
Advanced computational methods-Lecture 5

1 Motivation for strong schemes

we study strong schemes for SDEs (Itô equations).
When σ does not depend on X (may depend on time) we say the noise

is additive. This is because the noise is uniformly added to the system in
the space.

However, if σ depends on X, we say the noise is multiplicative. This
is because the noise is amplified by a factor that depends on the state of the
system.

For numerical analysis, we assume b and σ are good functions. There
are roughly two kinds of things we want to do:

1. Approximate the sample paths of the SDE; namely t 7→ X(ω, ·).

2. Approximate the law of X(t), or the distributions.

Depending on which we would like to do, there are two types of conver-
gence we can define. The convergence corresponding to the sample paths is
called strong convergence.

Definition 1. Fix time T > 0. We say a discrete approximation {Xn(k)}
of the SDE converges in the strong sense with order p > 0 if there exists
C(T ) > 0 such that

sup
n:nk≤T

E|Xn(k)−X(nk)| ≤ C(T )kp,

for all sufficiently small step size k.

We will assume the following:

Assumption 1. The functions b, σ are Lipschitz continuous.

2 The basic scheme: Euler-Maruyama scheme

To be convenient, we use ‖ · ‖ to mean the L2(P) norm.
The first scheme we consider is an analogy of the forward Euler scheme,

namely an explicit Euler type scheme. This is called Euler-Maruyama
scheme given by

Xn+1 = Xn + b(Xn)k + σ(Xn)∆Wn
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For the reference, we recall that the solution of the SDE satisfies

X(tn+1) = X(tn) +

∫ tn+1

tn

b(Xτ ) dτ +

∫ tn+1

tn

σ(Xτ )dWτ .

2.1 Some basic estimates

Here, we start with some basic estimates.

Lemma 1. The solution X(t) satisfies

(E|X(t)−X(s)|2)1/2 ≤ C(T )|t− s|1/2.

Proof. By the equation, we have

X(t)−X(s) =

∫ t

s
b(Xτ ) dτ +

∫ t

s
σ(Xτ )dWτ .

Then,

E|X(t)−X(s)|2 ≤ C(T )

∫ t

s
Eb(Xτ )2 dτ

+ 2

∫ t

s
Etr(σ(Xτ )σT (Xτ )) ds ≤ C1(T )|t− s|

2.2 Multiplicative noise

We are easily attempted to do the following

‖Xn+1−X(tn+1)‖ ≤ |Xn−X(tn)|+
∫ tn+1

tn

‖b(Xn)−b(Xτ )‖ dτ+‖
∫ tn+1

tn

(σ(Xn)−σ(Xτ ))dWτ‖

The first term is easily estimated as∫ tn+1

tn

‖b(Xn)−b(Xtn)‖ dτ+

∫ tn+1

tn

‖b(X(tn))−b(Xτ )‖ dτ ≤ Lk‖Xn−X(tn)‖+Ck3/2

For the second term, we get

‖
∫ tn+1

tn

(σ(Xn)− σ(Xτ ))dWτ‖ = (

∫ tn+1

tn

E(σ(Xn)− σ(Xτ ))2 dτ)1/2
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We find that this term is like
√
k‖Xn−X(tn)‖+k. The O(k) local truncation

error is killing us, because then the global error is O(1)!
Exercise: if σ = const, the above estimate gives us O(k1/2) error.
Where is the issue? How can we resolve this? If we look in detail, we see

the trouble is the martingale term. Generally speaking, the above estimate
is not wrong. The magnitude of the martingale is indeed O(k) on the interval
[tn, tn+1]. The point is that the increment of the martingale has conditional
expectation to be zero! We have not used this fact.

Let us denote

Mn =

∫ tn+1

tn

(σ(Xn)− σ(Xτ ))dWτ .

We have seen ‖Mn‖ = O(k). Basically,
∑

m ‖Mm‖ = O(1). This is not what
we want. In fact, we can do the following:

‖
∑
m

Mm‖ =

√
E
∑
i,j

MiMj

Using the property of martingales, the expectation is zero if i 6= j. Hence,
we in fact have

‖
∑
m

Mm‖ =

√∑
m

‖Mm‖2 = C1(T )k1/2.

This is the gain and we can improve the estimate. Of course, Mm contains
the error itself, so we cannot do this directly, but this gives us the hint that
we should use the sum of the square.

Now, we have

Theorem 1. The E-M scheme has strong order 1/2

Proof.

‖Xn −X(tn)‖2 ≤ 2E(
n−1∑
m=0

∫ tm+1

tm

(b(Xm)− b(Xτ )) dτ)2 + 2E(
n∑

m=1

Mm)2

Uisng Holder first for the integral and then Cauchy inequality for the sum,
the first term is controlled by

T

n−1∑
m=0

∫ tm+1

tm

E(b(Xm)− b(Xτ ))2 dτ ≤ CT
n−1∑
m=0

(‖Xm −X(tm)‖2 + k)k
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The second term is controlled by∑
m

EM2
m =

∑
m

∫ tm+1

tm

(σ(Xm)− σ(Xτ )) dτ ≤ C
∑
m

(‖Xm −X(tm)‖2 + k)k

Hence,

‖Xn −X(tn)‖2 ≤ C(T )k

n−1∑
m=0

(‖Xm −X(tm)‖2 + Ck.

This gives that
‖Xn −X(tn)‖2 ≤ Ck.

The claim is proved.

2.3 Additive noise

Now, consider σ(X) = σ. The above estimate still gives ‖Xn−X(tn)‖ ≤
Ck1/2. Can we improve this result?

In fact, by the same computation, we have

‖Xn −X(tn)‖2 ≤ E(
n−1∑
m=0

∫ tm+1

tm

(b(Xm)− b(Xτ )) dτ)2.

If we control the right hand side as before and get

T
n−1∑
m=0

∫ tm+1

tm

E(b(Xm)− b(Xτ ))2 dτ

then we have to get the k1/2 bound.
Can we use the property of martingale to improve this? The answer is

positive.
The key observation is that though

‖
∫ tm+1

tm

(b(X(tm))− b(Xτ )) dτ‖ = O(k3/2),

we have

‖E(

∫ tm+1

tm

(b(X(tm))−b(Xτ )) dτ |Ftm)‖ ≤ ‖E(

∫ tm+1

tm

b′(X(tm))(X(τ)−X(tm)) dτ |Ftm)‖

+ ‖E(

∫ tm+1

tm

Cb′′(ξ)(X(τ)−X(tm))2 dτ |Ftm)‖
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The second term is clearly O(k2). For the first term, we have

E(

∫ tm+1

tm

b′(X(tm))(X(τ)−X(tm)) dτ |Ftm) = b′(X(tm))E(

∫ tm+1

tm

(X(τ)−X(tm)) dτ |Ftm)

The martingale part vanishes in the conditional expectation. Hence, we have
the first term to be O(k2) as well.

Theorem 2. If σ = const, the Euler-Maruyama scheme has strong order
1.

Proof. We first of all split the error part:

E(

n−1∑
m=0

∫ tm+1

tm

(b(Xm)− b(Xτ )) dτ)2 = E(

n−1∑
m=0

∫ tm+1

tm

(b(Xm)− b(X(tm))) dτ

+

n−1∑
m=0

∫ tm+1

tm

(b(X(tm))− b(Xτ )) dτ)2

≤ 2E(
n−1∑
m=0

∫ tm+1

tm

(b(Xm)−b(X(tm))) dτ)2+2E(
n−1∑
m=0

∫ tm+1

tm

(b(X(tm))−b(Xτ )) dτ)2

The first term is estimated as

2T

n−1∑
m=0

∫ tm+1

tm

E((b(Xm)− b(X(tm))2 dτ ≤ C(T )

n−1∑
m=0

k‖Xm −X(tm)‖2.

To treat the second term, we define

Im =

∫ tm+1

tm

(b(X(tm))− b(Xτ )) dτ.

and

Rn =

n−1∑
m=0

Im.

Then,

ER2
n = ER2

n−1+2E(Rn−1In−1)+EI2n−1 ≤ ER2
n−1+2E(Rn−1E(In−1|Ftn−1))+Ck3

≤ ER2
n−1 + C‖Rn−1‖k2 + Ck3

Denote un = ‖Rn‖2 = ER2
n. We then have

un ≤ C
n−1∑
m=1

√
umk

2 + Ck2 ≤ C
n−1∑
m=1

umk + (
∑
m

Ck3) + Ck2.
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Hence, finally, we get

un ≤ C
n−1∑
m=1

umk + Ck2.

By induction, you can prove that un ≤ u(tn) where u′ = Cu, u(0) = Ck2.
(This is a version of discrete comparison principle; or discrete Gronwall.
This will be left for exercise) This shows that un ≤ Ck2.

Finally, we obtain

‖Xn −X(tn)‖2 ≤ C(T )
n−1∑
m=0

k‖Xm −X(tm)‖2 + Ck2.

Using the discrete Gronwall again, we find

‖Xn −X(tn)‖2 ≤ C(T )k2.

3 A fundamental theorem

In the EM scheme, we have found that the local truncation error is
like O(k). Then, we turned to use the properties of martingale to gain
the accuracy.In particular, we use the conditional expectation to gain extra
smallness when adding these local O(k) errors into global error. The whole
order is reduced by 1/2 only by using the conditional expectations.

This in fact can be generalized into a theorem, which forms the founda-
tion for proving the strong order of schemes. This can be found in section
1.1 of the book “stochastic numerics for mathematical physics”.

Here, we will assume that both b and σ are globally Lipschitz. We
consider generally the (strong) numerical scheme given by

X̄t,x(t+ h) = x+A(t, x, h;W (θ)−W (t), t ≤ θ ≤ t+ h).

In other words, the numerical value at t+ h is determined by the numerical
value x at t, the step size h, and all the noises between t and t+ h. Hence,
it is a Markov chain.

In general, the numerical values are therefore generated by

Xk+1 = X̄tk,Xk
(tk+1).

We will use Xt,x(t+h) to represent the solution to the SDEs with condition
X(t) = x.
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Theorem 3. If there exist K > 0, p2 ≥ 1/2 and p1 ≥ p2 + 1
2 such that

|E(Xt,x(t+ h)− X̄t,x(t+ h))| ≤ K
√

1 + |x|2hp1 ,

and

‖Xt,x(t+ h)− X̄t,x(t+ h)‖ =
√
E|Xt,x(t+ h)− X̄t,x(t+ h)|2 ≤ K

√
1 + |x|2hp2 ,

then one has

‖Xk −X(tk)‖ ≤ K(1 + E|X0|2)1/2hp2−1/2.

This theorem basically says that the global order of convergence is re-
duced by 1/2 from the local mean square deviation provided that the mean
is capured correctly.

Exercise: find an example where p2 = 1 but the scheme diverges (Hint:
you must make the first condition fail, hence it is best to construct examples
such that the drift term is not captured).

Exercise: Compute p1 and p2 for Euler-Maruyama scheme.
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