
Advanced computational methods-Lecture 3

In dealing with the solution to SDEs, we also need the integrator to be
semimartingales. In other words,

X = X0 +Mt + Vt,

with M0 = V0 = 0, Mt is a (local) martingale, and V is an FV process
(with finite variation). The stochastic integration with respect to X can be
defined easily by this decomposition.

Proposition 1. Let X be a cadlag process (right continuous with left limits),
and Y is a cadlag semimartinglae. Suppose 0 ≤ τn0 ≤ τn1 ≤ · · · are stopping
times such that τni → ∞ a.s. as i → ∞, and also δn = sup0≤i<∞(τni+1 −
τni )→ 0 a.s. as n→∞. Then,

Sn(t) =
∞∑
i=0

X(τni )(Y (τni+1 ∧ t)− Y (τni ∧ t))

converges to

X− · Y =

∫ t

0
X(s−)dY,

in probability uniformly for t in compact set. In other words,

lim
n→∞

P( sup
0≤t≤T

|Sn(t)− (X− · Y )t| ≥ ε) = 0.

Similarly, we need the following:

Proposition 2. Let G be a cadlag adapted process, Y and Z be two cadlag
semimartingales. Let π = {0 = t1 < t2 < · · · < ti →∞}. Define

Rπ(t) =

∞∑
i=1

Gti(Yti+1∧t − Yti∧t)(Zti+1∧t − Zti∧t).

Then, Rπ(t) converges uniformly to∫ t

0
G−d[Y, Z]

in probability uniformly on compact time interval.
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1 Itô formula

As we have seen, the Brownian motion has rough paths and d[B,B] = dt.
Intuitively, this means (dB)2 = dt. Hence, if we expand f(B), the quadratic
variation term will be nontrivial. Then, we have

f(B) = f(B0) +

∫ t

0
f ′(Bs) dBs +

1

2

∫ t

0
f ′′(Bs) d[B]s.

Note that for nonstandard Brownian motions, B0 is not necessarily zero.
This is the special case of the Itô’s formula. The most general Itô’s

formula is valid for stochastic integrals with respect to semi-martingales.

1.1 The Itô’s formula

The solutions to SDEs are often semimartingales that can be decomposed
to be a martingale plus an FV process.

Then, we can have the following Itô’s formula regarding a continuous
semimartingale:

Theorem 1. Let D be an open subset of Rd and f ∈ C2([0, T ] × D). Let
X be a Rd-valued continuous semimartingale such that the probability that
X[0, T ] falls out of D is zero. Then,

f(t,X(t)) = f(0, X(0))+

∫ t

0
∂tf(s,X(s)) ds+

d∑
j=1

∫
(0,t]

∂xjf(s,X(s))dXj(s)

+
1

2

∑
1≤j,k≤d

∫
(0,t]

∂xj ,xkf(s,X(s))d[Xj , Xk].

Remark 1. Note that if X is cadlag that can have jumps, then one should
change X(s) to X(s−) in the stochastic integrals and add some terms in-
volving jumps.

Below, we only see briefly how the formula is proved by Taylor expansion
in 1D case.

Proof of Theorem 1 with d = 1. The proof is in fact straightforward. By
Taylor’s expansion:

f(t, y) = f(s, x)+ft(s, x)(t−s)+fx(s, x)(y−x)+
1

2
fxx(s, x)(y−x)2+φ(s, t, x, y).
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It can be shown by Lagrangian remainder theorem for the first order Taylor
polynomial that

φ(s, t, x, y)

|s− t|+ |x− y|2
→ 0, (s, t, x, y)→ (u, u, z, z).

For any partition, one then has

f(t,Xt) = f(0, X0) +
∑
i

ft(t ∧ ti, Xt∧ti)(t ∧ ti+1 − t ∧ ti)

+
∑
i

fx(t ∧ ti, Xt∧ti)(Xt∧ti+1 −Xt∧ti)

+
1

2

∑
i

fxx(t ∧ ti, Xt∧ti)(Xt∧ti+1 −Xt∧ti)
2

+
∑
i

φ(t ∧ ti, t ∧ ti+1, Xt∧ti , Xt∧ti+1).

Using the propositions above, it is clearly that in probability the first three
sums converge uniformly on compact sets to (recall that X is left continuous)∫ t

0
ft(s, Y (s)) ds+

∫ t

0
fx(s,X(s)) dX +

1

2

∫ t

0
fxx(s,X(s)) d[X].

For the last sum, one can focus on a fixed ω ∈ Ω. When the partition is
small enough, | φ

|t∧ti+1−t∧ti|+|Xt∧ti+1−Xt∧ti |2
| will be small because the process

is continuous. In fact, detailed analysis shows that this term in fact goes to
zero.

In differential form, the Itô’s formula can be written formally as

df(t,X) = ft(t,X)dt+ fx(t,X)dX +
1

2
fxxd[X].

For Brownian motions in Rd, one has the following

Theorem 2. Let B = (B1, B2, . . . , Bd) be a Brownian motion in Rd with
random initial data B(0). Let f ∈ C2(Rd). Then, we have

f(B(t)) = f(B(0)) +

∫ t

0

∑
i

∂if(Bs)dBs +
1

2

∫ t

0
∆f(Bs) ds.

To memorize this, you can understand it as

dBidBj = δijdt, dBidt = 0, (dBi)
p = 0, p ≥ 3.
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1.2 Some applications

Example Consider Xt = µt + σB with σ > 0, µ 6= 0. What is the
probability that Xt exits (a, b) at b for a < 0 < b?

The idea is to find a function h such that

Yt = h(Xt)

is a martingale. It is best that h(a) = 0. Then, by optional stopping,
h(Xτ∧t) is also a martingale. Hence,

Eh(Xτ∧t) = h(0).

Then, show that Eh(Xτ∧t) → Eh(Xτ ) = h(b)P(Xτ = b). To find such h,
one uses Itô’s formula and find

µh′ +
1

2
σ2h′′ = 0.

Then, h can be solved uniquely. The answer is

(e−2µa/σ
2 − 1)/(e−2µa/σ

2 − e−2µb/σ2
).

Example (Lévy’s characterization of Brownian motions) Let X be a d-
dimensional continuous (local) martingale. Then, X(t)−X(0) is a standard
Brownian motion if and only if [Xi, Xj ]t = δijt.

Here, we only look at “⇐” direction only as the other direction is trivial.
Pick the test function

f(t, x) = exp

(
iθ · x+

1

2
|θ|2t

)
, θ ∈ Rd.

Let Z = f(t,X). Applying Itô’s formula,

dZ = df(t,X) =
1

2
|θ|2Zdt+ iθZ · dX − 1

2

∑
j

θ2jZd[Xi, Xi] = iθZ · dX.

Hence, Z is the stochastic integration with respect to a (local) martingale
in Itô’s sense. Hence, Z is a (local) martingale. Moreover, Z is bounded, so
Z is a martingale. Consequently,

E(Zt|Fs) = Zs ⇒ E(
Zt
Zs
|Fs) = 1.
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This implies

E(exp(iθ · (Xt −Xs))|Fs) = exp(−1

2
|θ|2(t− s)).

This implies that Xt−Xs is a Gaussian variable and should be indepen-
dent to Fs by the property of normal distributions.

Example (A special case of Burkholder-Davis-Gundy inequality) Let
p ≥ 2. For all continuous (local) martingales M with M0 = 0, one has

E[| sup
0≤s≤t

Ms|p] ≤ (p(p− 1)e)p/2E[|[M ]t|p/2].

This roughly says the moments of the quadratic variation can be used
to control the moments of martingales. In fact, it sufficies to show this for
bounded L2 martingales. For local martingales, introducing stopping times
for the localization and taking limit will suffice.

Applying Itô’s formula to |x|p which isC2. Then, one has

|Mt|p =

∫ t

0
p|x|p−2XdM +

1

2
p(p− 1)

∫ t

0
|M |p−2d[M ].

Taking expectation:

E|Mt|p = E
1

2
p(p− 1)

∫ t

0
|M |p−2d[M ] ≤ 1

2
p(p− 1)E(| sup

0≤s≤t
Ms|p−2|[M ]t|).

Applying Hölder, one has

E|Mt|p ≤
1

2
p(p− 1)(E| sup

0≤s≤t
Ms|p)1−2/p(E|[M ]t|p/2)2/p.

Lastly, applying Doob’s inequality, the claim follows.

2 Stochastic differential equations

The general stochastic differential equations are given by

dX = dH + F (t,X)dY

where Y is a general cadlag semimargingales. In this course, we only focus
on the Itô equations

dX = b(t,X)dt+ σ(t,X)dBt, X0 = ξ.
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This equation is defined by the following integral equation

X(t) = ξ +

∫ t

0
b(s,Xs) ds+

∫ t

0
σ(s,Xs)dBs.

The integral is in the Itô sense.
b is Rd valued and is called the drift vector. σ is called the dispersion

matrix which has size d×m. The matrix σσT is called the diffusion matrix.
The solution of Itô equations will be called the diffusion processes.

Before we go to the rigorous theory, let us look at two examples.
Example 1: the Ornstein-Uhlenbeck process

dX = −αXdt+ σdWt.

Assume the initial data X0 is independent of the Brownian motion.
Mimicking the technique for ODE, we want to try integrating factor.

However, the processes we have all nontrivial quadratic variation.

d(ZX) = ZdX +Xdz + d[Z,X]

Let us try
Z = exp(αt)

Then, [Z,X] = 0 because dBdt = 0. Then,

d(ZX) = −αZXdt+ σZdB + αZXdt = σZdB.

Hence, we in fact have the usual formula as in ODE.
The OU process is then solved to be

Xt = X0e
−αt + σe−αt

∫ t

0
eαsdWs.

Of course, this is formal guess, you may need to verify that it satisfies
the integral equation by Itô formula, which is left for exercise.

Exercise: Compute the mean and the variance of the 1D OU process.
Since the dispersion matrix does not depend on the process X, X is a Gauss-
sian process, write out the density of Xt.

Example 2. Geometric Brownian motion

dX = µXdt+ σXdB, X(0) = x0.
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For the integrating factor, one may guess to use

Z = exp(−µt− σBt)

and get
X = X0 exp(µt+ σBt)

This turns out to be wrong. In fact,

d(XZ) = XdZ + ZdX + d[Z,X] =
1

2
XZσ2dt+ d[Z,X]

The quadratic variation part is nonzero:

d[X,Y ] = −σ2XZdt.

Hence,

d(XY ) = −1

2
XZσ2dt.

What is the correct integrating factor? Motivated by the above compu-
tation, we try into the factor

Z = exp(−µt− σBt + rσ2t)

Then,

d(XZ) = XdZ + ZdX + d[X,Z] = (
1

2
+ r)σ2XZdt− σ2XZdt.

Clearly, we need r = 1
2 .

Hence, the geometric Brownian motion should be solved as

Xt = X0 exp

(
(µ− 1

2
)σ2t+ σBt

)
.

To verify this is a solution, we need to check all the assumptions in the
derivation above are valid. Alternatively, one can check directly by inserting
this into the integral equation.

Exercise: Use Itô’s formula to find an ODE for u(t) = EX2 for the
geometric Brownian motion. Then, find u(t).
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3 Existence and uniqueness of strong solutions for
Itô equations

Recall that we have a probability space (Ω,F ,P) with filtration {Ft}.

Definition 1. We say a process X on (Ω,F ,P) is a strong solution to the
Itô equation with initial data ξ ∈ F0 if

P{∀T > 0,

∫ T

0
|b(x,Xs)|ds+

∫ T

0
|σ(s,Xs)|2 ds <∞} = 1,

and the integral equation

Xt = ξ +

∫ t

0
b(s,Xs)ds+

∫ T

0
σ(s,Xs)dBs

holds (in the sense that both sides are distinguishable processes).

There is also definition of weak solutions for Itô equations, and I will
skip this here.

There is a classical result regarding the wellposedness of the equation

Theorem 3. Assume b : R+ × Rd → Rd and σ : R+ × Rd → Rd×m satisfy
the Lipschitz condition

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|

and
|b(t, x)|+ |σ(t, x)| ≤ L(1 + |x|)

then there exists a unique continuous process X on (Ω,F ,P) adapted to the
filtration {Ft} that is a strong solution.

Here, we present the proof of a simpler version:

Theorem 4. Besides the conditions above, if moreover, Eξ2 <∞, then there
exists a unique continuous process X on (Ω,F ,P) adapted to the filtration
{Ft} that is a strong solution, and

E( sup
t∈[0,T ]

|Xt|2) ≤ C(1 + Eξ2).

Moreover, let X̃ be a solution corresponding to initial data ξ̃ ∈ L2(P), then

E( sup
0≤s≤t

|Xs − X̃s|2) ≤ C(t)E|ξ − ξ̃|2.
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Proof. Consider the Picard iteration X0 = ξ and

Xn+1(t) = ξ +

∫ t

0
b(s,Xn(s))ds+

∫ t

0
σ(s,Xn(s))dBs.

Clearly,

E(

∫ t

0
|b(s,Xn)|2ds+

∫ t

0
|σ(s,Xn(s))|2ds) ≤ 4L2t(1 + sup

s∈[0,t]
E|Xn(s)|2)

Since ξ ∈ L2(P), by induction, we have

E sup
s∈[0,t]

|Xn(s)|2 <∞.

This means Xn+1 is well-defined.
Moreover,

E sup
0≤s≤t

|Xn+1|2 ≤ CEξ2+C(t)

∫ t

0
E|Xn(s)|2 ds ≤ A+C(t)

∫ t

0
E sup

0≤τ≤s
|Xn(τ)|2 ds.

From here, we find that yn(t) := sup0≤s≤t |Xn(s)|2 satisfies that

yn+1(t) ≤ A+ C(T )

∫ t

0
yn(s) ds,

for all t ∈ [0, T ].
This gives a uniform bound:

yn(t) ≤ u(t)

where u′(t) = C(T )u with u(0) = A.
Now, we consider

zn(t) := E sup
0≤s≤t

|Xn+1(t)−Xn(t)|2

Then, we have

zn(t) ≤ 2E sup
0≤s≤t

(

∫ s

0
|b(τ,Xn)−b(τ,Xn−1)| dτ)2+2E sup

0≤s≤t
(

∫ s

0
(σ(τ,Xn)−σ(τ,Xn−1))dBτ )2

The first term is controlled trivially by t
∫ t
0 E(b(τ,Xn) − b(τ,Xn−1))

2ds ≤
C(T )

∫ t
0 zn−1 ds.
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For the second term, we apply Doob’s inequality for martingales

E( sup
0≤s≤T

Mp
s ) ≤ (

p

p− 1
)pEMp

t ,

to the stochastic integral and have

E sup
0≤s≤t

(

∫ s

0
(σ(τ,Xn)− σ(τ,Xn−1))dBτ )2

≤ 4E
∫ t

0
|σ(s,Xn)− σ(s,Xn−1)|2 ds

≤ C
∫ t

0
zn−1(s) ds.

Direct computation shows z0 ≤ B(T ). Then,

zn ≤ B(T )
Cntn

n!

This implies that
∑

n ‖ sup0≤s≤t |Xn+1(t)−Xn(t)|‖2 converges.
Moreover, by Chebyshev inequality

P ( sup
0≤s≤t

|Xn+1(t)−Xn(t)| > 2−n) ≤ B4nCntn

n!

This is summable. The Borel-Cantelli lemma implies that Xn(t) converges
in C([0, T ]) almost surely to some continuous process X(t).

Then, by Fatou’s lemma

E‖ sup
0≤t≤T

|X(s)−Xn(s)|‖2 ≤ lim inf
m→∞

m−1∑
k=n

‖ sup
0≤s≤t

|Xk+1(t)−Xk(t)|‖2

This is arbitrarily small if n is large enough. Hence, Xn → X in L2(0, T ;L2).
Moreover, X has the same second moment bounds.

Then, taking n→∞ in the Picard iteration, we find that X is a solution.
Lastly, the estimate for two solutions is very similar to the estimate of

E sup0≤s≤t |Xn+1 −Xn|2 above. We skip the details. The uniqueness then
follows from this estimate.

Remark 2. The conditions imposed b(·) is too strong for many applications.
In fact, it is also known that locally Lipschitz and confinement conditions
can imply the existence and uniqueness of solutions (For example, in The-
orem 2.3.5 of the book ’Stochastic Differential Equations and applications’
(Horwood, 97) by X. Mao, it is shown that max(x · b(x), |σ|2) ≤ C1 +C2|x|2
is enough for the well-posedness, which allows b like −(1 + |x|2)px).
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