictable sigma-field. In fact, for M to be conti-
nous, one can enlarge this to general B([0, T ]×Ω). However, if M has jumps,
the integral defined this way for non-predictable will include the effects of
jumps (see Remark 4 below).

As soon a progressively measurable process is in this space, one can use
the simple processes

∑
i ξi1(ti,ti+1] with ξi ∈ Fti to approximate. Then, the

stochastic integrals can be defined similarly.
The important properties include

• X ·M :=
∫ t

0 XdM is a square integrable martingale, continuous.

• The isometry holds

E((X ·M)t)
2 =

∫
[0,t]×Ω

X2dµM = E
∫

[0,t]
X2d[M ]t.

Remark 4. Note that the simple processes we consider here are all pre-
dictable. The reason to use 1(ti,ti+1] is that

∫
1(ti,ti+1]dM = Mti+1 −Mti. If

we use 1[ti,ti+1), then we have Mt−i+1
−Mt−i

.

If M has jumps, one should be careful with the integrands. In fact, for
M with jumps, the simple processes of the form

∑
i ξi1(ti,ti+1] will converge

to the predictable processes only under the metric corresponding to M . If
one uses

∑
i ξi1[ti,ti+1), it can approximate general processes with jumps, but

the integral may not be a Martingale. For example, let X = M = N = {Nt}
be the Poisson process. Then, then

∫ ∑
iN(ti)1(ti,ti+1]dN →

∫
N(t−)dN

which is a martingale, but
∫ ∑

iN(ti)1[ti,ti+1)dN →
∫
NdN =

∫
N(t−)dN+∑

(∆N)2. It is a martingale plus a non-decreasing process, which is no
longer a martingale. Due to this reason, when M has jumps, the integrand
should be predictable.
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