
Advanced computational methods-Lecture 6

1 A fundamental theorem

Here, we will assume that both b and σ are globally Lipschitz. We
consider generally the (strong) numerical scheme given by

X̄t,x(t+ h) = x+A(t, x, h;W (θ)−W (t), t ≤ θ ≤ t+ h).

In other words, the numerical value at t+ h is determined by the numerical
value x at t, the step size h, and all the noises between t and t+ h. Hence,
it is a Markov chain.

In general, the numerical values are therefore generated by

Xk+1 = X̄tk,Xk
(tk+1).

We will use Xt,x(t+h) to represent the solution to the SDEs with condition
X(t) = x.

Theorem 1. If there exist K > 0, p2 ≥ 1/2 and p1 ≥ p2 + 1
2 such that

|E(Xt,x(t+ h)− X̄t,x(t+ h))| ≤ K
√

1 + |x|2hp1 ,

and

‖Xt,x(t+ h)− X̄t,x(t+ h)‖ =
√
E|Xt,x(t+ h)− X̄t,x(t+ h)|2 ≤ K

√
1 + |x|2hp2 ,

then one has

‖Xk −X(tk)‖ ≤ K(1 + E|X0|2)1/2hp2−1/2.

This theorem basically says that the global order of convergence is re-
duced by 1/2 from the local mean square deviation provided that the mean
is capured correctly.

Exercise: find an example where p2 = 1 but the scheme diverges (Hint:
you must make the first condition fail, hence it is best to construct examples
such that the drift term is not captured).

Exercise: Compute p1 and p2 for Euler-Maruyama scheme.
Below, we aim to prove this theorem.
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1.1 Auxilliary lemmas

The following lemma is some resolved version of a previous result.

Lemma 1. For the original SDE, one writes

Xt,x(t+ h)−Xt,y(t+ h) = x− y + Z.

Then,
E|Xt,x(t+ h)−Xt,y(t+ h)|2 ≤ |x− y|2(1 +Kh)

and
E|Z|2 ≤ K|x− y|2h.

In fact, one first applied Itô’s formula to |Xt,x(t + h) − Xt,y(t + h)|2
directly, one has

d|Xt,x(s)−Xt,y(s)|2 = 2(Xt,x(s)−Xt,y(s))·

(
[b(s,Xt,x(s))−b(s,Xt,y(s))]ds

+[σ(s,Xt,x(s))−σ(s,Xt,y(s))]dW

)
+tr[σ(s,Xt,x(s))−σ(s,Xt,y(s))][σ(s,Xt,x(s))−σ(s,Xt,y(s))]

Tds.

Integrating and taking expectation, the Grönwall’s inequality yields the
first result.

For the estimates of Z, you can write out the formula for Z directly.
Then, apply Itô’s isometry and using Grönwall.

The details are left for your homework.
As a second preparation, we remark that the above estimates and con-

ditions can be made for conditional expectations. In particular, one has the
following fact:

Lemma 2. Suppose ζ ∈ G ⊂ F for some σ-algebra G, and the random
variable f(x, ω) is independent of G. Denote

Ef(x, ω) = φ(x).

Then, it holds that
E(f(ζ, ω)|G) = φ(ζ).

With this lemma, the above assertions can be made into conditional
versions. For example, if X,Y ∈ Ft, then

|E[(Xt,X(t+ h)− X̄t,X(t+ h))|Ft]| ≤ K(1 + |X|2)hp1 ,

2



and

E
[
|Xt,X(t+ h)− X̄t,X(t+ h)|2

∣∣∣Ft] ≤ K(1 + |X|2)h2p2 ,

Moreover, it also holds that

E(|Xt,X(t+ h)−Xt,Y (t+ h)|2|Ft) ≤ |X − Y |2(1 +Kh)

and similar results hold for the Z variable.

1.2 Controlling the moments

Lemma 3. Suppose E|X0|2 < ∞, then there exists a constant C(T ) > 0
such that

E|Xk|2 ≤ C(T )(1 + E|X0|2).

Note that there is no explicit formula for the discrete scheme A, so we
have to turn to the assumptions that relates to the solution of the time
continuous SDE to prove.

Using the conditional version of the inequality and taking one more ex-
pectation,

E
[
|Xt,Xk

(t+ h)− X̄t,Xk
(t+ h)|2

]
≤ K(1 + E|Xk|2)h2p2 ,

If Xk has bounded second moment, according to the existence and uniquess
theorem for SDEs, we have

E|Xt,Xk
(t+ h)|2 <∞.

This implies that E|X̄t,Xk
(t+ h)|2 <∞. Hence, E|Xk|2 <∞⇒ E|Xk+1|2 <

∞.
Then, we now estimate the moments in detail.

Xk+1 = Xk + [Xtk,Xk
(tk+1)−Xk] + [X̄tk,Xk

(tk+1)−Xtk,Xk
(tk+1)]

Taking the square, we have six terms. We now estimate them each by
each.

E|Xtk,Xk
(tk+1)−Xk|2 ≤ K(1 + E|Xk|2)h,

and this is due to the property of SDE itself. This will be left as homework.
As we have seen

E
[
|Xt,Xk

(t+ h)− X̄t,Xk
(t+ h)|2

]
≤ K(1 + E|Xk|2)h2p2 ≤ K(1 + E|Xk|2)h.
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We now move to the cross terms. For

EXk · [Xtk,Xk
(tk+1)−Xk],

we have to use the property of conditional expectation as we did above for
Euler-Maruyama scheme.

EXk·E[Xtk,Xk
(tk+1)−Xk|Fk] ≤ ‖Xk‖‖E[Xtk,Xk

(tk+1)−Xk|Fk]‖ ≤ K(1+‖Xk‖2)h,

where we used similar estimate

‖E[Xtk,Xk
(tk+1)−Xk|Fk]‖ ≤

√
K(1 + ‖Xk‖2)h2.

Remark 1. We have seen this in the E-M scheme. However, here, we
are not assuming b, σ to be bounded. This general case will be left as your
homework.

The other cross terms are straightforward using the assumptions. For
example,

E[Xtk,Xk
(tk+1)−Xk]·[X̄tk,Xk

(tk+1)−Xtk,Xk
(tk+1)] ≤

√
K(1 + E|Xk|2)h

√
K(1 + E|Xk|2)h2p2

≤ K(1 + E|Xk|2)hp2+1/2 ≤ K(1 + E|Xk|2)h.

Eventually, we have

E|Xk+1|2 ≤ E|Xk|2 +K(1 + E|Xk|2)h.

The discrete Grönwall inequality implies the claim.

1.3 The proof of the theorem

Finally, we move to the proof of the theorem.
Taking X(0) = X0, we aim to control

X(tk+1)−Xk+1 =
(
Xtk,X(tk)(tk+1)−Xtk,X̄k

(tk+1)
)

+
(
Xtk,X̄k

(tk+1)−X̄tk,X̄k
(tk+1)

)
The first error is due to error arising from the errors in initial data. To

do this, we write

Xtk,X(tk)(tk+1)−Xtk,X̄k
(tk+1) = X(tk)− X̄k + Z

apply Lemma 1, of course applied using the conditional version.
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We take square and esimates.

E|X(tk+1)−Xk+1|2 =E|Xtk,X(tk)(tk+1)−Xtk,X̄k
(tk+1)|2

+ 2E
(
Xtk,X(tk)(tk+1)−Xtk,X̄k

(tk+1)
)
·
(
Xtk,X̄k

(tk+1)− X̄tk,X̄k
(tk+1)

)
+ E|Xtk,X̄k

(tk+1)− X̄tk,X̄k
(tk+1)|2.

By the conditional version,

E

(
|Xtk,X(tk)(tk+1)−Xtk,X̄k

(tk+1)|2
∣∣∣Ftk

)
≤ E|X(tk)−Xk|2(1 +Kh).

Hence, the first term is controlled by

E|Xtk,X(tk)(tk+1)−Xtk,X̄k
(tk+1)|2 ≤ E|X(tk)−Xk|2(1 +Kh)

Consider the cross term. Using the decomposition, one has

E
(
Xtk,X(tk)(tk+1)−Xtk,X̄k

(tk+1)
)
·
(
Xtk,X̄k

(tk+1)− X̄tk,X̄k
(tk+1)

)
= E

(
X(tk)− X̄k

)
·
(
Xtk,X̄k

(tk+1)− X̄tk,X̄k
(tk+1)

)
+ EZ ·

(
Xtk,X̄k

(tk+1)− X̄tk,X̄k
(tk+1)

)
For the first, using the conditional expectation first and then the conditional
version of the assumption,

≤ K‖X(tk)− X̄k‖
√
E|Xk|2hp1 ≤ K

√
1 + E|X0|2‖X(tk)− X̄k‖hp1 .

For the Z term,

EZ ·
(
Xtk,X̄k

(tk+1)− X̄tk,X̄k
(tk+1)

)
≤ ‖Z‖‖Xtk,X̄k

(tk+1)− X̄tk,X̄k
(tk+1)‖

For Z, using the conditional version of the Lemma,

E|Z2| ≤ E(E(|Z2||Ftk)) ≤ KE|X(tk)−Xk|2h.

Hence, ‖Z‖ ≤ K‖X(tk) − Xk‖h1/2. The second term is similar: it is con-
trolled by K

√
1 + E|X0|2hp2 .

Lastly, the last term is controlled directly by the assumption

≤ K(1 + E|Xk|2)h2p2 ≤ K(1 + E|X0|2)h2p2 .

To summarized, we have (note p1 ≥ p2 + 1/2)

E2
k+1 ≤ E2

k(1 +Kh) + CEkh
p2+1/2 + Ch2p2
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This implies that
E2
k ≤ KeCTh2p2−1.

The fundamental theorem can be applied directly to Euler-Maruyama
schemes to conclude the same claims we have proved. You will do this in
homework for how to use this theorem to prove the claims for the Euler-
Maruyama schemes.

2 Itô Taylor expansion and Milstein scheme

How do we get high order schemes? For ODE, the high order schemes
like RK-r, mid-point method indeed approximate the Taylor expansion at tn
with higher order terms. Hence, a natural approach is to get approximations
for higher terms in the Taylor expansion for SDEs, called the Itô-Taylor
expansion.

In this section, we will do for 1D case.

2.1 A way for Itô-Taylor expansion

Consider the ODE flow

dX

dt
= a(X).

Now, we want to expand f(Xt) (eventually, we are interested in f(x) = x).
The time derivative associated with the ODE flow is given by:

d

dt
f(Xt) = a(X)

d

dx
f(X) =: (Lf)(X).

Hence, we have

f(X) = f(Xt0) +

∫ t

t0

d

ds
f(Xs) ds = f(Xt0) +

∫ t

t0

(Lf)(Xs) ds

= f(Xt0) +

∫ t

t0

(Lf)(Xt0) ds+

∫ t

t0

∫ s1

t0

d

ds2
Lf(Xs2) ds2ds1

= f(Xt0) + (Lf)(Xt0)(t− t0) +

∫ t

t0

(t− s2)L2f(Xs2) ds2.

Clearly, we can apply this technique repeatedly and get

f(Xt) = f(Xt0) +
r∑
l=1

(t− t0)l

l!
Llf(Xt0) +

∫ t

t0

(t− s)r

r!
Lr+1f(Xs)ds.
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For SDE, we can do similar things and obtain the so-called Itô-Taylor
expansion.

Xt = Xt0 +

∫ t

t0

b(Xs)ds+

∫ t

t0

σ(Xs)dWs.

Consider a smooth function f . Then, Ito’s formula gives

f(Xt) = f(Xt0)+

∫ t

t0

(
b(Xs)

∂

∂x
f(Xs) +

1

2
σ2(Xs)

∂2

∂x2
f(Xs)

)
ds+

∫ t

t0

σ(Xs)
∂f(Xs)

∂x
dWs

= f(Xt0) +

∫ t

t0

L0f(Xs)ds+

∫ t

t0

L1f(Xs)dWs.

We have introduced

L0 = b
d

dx
+

1

2
σ2 d

2

dx2
, L1 = σ

d

dx
.

Next, we apply this formula for L0f(Xs) and L1f(Xs) respectively, and
obtain

f(Xt) = f(Xt0) + L0f(Xt0)(t− t0) + L1f(Xt0)∆W

+

∫ t

t0

∫ s1

t0

(L0)2f(Xs2) ds2ds1 +

∫ t

t0

∫ s1

t0

L1(L0f)(Xs2) dWs2ds1

+

∫ t

t0

∫ s1

t0

L0(L1f)(Xs2) ds2dWs1 +

∫ t

t0

∫ s1

t0

(L1)2f(Xs2)dWs2dWs1 . (1)

Clearly, if we throw away all the double integrals, we get the Euler-Maruyama
scheme.

2.2 An estimate for the multiple integrals

In the multi-dimensional case, if we do the substitution for many times,
we will have iterated integrals of the form

Ii1,··· ,ij (h) :=

∫ t+h

t
dwij (θ)

∫ θ

t
dwij−1(θ1) · · ·

∫ θj−2

t
dwi1(θj−1).

Here, we understand
w0 = t.

The expectation is zero when there is one ip that is nonzero. When they
are all there, the expectation is of order hj .

For the mean square magnitude,
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Lemma 4.
[E(I2

i1,··· ,ij )]
1/2 = O(h

∑j
k=1(2−i′k)/2),

where

i′k =

{
0 ik = 0,

1, ik = 1.

This lemma confirms that one dW contributes 1/2 smallness for the
mean square magnitude, while one dt contributes 1. Hence, we can keep the
desired orders as we want, by this intuitive understanding.

Proof of the lemma. The proof can be done easily by induction.
In fact, if ij = 0, then by Hölder, one has

EI2
i1,··· ,ij ≤ h

∫ t+h

t
EI2

i1,··· ,ij−1
(s) ds

The integral contributes 1/2 smallness while the extra h contributes 1/2.
Otherwise, by the Itô’s isometry,

EI2
i1,··· ,ij =

∫ t+h

t
EI2

i1,··· ,ij−1
(s) ds

The integral contributes 1/2. Hence, the induction gives the desired result.

2.3 Several schemes

From large to small, we should have the following dW > dt ≈ (dW )2 >
dtdW ∼ (dW )3 > dt2. Let us keep these terms:

We now set f(x) = x in (1).

Xt = Xt0 + σ(Xt0)∆W + b(Xt0)(t− t0) +

∫ t

t0

∫ s1

t0

L1σ(Xs2)dWs2dWs1

+

∫ t

t0

∫ s1

t0

L1b(Xs2) dWs2ds1 +

∫ t

t0

∫ s1

t0

L0σ(Xs2) ds2dWs1

+

∫ t

t0

∫ s1

t0

L0b(Xs2) ds2ds1 (2)

If we only keep dW and dt terms, we get the Euler-Maruyama scheme.
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2.3.1 Milstein

If we do approximation for the expansion and keep to (dW )2, we arrive
at the following:

Xt ≈ Xt0+b(Xt0)(t−t0)+σ(Xt0)∆W+L1σ(X(t0))

∫ t

t0

(W (s1)−W (t0))dW (s1).

The Itô integral can be evaluated directly which is 1
2(∆W 2 −∆t).

The Milstein scheme is given by

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t).

Note that the two ∆Wn’s in this equation should be the same instead of two
i.i.d random variables.

Note that if σ = const, it is then reduced to Euler-Maruyama scheme.

2.3.2 Higher order attempts

If we keep to dtdW and dW 3, then one has

Xt = Xt0 + σ(Xt0)∆W + b(Xt0)(t− t0) + +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t)

+

∫ t

t0

∫ s1

t0

∫ s2

t0

(L1)2σ(Xs3)dWs3dWs2dWs1 +

∫ t

t0

∫ s1

t0

L1b(Xs2) dWs2ds1

+

∫ t

t0

∫ s1

t0

L0σ(Xs2) ds2dWs1 +

∫ t

t0

∫ s1

t0

L0b(Xs2) ds2ds1 (3)

The approximation for this is

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t)

+ (L1)2σ(Xn)

∫ tn+1

tn

∫ s

tn

(W (s1)−W (tn))dWs1dWs

+ L1b(Xn)

∫ tn+1

tn

(W (s)−W (tn))ds+ L0σ(Xn)

∫ tn+1

tn

(s− tn)dW (s).
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If we include the dt2, we get

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t)

+(L1)2σ(Xn)

∫ tn+1

tn

∫ s

tn

(W (s1)−W (tn))dWs1dWs+L
1b(Xn)

∫ tn+1

tn

(W (s)−W (tn))ds

+ L0σ(Xn)

∫ tn+1

tn

(s− tn)dW (s) +
1

2
L0b(Xn)∆t2.

3 The orders of some schemes

The Milstein scheme is given by

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t).

The approximation for this is

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t)

+ (L1)2σ(Xn)

∫ tn+1

tn

∫ s

tn

(W (s1)−W (tn))dWs1dWs

+ L1b(Xn)

∫ tn+1

tn

(W (s)−W (tn))ds+ L0σ(Xn)

∫ tn+1

tn

(s− tn)dW (s).

If we include the dt2, we get

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)∆Wn +
1

2
σ(Xn)σ′(Xn)(∆W 2

n −∆t)

+(L1)2σ(Xn)

∫ tn+1

tn

∫ s

tn

(W (s1)−W (tn))dWs1dWs+L
1b(Xn)

∫ tn+1

tn

(W (s)−W (tn))ds

+ L0σ(Xn)

∫ tn+1

tn

(s− tn)dW (s) +
1

2
L0b(Xn)∆t2.

Let
ρ := Xt,x(t+ h)− X̄t,x(t+ h).

We recall

|Eρ| ≤ K
√

1 + |x|2hp1 ,
√

E|ρ|2 ≤ K
√

1 + |x|2hp2 ,

These coefficients can be read out directly from the remainder terms.
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For the Milstein scheme, the mean is given by the L0 terms.

p1 = 2, p2 = 3/2.

For the second scheme

p1 = 2, p2 = 2.

To satisfy p1 ≥ p2 + 1/2, we can only take p2 = 3/2. Hence, the order is 1.
For the third scheme

p1 = 3, p2 = 2.

The order is 3/2.
Exercise: Compute p1 and p2 for Xn+1 = Xn + σ(Xn)∆Wn. Does this

scheme converge?
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